

IA / ROBÓTICA | SECUNDARIA

ENTRENAMIENTO DE REDES NEURONALES EN STEM SUITE

Aprender inteligencia artificial de forma práctica con fischertechnik

Con la nueva integración de IA en el software de programación de fischertechnik, los alumnos y profesores pueden entrenar sus propias redes neuronales y utilizarlas directamente en los proyectos de robótica de fischertechnik. La interfaz gráfica de usuario hace que el inicio sea intuitivo: después del entrenamiento, se genera un bloque de programación especial que se puede utilizar como cualquier sensor o actuador. Así es como llevamos la inteligencia artificial al aula, no como un concepto abstracto, sino como una experiencia de aprendizaje tangible y emocionante para todos.

VENTAJAS EN LA ENSEÑANZA

Introducción sencilla a la IA con una interfaz visual y fácilmente accesible.

Aprendizaje práctico con robots reales.

Ejercicios adaptables a diferentes edades y niveles de conocimiento


Comprensión de la influencia de los parámetros y los datos en los resultados de la IA

La generación automática de bloques facilita la integración en proyectos propios.

La aplicación intuitiva de aprendizaje y programación de

fischertechnik. Ofrece un entorno multilingüe con programación

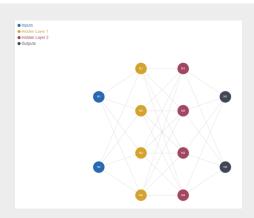
por bloques y Python, niveles de aprendizaje seleccionables (desde

principiante hasta experto), tareas

interactivas, vídeos instructivos

e instrucciones digitales paso a

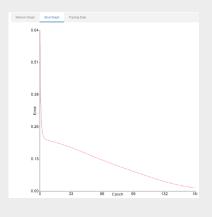
paso.

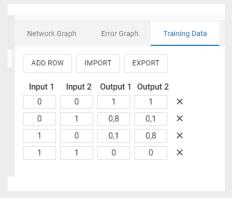

OBJETIVOS DE APRENDIZAJE

- CONOCIMIENTOS BÁSICOS SOBRE REDES NEURONALES Los alumnos comprenden que una red neuronal aprende a partir de datos y genera resultados basándose en patrones.
- TRABAJAR CON DATOS REALES DE SENSORES
 Se recopilan datos de sensores, como el color o la distancia, para entrenar modelos que reaccionan a situaciones reales del robot.
- APLICACIÓN DIRECTA EN PROYECTOS
 Después del entrenamiento, el modelo se integra como bloque en la programación y puede utilizarse inmediatamente en el robot.
- EXPERIMENTAR CON LOS PARÁMETROS DE ENTRENAMIENTO Los alumnos pueden investigar cómo el número de épocas, la velocidad de aprendizaje o la estructura de la red influyen en la calidad de los resultados.
- IMPORTACIÓN Y EXPORTACIÓN DE DATOS DE ENTRENAMIENTO Es posible crear registros en el proyecto o importar/exportar registros externos para experimentar con nuevos casos.
- EJECUCIÓN EN TIEMPO REAL EN EL CONTROLADOR Los modelos entrenados se ejecutan directamente en el TXT 4.0 y el controlador RX, sin necesidad de conectar un ordenador.
- EJERCICIOS PRECONFIGURADOS Los conceptos de aprendizaje de fischertechnik (por ejemplo, STEM Coding Ultimate AI) incluyen ejercicios preparados que permiten una rápida introducción y una comprensión gradual de las redes neuronales.

ASÍ FUNCIONA EL PROCESO DE APRENDIZAJE EN CUATRO PASOS:

CREACIÓN DE LA RED NEURONAL:


La herramienta permite crear y entrenar una red neuronal propia de forma sencilla e intuitiva.



2

ENTRENAMIENTO DE LA RED NEURONAL:

La red neuronal se entrena con datos existentes o recopilados por sensores.

INTEGRACIÓN EN EL PROGRAMA:

Una vez completado el entrenamiento, se genera un bloque de IA que se puede utilizar en programas para controlar de forma inteligente, por ejemplo, motores, LED u otros actuadores.

```
program start
repeat forever
do set inputs v to + - create list with get IR track sensor TXT_M_I1 v state
get IR track sensor TXT_M_I2 v state
set outputs v to execute NN with inputs inputs v
+ set motor TXT_M_M1 v ccw v speed in list outputs v get v # v 1 x 450
+ set motor TXT_M_M2 v ccw v speed in list outputs v get v # v 2 x 450
```

EJECUCIÓN EN TIEMPO REAL:

El modelo entrenado se ejecuta directamente en el controlador, sin necesidad de tener un ordenador conectado permanentemente.

