

Post-installed rebar Installation instructions

Post-installed rebar connection with fischer injection mortars
FIS RC II, FIS RC II Low Speed, FIS EM Plus or FIS V Plus

Safety instructions

Before use, read and review the installation instructions and the SDS (Safety Data Sheet).

Then working with injection mortar, wear suitable protective clothing, protective gloves and protective goggles!

Important:

For detailed information on installation, refer to instruction manual provided with the package of the product.

Table of contents

1. Description of the system	
1.1 Injection mortar FIS RC II, FIS RC II Low Speed, FIS EM Plus or FIS V Plus	4
1.2 FIS-Rebar case	4
1.3 Required tools and equipments	5
1.4 Drilling aid	5
<hr/>	
2. Process of post-installed rebar connection	
2.1 Marking the drilling position	6
2.1.1 Minimum concrete cover	6
2.1.2 Minimum edge distance	7
2.2 Fixing the Drilling Aid	8
2.3 Drilling the hole	8
2.3.1 Hollow drilled hole	8
2.3.2 Hammer drilled hole or pneumatic drilled hole	9
2.3.3 Diamond drilled hole	9
2.3.4 Maximum setting depths	10 – 11
2.3.5 Installation accessories	11
2.4 Roughing up the connecting joint	12
2.5 Drill hole cleaning	12
2.5.1 FIS RC II, FIS RC II Low Speed	12
2.5.2 FIS EM Plus	12 – 13
2.5.3 FIS V Plus	13
2.6 Marking and checking setting depth on reinforcement bar	14
2.7 Details on the injection extension tube	14
2.7.1 Marking length	15
2.8 Filling drill hole	16
2.8.1 Processing and curing times FIS RC II, FIS RC II Low Speed	16
2.8.2 Processing and curing times FIS EM Plus	16
2.8.3 Processing and curing times FIS V Plus	17
2.8.4 Processing	18
2.8.5 Mortar quantities	19
2.9 Inserting the reinforcement bar	20
2.10 Curing of the mortar	20
<hr/>	
3. Supplementary accessories	21

Description of the system

1.1 Injection mortar FIS RC II, FIS RC II Low Speed, FIS EM Plus and FIS V Plus

The fischer FIS injection mortars are used for "post-installed" rebars as anchorages or lapped bars in the construction of reinforced concrete or for rebar anchors FRA as lapped bars only.

The post-installed rebar connections can be made with the injection mortars FIS RC II, FIS RC II Low Speed (ETA-22/0502), FIS EM Plus (ETA-17/1056) or FIS V Plus (ETA-20/0728) (Fig. 1).

Fig. 1: Injection mortar FIS RC II, FIS RC II Low Speed (360 ml | 825 ml), FIS EM Plus (390 ml | 585 ml | 1500 ml), FIS V Plus (360 ml | 825 ml)

1.2 FIS-Rebar case

The system includes the FIS-rebar case, containing the most important accessory components which are required for proper installation of the above mentioned connections (Fig. 2)

Fig. 2:
FIS-rebar case

1.3 Required tools and equipments

In addition to fischer injection mortar, FIS-rebar case and the reinforcement bars to be post-installed, the following tools and equipment are also required:

- Hammer drill, pneumatic drill or diamond drill.
- Battery-operated screw driver or drilling machine (for drill hole brushing).
- SDS plus or SDS max drill bit, hollow drill bit, pneumatic drill bit or diamond core bit according to the required drill hole geometry.
- Compressor for oil-free compressed air with $p \geq 6$ bar (0.6 MPa).
- fischer professional dispenser (manual, battery-operated or pneumatic).
- Extension tube for static mixer, $\varnothing 9$ mm or $\varnothing 15$ mm.
- Additional static mixers.
- fischer scabbling tool for roughing up the connecting joint.
- Suitable protective clothing, safety goggles and protective gloves in accordance with EN 374 (e.g. butyl rubber, fluorocarbon rubber, nitrile rubber - with FIS EM Plus penetration time > 120 min).
- Dust extraction system (when using hollow drills).

1.4 Drilling aid

In compliance with the Design Engineer a drilling aid (Fig. 3) must be used as a guide to create the drill hole, if e. g. the hole is to be drilled close to the edge of the concrete building component or exactly parallel to existing reinforcement.

The drilling position, drill hole diameter selection, drill depth and the decision about the use of a drilling aid shall be made by the Design Engineer and must be complied with. Discrepancies must be clarified with the Design Engineer before construction.

The individual steps in creating a post-installed rebar connection are described in detail in sections 2.1 to 2.11.

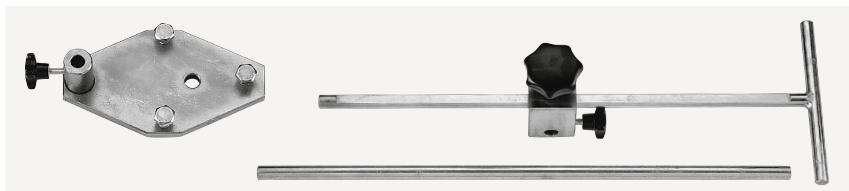


Fig. 3: Drilling aid

Process for post-installed rebar connection

2.1 Marking the drilling position

- The person carrying out the work must ensure that if the anchorage is close to a free edge (Fig. 4) the minimum concrete cover c_{\min} (Tab. 1) and minimum spacing $\min a_s$ (Eq. 1) of the reinforcement bars to be installed are observed.
- The minimum drilling distances $\min s_o$ (Eq. 2) are the result of c_{\min} and may be calculated for the respective bar diameter d_s and drilling depths.
- For minimum spacing $\min a_s$ of the post-installed reinforcement bars the following equation applies:
 $\min a_s \geq 5 d_s \text{ (and } \geq 50 \text{ mm)}$ (Eq. 1)
- The following applies for minimal edge distance of the free edge:
 $\min s_o = c + d_s / 2$ (Eq. 2)

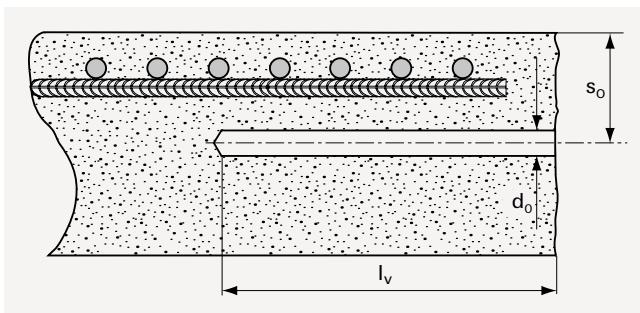


Fig. 4: Anchorage close to the edge of the building component

2.1.1 Minimum concrete cover c_{\min} depending on setting depths l_v

Table 1.

