Loads

Rebar anchor FRA with injection systems FIS EM Plus, FIS SB, FIS V Plus, FIS VS Plus LOW SPEED and FIS RC II in accordance with rebar theory

Design resistances and permissible loads^{1/2} of single, post-installed Rebar anchor in cracked or non-cracked normal concrete of the strength class C20/25³.

	Basic value for anchorage length	Maximum anchorage depth	Maximum embedment depth	Maximum Installation torque	Maximum design resistance for axial tension load	Maximum permissible tension load
	l 4) b,rqd	l _{v,max}	l _{e,ges,max}	T _{inst}	N _{Rd,s} ⁵⁾	N _{perm,s} ⁵⁾
Туре	[mm]	[mm]	[mm]	[Nm]	[kN]	[kN]
FRA 12/900 M12	567	800	900	≤ 50	49.2	35.1
FRA 16/1100 M16	756	1000	1100	≤100	87.4	62.4
FRA 20/1400 M20	945	1300	1400	≤ 150	136.6	97.6

For planning and design the complete European Technical Assessments ETA-17/1056 (FIS EM Plus), ETA-13/0651 (FIS SB), ETA-20/0728 (FIS V Plus resp. FIS VS Plus LOW SPEED) or ETA-22/0502 (FIS RC II) have to be considered. For determination of the installation parameters (minimum concrete cover distances, etc.) as well as required transverse reinforcement see EN 1992-1-1 and general installation rules of the assessments.

¹⁾ The partial safety factors for resistance taken from the European standard EN 1992-1-1 as well as a partial safety factor for action of γ_1 = 1.4 are considered.

²⁾ With FIS EM Plus, FIS SB, FIS V Plus, FIS V Plus LOW SPEED and FIS RC II post-installed Rebar anchors are approved in dry or wet concrete with temperatures up to +50 °C (resp. short term up to +80 °C) and drill hole cleaning in accordance with ETA.

³⁾ The ETAs for FIS EM Plus, FIS SB, FIS V Plus, FIS V Plus LOW SPEED and FIS RC II permit post-installed rebar connections in concrete C12/15 up to C50/60. The above mentioned basic value for anchorage length changes depending on the relevant concrete strength class.

⁴⁾ Basic value of the anchorage length in accordance with EN 1992-1-1, section 8.4.3 for concrete strength class C20/25 and good bond conditions.

⁵⁾ For utilisation of the full steel capacity.

General rules of construction

 The Rebar anchor FRA is permitted to transfer tension loads in direction of the axis of the rebar only.

- \cdot I_v and I_o is according to approval.
- According to approval it has to be proved that sufficient transverse reinforcement is available.

 $^{1)}$ If the clear distance of the lapped bars is larger than 4 x ø, EC2 must be applied.

- c Concrete cover of the post-installed rebar anchor
- c₁ Concrete cover of the front side of the existing rebar
- I Concrete cover above the welding
- c_{min} Minimum concrete cover acc. to approval
- ø Diameter of the post-installed rebar anchor
- I₀ Lap length
- I_{ν} Effective anchorage depth of the rebar anchor
- I energy Embedment depth of the rebar anchor
- d_o Nominal drill diameter