Cantilever FMC

Mounting profiles with welded base plate for fastening heavy duty pipelines

Supported cantilever

Applications

- · Simple and safe fixing of heavy duty pipelines along the wall.
- · For indoor and outdoor application.

Advantages

- · The graduated length assortment of the FMC cantilever arms allows an optimal adaptation to the respective application.
- · The stable base plate of the cantilever provides a secure hold for a load-bearing construction.
- · The completely hot-dip galvanised product range guarantees on-site processing without subsequent coating and simplifies and accelerates the assembly process sustainably.

Properties

- · Material base plate: steel S235JR (material no. 1.0038) acc. to DIN EN 10025-2
- · Material profile: steel S355MC (material no. 1.0976) acc. to DIN EN 10149-2
- · Zinc plating: hot-dip galvanised

Technical data

		Length L	Width B	Height H	Thickness S	Sales unit
	Item no.	[mm]	[mm]	[mm]	[mm]	[pcs]
Item						
FMC 90-500	547802	500	230	230	15.0	1
FMC 90-750	547803	750	230	230	15.0	1
FMC 90-1000	547804	1,000	230	230	15.0	1
FMC 90-1.500	547805	1,500	230	230	15.0	1

Loads

		Max. recommended static load load case 1		Max. recommended static load load case 3	Sales unit
		F _{rec}	F _{rec}	F _{rec}	
	Item no.	[kN]	[kN]	[kN]	[pcs]
Item					
FMC 90-500	547802	24.60	12.30	24.60	1
FMC 90-750	547803	16.40	8.20	16.40	1
FMC 90-1000	547804	12.30	5.60	12.30	1
FMC 90-1.500	547805	7.80	2.40	6.50	1

Load case 1

^{**} The permissible stress is calculated acc. EN 1993; $\sigma_{rec} = f_{yc}/(\gamma_L^* \gamma_{MO})$ with $\gamma_L = 1,4$ and $\gamma_{MO} = 1,0$. Lower value of permissible stress (shear, bending or combined) or max. defelection (L/150) is

Load case 2

^{**} The permissible stress is calculated acc. EN 1993; $\sigma_{rec} = f_{y_k} / (\gamma_L^* \gamma_{M0})$ with $\gamma_L = 1,4$ and $\gamma_{M0} = 1,0$. Lower value of permissible stress (shear, bending or combined) or max. defelection (L/150) is decisive

Load case 3

^{**} The permissible stress is calculated acc. EN 1993; $\sigma_{rec} = f_{y_c} / (\gamma_L^* \gamma_{MO})$ with $\gamma_L = 1,4$ and $\gamma_{MO} = 1,0$. Lower value of permissible stress (shear, bending or combined) or max. defelection (L/150) is