Drilling method	Nominal diameter of the reinforcing bar d_s [mm]	Minimum concrete cover c_{\min} [mm]	
		Without drilling aid	With drilling aid
Hammer drilling with standard drill, Hammer drilling with hollow drill, Diamond drilling	< 25	$30 \text{ mm} + 0.06 l_v \geq 2 d_s$	$30 \text{ mm} + 0.02 l_v \geq 2 d_s$
	≥ 25	$40 \text{ mm} + 0.06 l_v \geq 2 d_s$	$40 \text{ mm} + 0.02 l_v \geq 2 d_s$
Compressed air drilling	< 25	$50 \text{ mm} + 0.08 l_v$	$50 \text{ mm} + 0.02 l_v$
	≥ 25	$60 \text{ mm} + 0.08 l_v \geq 2 d_s$	$60 \text{ mm} + 0.02 l_v \geq 2 d_s$

For fischer rebar anchor FRA, $l_{a,ges}$ instead of l_v

2.1.2 Minimum edge distance $min\ s_o$ for selected setting depths l_v

Table 2.

		Setting depth l_v [mm]																					
		80	100	120	140	160	200	250	280	300	320	400	500	600	700	800	900	1000	1200	1400	1600	1800	2000
Rebar-d d, [mm]	Drilling method	Minimum edge distance of the bore $min\ s_o$ [mm]																					
8	Hammer drilling without drilling aid	39	40	41	42	44	46	49	51	52	53	58	64	70	76	82	88	94	106	118	130	142	
	Compressed air drilling without drilling aid	60	62	64	65	67	70	74	76	78	80	86	94	102	110	118	126	134	150	166	182	198	
	Hammer drilling with drilling aid	36	36	36	37	37	38	39	40	40	40	42	44	46	48	50	52	54	58	62	66	70	
	Compressed air drilling with drilling aid	56	56	56	57	57	58	59	60	60	60	62	64	66	68	70	72	74	78	82	86	90	
10	Hammer drilling without drilling aid	41	42	43	45	47	50	52	53	54	59	65	71	77	83	89	95	107	119	131	143		
	Compressed air drilling without drilling aid	63	65	66	68	71	75	77	79	81	87	95	103	111	119	127	135	151	167	183	199		
	Hammer drilling with drilling aid	37	37	38	38	39	40	41	41	41	43	45	47	49	51	53	55	59	63	67	71		
	Compressed air drilling with drilling aid	57	57	58	58	59	60	61	61	61	63	65	67	69	71	73	75	79	83	87	91		
12	Hammer drilling without drilling aid	43	44	46	48	51	53	54	55	60	66	72	78	84	90	96	108	120	132	144			
	Compressed air drilling without drilling aid	66	67	69	72	76	78	80	82	88	96	104	112	120	128	136	152	168	184	200			
	Hammer drilling with drilling aid	38	39	39	40	41	42	42	42	44	46	48	50	52	54	56	60	64	68	72			
	Compressed air drilling with drilling aid	58	59	59	60	61	62	62	62	64	66	68	70	72	74	76	80	84	88	92			
14	Hammer drilling without drilling aid	45	47	49	52	54	55	56	61	67	73	79	85	91	97	109	121	133	145				
	Compressed air drilling without drilling aid	68	70	73	77	79	81	83	89	97	105	113	121	129	137	153	169	185	201				
	Hammer drilling with drilling aid	40	40	41	42	43	43	43	45	47	49	51	53	55	57	61	65	69	73				
	Compressed air drilling with drilling aid	60	60	61	62	63	63	63	65	67	69	71	73	75	77	81	85	89	93				
16	Hammer drilling without drilling aid	48	50	53	55	56	57	62	68	74	80	86	92	98	110	122	134	146					
	Compressed air drilling without drilling aid	71	74	78	80	82	84	90	98	106	114	122	130	138	154	170	186	202					
	Hammer drilling with drilling aid	40	41	42	43	43	43	45	47	49	51	53	55	57	61	65	69	73					
	Compressed air drilling with drilling aid	61	62	63	64	64	64	66	68	70	72	74	76	78	82	86	90	94					
20	Hammer drilling without drilling aid	52	55	57	58	59	64	70	76	82	88	94	100	112	124	136	148						
	Compressed air drilling without drilling aid	76	80	82	84	86	92	100	108	116	124	132	140	156	172	188	204						
	Hammer drilling with drilling aid	50	50	50	50	50	50	50	52	54	56	58	60	64	68	72	76						
	Compressed air drilling with drilling aid	64	65	66	66	66	68	70	72	74	76	78	80	84	88	92	96						
25	Hammer drilling without drilling aid	68	69	71	72	77	83	89	95	101	107	113	125	137	149	161	173						
	Compressed air drilling without drilling aid	93	95	97	98	105	113	121	129	137	145	153	169	185	201	217	233						
	Hammer drilling with drilling aid	63	63	63	63	63	63	65	67	69	71	73	77	81	85	89	93						
	Compressed air drilling with drilling aid	78	78	79	79	81	83	85	87	89	91	93	97	101	105	109	113						
28	Hammer drilling without drilling aid	71	72	73	78	84	90	96	102	108	114	126	138	150	162	174							
	Compressed air drilling without drilling aid	96	98	100	106	114	122	130	138	146	154	170	186	202	218	234							
	Hammer drilling with drilling aid	70	70	70	70	70	70	70	72	74	78	82	86	90	94	98							
	Compressed air drilling with drilling aid	80	80	80	82	84	86	88	90	92	94	98	102	106	110	114							
32	Hammer drilling without drilling aid	75	80	86	92	98	104	110	116	128	140	152	164	176									
	Compressed air drilling without drilling aid	102	108	116	124	132	140	148	156	172	188	204	220	236									
	Hammer drilling with drilling aid	80	80	80	80	80	80	80	80	80	84	88	92	96									
	Compressed air drilling with drilling aid	82	84	86	88	90	92	94	96	100	104	108	112	116	120								
40	Hammer drilling without drilling aid	84	90	96	102	108	114	120	132	144	156	168											
	Compressed air drilling without drilling aid	112	120	128	136	144	152	160	176	192	208	224											
	Hammer drilling with drilling aid	100	100	100	100	100	100	100	100	100	100	100											
	Compressed air drilling with drilling aid	88	90	92	94	96	98	100	104	108	112	116	120										

For fischer rebar anchor FRA, $l_{e,ges}$ instead of l_v

2.2 Fixing the drilling aid

- For lapped joints always ensure that drilling is parallel to the existing reinforcement and thus parallel to a reference surface.
- When using a drilling aid it must first be fixed with an anchor.
- Afterwards the base plate must be aligned in such a way that the reference bar is parallel to the concrete surface.
- Finally, the swivelling guide bar must be aligned in such a way that it is in close proximity to the drill hole marking and can thus be used as a visual aid for parallel drilling.

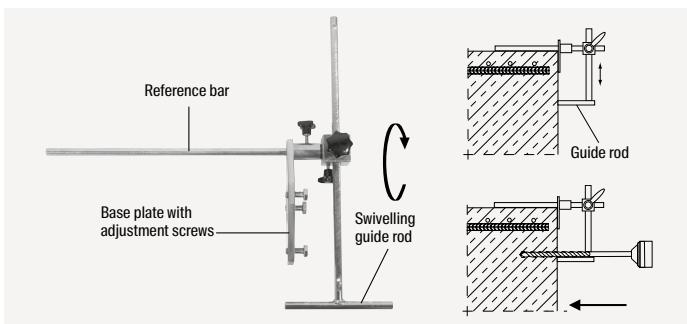
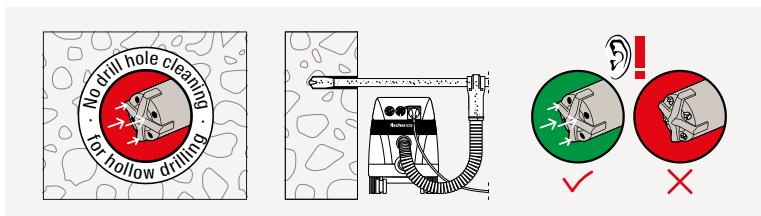
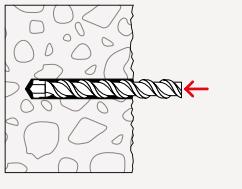



Fig. 5: Drilling aid (Base plate, Reference bar, Guide bar)

2.3 Drilling a hole

2.3.1 Hollow drilling

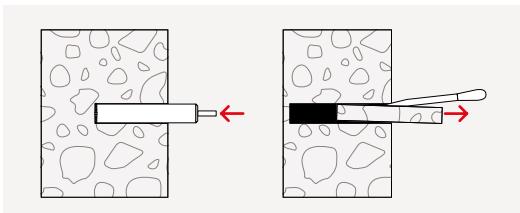
Hammer drilling with ETA-regulated hollow drill (e.g. fischer FHD) and extraction using a suitable dust extraction system. The dust extraction system must be set to maximum power and must extract the drilling dust constantly during the entire drilling process. The correct function of the dust extraction system must be checked before, during and after each drilling operation. A further cleaning of the drill hole is not necessary for drilled holes with hollow drills. For drill holes with a setting depth $l_v > 25 \text{ cm}$, pre-drill to a depth of at least 15 cm using a short drill bit is recommended. After completion of the pre-drilling, the concrete surface should be roughened up according to the specifications of the planning engineer (see chapter 2.4). The maximum setting depth $l_{v,\max} / l_{e,ges,\max}$ (max. drill hole depth) can be found in Tab. 3 - 5.



2.3.2 Hammer drilling or pneumatic drilling

For drill holes with a setting depth $l_v > 25 \text{ cm}$, 15 cm must first be pre-drilled with a short drill bit.

It is recommended after pre-drilling to rough up the concrete surface in line with the specifications of the planning engineers (see section 2.4).


The maximum setting depth $l_{v,\max}/l_{e,ges,\max}$ (maximum drill hole depth) can be taken from Tab. 3 - 5.

2.3.3 Diamond drilling

The diamond drilling method may only be used when using the injection mortar FIS EM Plus.

The maximum setting depth $l_{v,\max}/l_{e,ges,\max}$ (max. drill hole depth) can be found in Tab. 3 - 5. After drilling, the drilled concrete core must be broken and removed. For diamond drilled holes a special cleaning procedure must be followed. (see chapter 2.5.2).

2.3.4 Maximum setting depth with cartridges and dispenser assignment for post-installed rebar connection

Table 3.

Injection mortar FIS RC II / FIS RC II Low Speed			360 ml	825 ml	
Dispenser	Hand	Battery & Pneumatic	Battery & Pneumatic		
Rebar-Ø	Drill-hole-Ø	Drill-cutting-Ø	Maximum setting depth		
d_s [mm]	d_0 [mm]	d_{cut} [mm]	$l_{v,max}/l_{e,ges,max}$ [mm]		
8	10 / 12 ¹⁾	$\leq 10.5 / \leq 12.5$	1000	1800	
10	12 / 14 ¹⁾	$\leq 12.5 / \leq 14.5$			
12 / FRA 12 (HCR)	14 / 16 ¹⁾	$\leq 14.5 / \leq 16.5$			
14	18	≤ 18.5			
16 / FRA 16 (HCR)	20	≤ 20.55	700	2000	
18 / 20 / FRA 20 (HCR)	25	≤ 25.55			
22 / 24	30	≤ 30.55			
25 / FRA 24 (HCR)	30 / 35 ¹⁾	$\leq 30.55 / \leq 35.7$			
28	35	≤ 35.7	700	$T_c > 0^\circ\text{C}$: 1500 $T_c \leq 0^\circ\text{C}$: 2000 1300	
30 / 32	40	≤ 40.7			
40	55	≤ 55.7			
Minimum concrete temperature			-10°C		
Maximum concrete temperature			$+40^\circ\text{C}$		

¹⁾ Both diameters are possible.

Table 4.

Injection mortar FIS EM Plus			390 ml	585 ml	390 ml	585 ml	1500 ml							
Dispenser	Hand	Battery & Pneumatic	Pneumatic											
Rebar-Ø	Drill-hole-Ø	Drill-cutting-Ø	Maximum setting depth											
d_s [mm]	d_0 [mm]	d_{cut} [mm]	$l_{v,max}/l_{e,ges,max}$ [mm]											
8	10 / 12 ¹⁾	$\leq 10.5 / \leq 12.5$	1000	1800	2000	500	700	500	500					
10	12 / 14 ¹⁾	$\leq 12.5 / \leq 14.5$												
12 / FRA 12	14 / 16 ¹⁾	$\leq 14.5 / \leq 16.5$												
14	18	≤ 18.5												
16 / FRA 16	20	≤ 20.55	700	1000	2000	500	700	500	500					
20 / FRA 20	25	≤ 25.55												
22 / 24	30	≤ 30.55												
25 / FRA 24	30 / 35 ¹⁾	$\leq 30.55 / \leq 35.7$												
26 / 28	35	≤ 35.7	-	500	2000	500	500	500	500					
30 / 32 / 34	40	≤ 40.7												
36	45	≤ 45.7												
40	55	≤ 55.7												
Minimum concrete temperature			-5°C											
Maximum concrete temperature			$+40^\circ\text{C}$											

¹⁾ Both diameters are possible.

Table 5.

Injection mortar FIS V Plus			360 ml		825 ml		
Dispenser			Hand	Battery & Pneumatic		Battery & Pneumatic	
Rebar-ø	Drill hole-ø	Drill-cutting-ø	Maximum setting depth				
d_s [mm]	d_0 [mm]	d_{cut} [mm]	$l_{v,max}$	$l_{e,ges,max}$ [mm]			
8	10/12 ¹⁾	$\leq 10.5 / \leq 12.5$	1000	1000	1800	1800	
10	12/14 ¹⁾	$\leq 12.5 / \leq 14.5$		1200			
12/FRA 12	14/16 ¹⁾	$\leq 14.5 / \leq 16.5$		1500			
14	18	≤ 18.5		1300			
16/FRA 16	20	≤ 20.55	700	1000	2000	2000	
20/FRA 20	25	≤ 25.55		500			
25/FRA 24	30/35 ¹⁾	$\leq 30.55 / \leq 35.7$	700	700			
28	35	≤ 35.7					
Minimum concrete temperature			$\pm 0^{\circ}\text{C}$				
Maximum concrete temperature			$+40^{\circ}\text{C}$				

¹⁾ Both diameters are possible.

2.3.5 Installation accessories

Table 6.

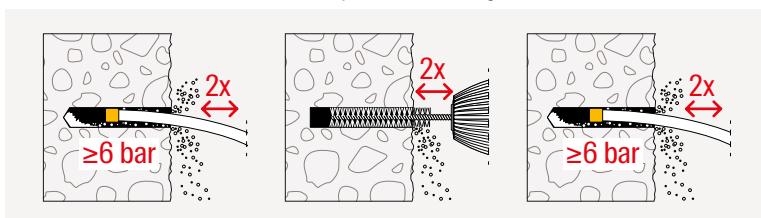
Rebar-ø	Drill hole-ø	Compressed air nozzle-ø	Cleaning brush for drill-ø	Extension tube-ø	Colour of the Injection adapter
d_s [mm]	d_0 [mm]	[mm]	d_b [mm]	[mm]	
8 ¹⁾	10	–	11.0	9 ²⁾	–
8/10 ¹⁾	12	11	12.5	9 ²⁾	transparent
10/12/FRA 12 ¹⁾	14	11	15.0	9 ²⁾	blue
12/FRA 12 ¹⁾	16	15	17.0	9 ²⁾	red
14	18	15	19.0	9 ²⁾ or 15	yellow
16/FRA 16	20	19	21.5	9 ²⁾ or 15	green
20/FRA 20	25	19	26.5	9 ²⁾ or 15	black
22/24/25/FRA 24	30	28	32.0	9 ²⁾ or 15	grey
25/26/28/FRA 24	35	28	37.0	9 ²⁾ or 15	brown
30/32/34	40	38	42.0	9 ²⁾ or 15	red
36	45	38	47.0	9 ²⁾ or 15	yellow
40	55	38	58.0	9 ²⁾ or 15	transparent

¹⁾ Both diameters possible.

The larger drill diameters are particularly recommended for greater anchorage depths.

²⁾ For the 360 ml and 390 ml cartridge, use the ø 9 mm extension.

The corresponding maximum setting depths can be found in Tab. 3-5.


EN 2.4 Roughing up the connecting joint

- In compliance with the Design Engineer the connecting joint (existing concrete surface) must be at least roughed up to the extent that the aggregates are visible before pouring the new building component. For this purpose, e.g. the fischer scrabbling tool with SDS-Max can be used. Other possibilities are, for example, high-pressure water jetting.
- It is advisable that the connecting joints roughened up after pre-drilling as the set bars may impede access to the surface).
- In the case of a carbonated surface of the existing concrete structure, the carbonated layer must be removed in the area of the post-installed rebar connection with the diameter of $\varnothing +60$ mm prior to the installation of the new rebar. The depth of the concrete to be removed must be at least the minimum concrete cover for the respective environmental conditions according to EN 1992-1-1. This is not applicable for new and non-carbonated concrete and if the building components are in a dry conditions.

2.5 Drill hole cleaning

2.5.1 FIS RC II, FIS RC II Low Speed

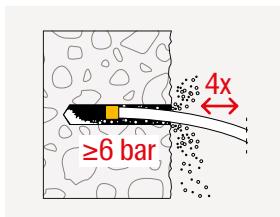
Drill hole by hollow drilling (no further drill hole cleaning necessary), hammer drilling with standard drill bit or hollow drill bit or pneumatic drilling.

Blow out the drill hole:

Blow out the drill hole from the bottom of the hole twice with a suitable nozzle attachment (see Tab. 6) and oil-free compressed air ($p \geq 6$ bar (0.6 MPa)).

Brush out the drill hole:

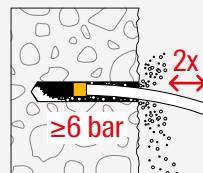
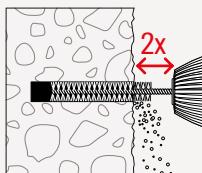
Brush out drill hole, extend suitable stainless steel brushes (Tab. 6) with extension in power tool and brush drill hole twice.


Blow out the drill hole:

Blow out the drill hole from the bottom of the hole twice with a suitable nozzle attachment (see Tab. 6) and oil-free compressed air ($p \geq 6$ bar (0.6 MPa)).

2.5.2 FIS EM Plus

Drill hole by hollow drilling (no further drill hole cleaning necessary), hammer drilling or pneumatic drilling.



Hammer drilling with standard drill bit or pneumatic drilling:

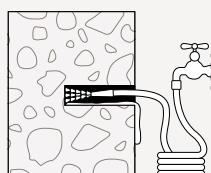
Blow out the drill hole:

Blow out the hole from the bottom of the hole four times with a suitable nozzle attachment (see Tab. 6) and oil-free compressed air ($p \geq 6$ bar (0.6 MPa)).

In accordance with EOTA Technical Report TR 069: Post-installed reinforcing bar connections with improved bond-splitting behaviour according to ETA-22/0001.

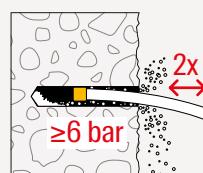
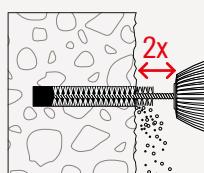
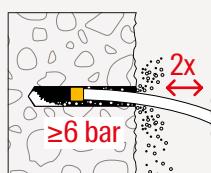
Blow out the drill hole:

Blow out the drill hole from the bottom of the hole twice with a suitable nozzle attachment (see Tab. 6) and oil-free compressed air ($p \geq 6$ bar (0.6 MPa)).


Brush out the drill hole:

Brush out drill hole, extend suitable stainless steel brushes (Tab. 6) with extension in power tool and brush drill hole twice.

Blow out the drill hole:




Blow out the drill hole from the bottom of the hole twice with a suitable nozzle attachment (see Tab. 6) and oil-free compressed air ($p \geq 6$ bar (0.6 MPa)).

Diamond drilling:

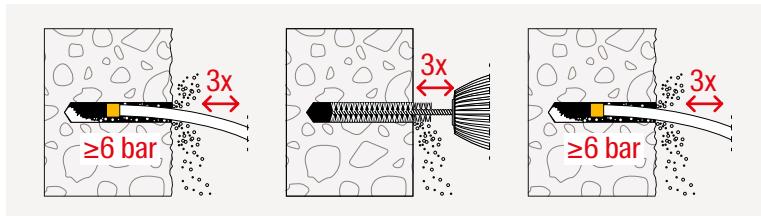
Rinse the drill hole:

Rinse until clear water comes through.

Blow out the drill hole:

Blow out the drill hole from the bottom of the hole twice with a suitable nozzle attachment (see Tab. 6) and oil-free compressed air ($p \geq 6$ bar (0.6 MPa)).

Brush out the drill hole:


Brush out drill hole, extend suitable stainless steel brushes (Tab. 6) with extension in power tool and brush drill hole twice.

Blow out the drill hole:

Blow out the drill hole from the bottom of the hole twice with a suitable nozzle attachment (see Tab. 6) and oil-free compressed air ($p \geq 6$ bar (0.6 MPa)).

2.5.3 FIS V Plus

Drill hole creation by hollow drilling (no further drill hole cleaning necessary), hammer drilling or pneumatic drilling (diamond drilling not permitted).

Blow out the drill hole:

Blow out the drill hole from the bottom of the hole three times with a suitable nozzle attachment (see Tab. 6) and oil-free compressed air ($p \geq 6$ bar (0.6 MPa)).

Brush out the drill hole:

Brush out drill hole, extend suitable stainless steel brushes (Tab. 6) with extension in power tool and brush drill hole three times.

Blow out the drill hole:

Blow out the drill hole from the bottom of the hole three times with a suitable nozzle attachment (see Tab. 6) and oil-free compressed air ($p \geq 6$ bar (0.6 MPa)).

2.6 Marking and checking setting depth on reinforcement bar

- The setting depth l , specified by the planning engineer must be marked with adhesive tape on the reinforcement bar.
- For testing purposes, the marked reinforcement bar is inserted into the cleaned drill hole to the bottom of the drill hole and turned at the same time, thus checking ease of movement of the reinforcement bar and the drill hole depth (Fig. 6).
- Any ridges on the edge of the bars that hinder ease of movement must be removed.

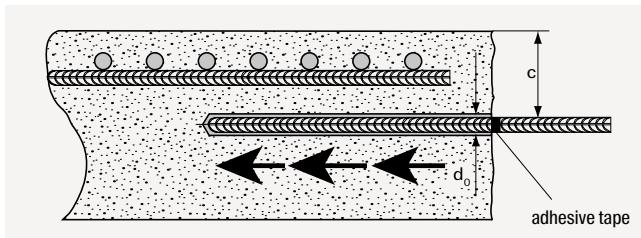


Fig. 6: Checking ease of movement of the reinforcement bar and the drill hole depth

2.7 Preparation of the extension injection system

- The static mixers must be extended with appropriate extension tubes ($\varnothing 9$ mm or $\varnothing 15$ mm). The extension tube of $\varnothing 9$ mm fit the small static mixer FIS MR Plus. The FIS UMR static mixers for the 585 ml or 1500 ml cartridge and FIS JMR for 825 ml cartridge can be fitted with the extension tube $\varnothing 9$ mm (plugged in inside) and $\varnothing 15$ mm (plugged on outside).
- Choose an extension tube that is about 200 mm longer than the drill hole depth.
- The specified injection adapter can be attached to the end of the extension tube facing the drill hole. This allows filling which is even and free from air bubbles. Select the correct injection adapter from Tab.le 6.
- Finally, the length of injection l_m is marked with adhesive tape on the extension tube as per Fig. 7
- Tab. 7 specifies the values for l_m . The following formula can also be applied instead of the Tab. values on the safe side: $l_m = 1/3 \times \text{drill hole depth } (l_v)$

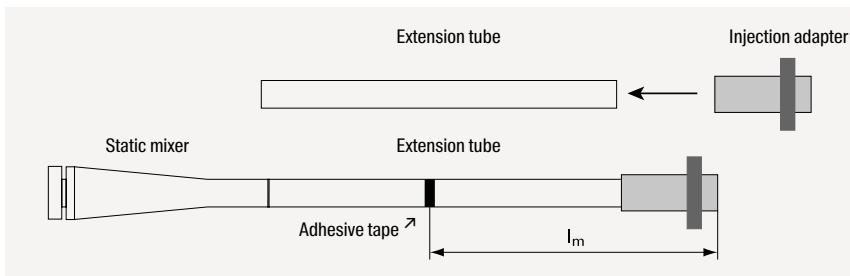


Fig. 7: Preparation of the extension injection system

2.7.1 Marking length l_m depending on setting depth l_v or $l_{e, \text{ges}}$

Download
fischer
Professional
advisor now

Table 7:

2.8 Filling the drill hole

The effects of temperature must be considered for both storage and processing time of the injection mortar:

Storage temperature of the cartridge:

+5 °C to +25 °C (FIS RC II, FIS RC II Low Speed, FIS V Plus) and +30 °C (FIS EM Plus)

2.8.1 Processing and curing time of the injection mortar FIS RC II, FIS RC II Low Speed

Table 8.

Temperature in the anchorage base [°C]	Maximum working time ¹⁾ t_{work}		Minimum curing time ²⁾ t_{cure}	
	FIS RC II	FIS RC II Low Speed	FIS RC II	FIS RC II Low Speed
-10 to -5	20 min ³⁾	-	12 h	-
≥ -5 to ±0	20 min ³⁾	40 min	12 h	5 d
> ±0 to +5	13 min ³⁾	30 min	3 h	48 h
> +5 to +10	9 min ³⁾	20 min	90 min	24 h
> +10 to +20	5 min	13 min	60 min	120 min
> +20 to +30	4 min	9 min	45 min	60 min
> +30 to +40	2 min ⁴⁾	7 min	35 min	45 min

¹⁾ Maximum time from the beginning of the injection to rebar / fischer rebar anchor FRA setting and positioning.

²⁾ For wet concrete the curing time must be doubled.

³⁾ If the temperature in the concrete falls below +10 °C the cartridge must be warmed up to +15 °C.

⁴⁾ If the temperature in the concrete exceeds +30 °C the cartridge must be cooled down to +15 °C up to +20 °C.

2.8.2 Processing and curing times of the injection mortar FIS EM Plus

Table 9.

Temperature in the anchorage base [°C]	Maximum working time ¹⁾ t_{work}	Initial curing time ²⁾ $t_{cure, ini}$	Minimum curing time ³⁾ t_{cure}
	FIS EM Plus	FIS EM Plus	FIS EM Plus
≥ -5 to ±0	240 min ⁴⁾	62 h	200 h
> ±0 to +5	150 min ⁴⁾	39 h	90 h
> +5 to +10	120 min ⁴⁾	25 h	40 h
> +10 to +15	30 min	16 h	18 h
> +15 to +20	23 min	11 h	18 h
> +20 to +25	14 min	7 h	10 h
> +25 to +30	10 min	5 h	10 h
> +30 to +35	7 min ⁵⁾	3,5 h	5 h
> +35 to +40	5 min ⁵⁾	2,5 h	5 h

¹⁾ Maximum time from the beginning of the injection to rebar / fischer rebar anchor FRA setting and positioning.

²⁾ After the initial curing time $t_{cure, ini}$ is reached, the initial bond strength is achieved and allows further processing.

³⁾ For wet concrete the curing time must be doubled.

⁴⁾ If the temperature in the concrete falls below +10 °C the cartridge must be warmed up to +15 °C.

⁵⁾ If the temperature in the concrete exceeds +30 °C the cartridge must be cooled down to +15 °C up to +20 °C.

2.8.3 Processing and curing times of the injection mortar FIS V Plus

Table 10.

Temperature in the anchorage base [°C]	Maximum working time ²⁾ t_{work}		Minimum curing time ⁴⁾ t_{cure}	
	FIS V Plus	FIS VS Plus Low Speed	FIS V Plus	FIS VS Plus Low Speed
±0 to +5 ¹⁾	13 min	–	3 h	6 h
> +5 to +10 ¹⁾	9 min	20 min	90 min	3 h
> +10 to +20	5 min	10 min	60 min	2 h
> +20 to +30	4 min	6 min	45 min	60 min
> +30 to +40 ³⁾	2 min	4 min	35 min	60 min

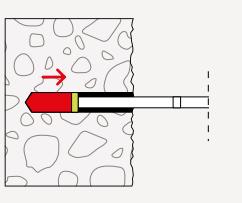
¹⁾ If the temperature in the anchoring base is below +10 °C, the FIS V Plus mortar cartridge must be warmed up to +15 °C.

²⁾ Time from start of filling of mortar to setting and positioning of reinforcement bar.

³⁾ If the temperature in the anchoring base exceeds +30 °C, the FIS V Plus mortar cartridge must be cooled down to +15 °C to 20 °C.

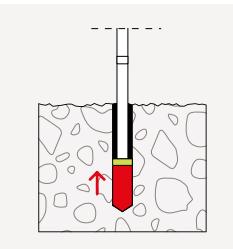
⁴⁾ In wet concrete, the curing times must be doubled.

2.8.4 Processing


The following equation helps in the planning of the required mortar amounts V_{FIS} :

$$V_{\text{FIS}} = (d_o^2 - d_s^2) \times 0.95 \times l_v \text{ [ml]}$$

d_o = Drilling diameter in [mm] (see Tab. 3 to 5)


d_s = Reinforcing bar diameter in [mm]

l_v = Setting depth in [mm]

Horizontal filling:

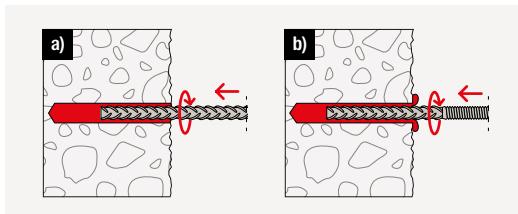
Gently guide the dispenser -
do not pull

Vertical filling:

Hold the weight of the dispenser

- Attach the static mixer to the cartridge and place it in the dispenser.
- Operate the dispenser until the dispensed mortar is an even tone of grey.
- Attach extension tube and extrude mortar until it reaches the end of the extension tube.
- Insert extension tube and injection adapter right down to the bottom of the drill hole and extrude the mortar. Injecting mortar in water-filled drill holes is not permitted.
- Slowly pull back the dispenser while filling – following the pressure acting on the injection adapter - do not pull.
- Stop the process when the tape (marking l_m) on the injection extension tube appears above the concrete surface.

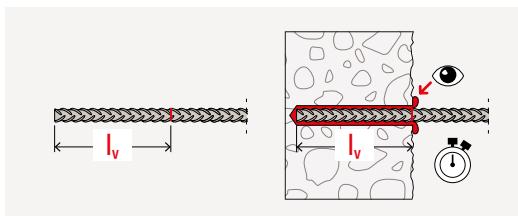
2.8.5 Mortar quantities for selected setting depths


Table 11.

Drill hole depth h_s = Setting depth l/l_{spec} [mm]	Reinforced anchor-bar diameter d_s [mm]																				
	FRA M12			FRA M16			FRA M20			FRA M24											
	ø 8	ø 8	ø 10	ø 10	ø 12	ø 12	ø 14	ø 16	ø 18	ø 20	ø 22	ø 24	ø 25	ø 25	ø 26	ø 28	ø 30	ø 32	ø 34	ø 36	ø 40
Drillhole diameter d_0 [mm]																					
10	12	12	14	14	16	18	20	25	25	30	30	30	35	35	35	40	40	40	45	55	
Quantities in [ml]																					
100	5	8	5	9																	
120	6	10	6	11	7	13															
140	7	11	7	13	8	15	18														
160	8	13	8	14	9	17	21	22													
180	9	14	9	16	10	19	23	25	51												
200	10	16	10	18	12	21	26	28	57	42											
220	11	18	11	20	13	23	28	30	62	46	86										
240	12	19	12	22	14	25	31	33	68	50	94	73									
250	13	20	13	23	15	26	32	34	71	53	98	76	65	138							
280	14	22	14	25	16	30	36	39	79	59	109	85	73	155	145	116					
300	15	24	15	27	17	32	39	41	85	63	117	91	78	166	155	124	198				
320	16	26	16	29	19	34	41	44	91	67	125	97	83	177	166	133	211	174			
340	17	27	17	31	20	36	44	47	96	71	133	103	88	188	176	141	224	185	142		
350	18	28	18	32	20	37	45	48	99	74	137	106	91	193	181	145	231	190	146	240	
360	18	29	18	32	21	38	46	50	102	76	141	110	94	199	186	149	238	196	150	247	
400	20	32	20	36	23	42	51	55	113	84	156	122	104	221	207	166	264	218	167	274	537
450	23	36	23	41	26	47	58	62	128	95	176	137	117	248	233	186	297	245	188	309	604
500	25	40	25	45	29	53	64	69	142	105	195	152	130	276	259	207	330	272	209	343	671
550	28	44	28	50	32	58	71	76	156	116	215	167	143	304	285	228	363	299	230	377	738
600	30	48	30	54	35	63	77	83	170	126	235	183	156	331	291	249	396	326	251	411	806
650	33	52	33	59	38	69	84	89	184	137	254	198	169	359	337	269	429	353	271	446	873
700	35	56	35	63	41	74	90	96	198	147	274	213	182	386	363	290	462	381	292	480	940
750	38	60	38	68	44	79	96	103	213	158	293	228	195	414	388	311	495	408	313	514	1007
800	40	64	40	72	46	84	103	110	227	168	313	243	208	442	414	331	526	435	334	549	1074
850	43	68	43	77	49	90	109	117	241	179	332	259	221	469	440	352	561	462	355	583	1141
900	45	72	45	81	52	95	116	124	255	189	352	274	234	497	466	373	594	489	376	617	1208
950	48	76	48	86	55	100	122	131	269	200	371	289	247	524	492	394	627	517	397	651	1275
1000	50	80	50	90	58	106	129	138	283	210	391	304	260	552	518	414	660	544	418	686	1343
1100	55	88	55	99	64	116	141	151	312	231	430	335	286	607	570	456	726	598	459	754	1477
1200	60	96	60	108	70	127	154	165	340	252	469	365	312	662	621	497	792	653	501	823	1611
1300	65	104	65	117	75	137	167	179	368	273	508	395	338	718	673	539	858	707	543	891	1745
1400	70	112	70	126	81	148	180	193	397	294	547	426	364	773	725	580	924	761	585	960	1880
1500	75	120	75	135	87	158	193	206	425	315	588	456	390	828	777	621	994	816	626	1029	2014
1600	80	128	80	144	93	169	206	220	453	336	625	487	416	883	829	663	1056	870	668	1097	2148
1700	85	136	85	153	99	179	219	234	482	357	665	517	442	938	880	704	1122	924	710	1166	2282
1800	90	144	90	162	104	190	231	248	510	378	704	548	468	994	932	746	1188	979	752	1234	2417
1900											743	578	494	1049	984	787	1254	1033	794	1303	2551
2000											782	608	520	1104	1036	829	1320	1088	835	1371	2685

* Additional mortar for multiple drill holes: The values in the table include the percentage as an addition for the required mortar, which is needed to fill several static mixer and extension tubes for multiple holes.

2.9 Inserting the reinforcement bar


- After filling in the mortar remove the extension tube from the drill hole.
- The prepared reinforcement bar must be inserted using force and by turning into the filled drill hole up to the setting depth marking. This may need to be carried out quickly at high temperatures.

Under strong pressure and simultaneous rotation, the reinforcement bar (a) or the fischer rebar anchor FRA (b) is inserted into the drill hole.
After the curing time, the anchored bar can be loaded.

The reinforcement bar is considered to be properly set if:

- the reinforcement bar does not spring back.
- no bursting of air bubbles occurs.
- excess mortar appears outside the drill hole.
- the setting depth mark of the rebar is flush with the concrete surface.

2.10 Curing of the mortar

See processing and curing times Tab. 8-10.

- The reinforcement bar must not be moved until the mortar is cured.
- The curing time depends on the temperature in the building component and starts at the end of the processing time.

3 Additional accessories

Supplementary accessories FIS-rebar case

Table 12.

Article-No.	Description	Article-No.	Description
001490	Cleaning brush for drill-ø 12 mm	505080	Injection adapter for drill-ø 55 Natural (ø 15)
001491	Cleaning brush for drill-ø 14 mm	511956	Compressed air nozzle ø 12 – ø 15
001492	Cleaning brush for drill-ø 16 mm	511957	Compressed air nozzle ø 16 – ø 19
001493	Cleaning brush for drill-ø 18 mm	511958	Compressed air nozzle ø 20 – ø 25
001494	Cleaning brush for drill-ø 20 mm	511959	Compressed air nozzle ø 30 – ø 35
001495	Cleaning brush for drill-ø 25 mm	511960	Compressed air nozzle ø 40 – ø 55
090063	Cleaning brush for drill-ø 30 mm	508791	Extension rod for brush set
090071	Cleaning brush for drill-ø 35 mm	530332	SDS adapter with internal thread M8
505061	Cleaning brush for drill-ø 40 mm	019684	Template for checking brush wear
506254	Cleaning brush for drill-ø 45 mm	519527	Compressed-air cleaning hose
505062	Cleaning brush for drill-ø 55 mm	048983	FIS extension tube ø 9 mm
001497	Injection adapter for drill-ø 12 Natural (ø 9)	530800	FIS extension tube ø 15 mm
001498	Injection adapter for drill-ø 14 Blue (ø 9)	001253	SDS max scabbeling tool
001499	Injection adapter for drill-ø 16 Rot (ø 9)	090819	Drilling aid
001483	Injection adapter for drill-ø 18 Yellow (ø 9)	520593	Static mixer FIS UMR
001506	Injection adapter for drill-ø 20 Green (ø 9)	545853	Static mixer FIS MR Plus
001508	Injection adapter for drill-ø 20 Green (ø 15)	567522	Static mixer FIS JMR 825
001507	Injection adapter for drill-ø 25 Black (ø 9)	563337	FIS DM S Pro Manual dispenser for 360 ml - and 390 ml cartridges
001509	Injection adapter for drill-ø 25 Black (ø 15)	058000	FIS AM Manual dispenser for 360 ml - and 390 ml-cartridges
090689	Injection adapter for drill-ø 30 Grey (ø 9)	577080	FIS DM SL Pro Manual dispenser for 585 ml - cartridges
090700	Injection adapter for drill-ø 30 Grey (ø 15)	563241	FIS AM S-XL Manual dispenser for 825 ml - cartridges
090699	Injection adapter for drill-ø 35 Brown (ø 9)	558955	FIS DB S Pro Battery operated dispenser for 360 ml - and 390 ml-cartridges
090701	Injection adapter for drill-ø 35 Brown (ø 15)	562004	FIS DB S-L Pro Battery operated dispenser for 585 ml - and 825 ml-cartridges
505077	Injection adapter for drill-ø 40 Red (ø 9)	58027	FIS AP pneumatic dispenser for 360 ml - and 390 ml-cartridges
505079	Injection adapter for drill-ø 40 Red (ø 15)	511125	FIS DP S-L pneumatic dispenser for 585 ml - cartridges
508909	Injection adapter for drill-ø 45 Yellow (ø 9)	512401	FIS DP S-XL pneumatic dispenser for 1500 ml - cartridges
508910	Injection adapter for drill-ø 45 Yellow (ø 15)		
505078	Injection adapter for drill-ø 55 Natural (ø 9)		

EN

Distribution or copying of this document, as well as utilisation and communication of its contents are prohibited unless expressly permitted. Non-compliance will result in a claim for damages. All rights are reserved in the case of patents, utility models or registered designs.

These installation instructions have been prepared with care. However, fischerwerke GmbH & Co. KG accepts no liability for any errors in these installation instructions and their consequences. Nor is any liability accepted for direct or consequential damage resulting from incorrect use of the products.

Construction materials (anchoring base) as well as external conditions (e.g. ambient conditions such as temperature, humidity) vary greatly. The current condition of the anchoring base and its suitability must therefore be checked by the installer. If there is any doubt about the condition of the anchoring base (e.g. about the strength), the responsible design engineer must be consulted.

All product designations and brand names used belong to the owner, even if they are not expressly marked as such. The content is subject to change.

fischer stands for

Fixing Systems

Automotive

fischertechnik

Consulting

Electronic Solutions

fischerwerke GmbH & Co. KG
Klaus-Fischer-Straße 1 · 72178 Waldachtal
Germany
P +49 7443 12-0
www.fischer-international.com · info@fischer.de
