LOADS ## Injection systems FIS EM, FIS SB and FIS V with reinforcing steel B500B⁵⁾ in accordance with rebar theory | Design resistances and permissible loads ¹⁾⁶⁾ of single, post-installed rebars in cracked or non-cracked normal concrete of the strength class C20/25 ²⁾ | | | | | | | | | | | |--|--|--|---|----------------------------|---|--|--|--|--|--| | Reinforcing steel
B500B | Basic value for
the anchorage
length for
FIS EM | Basic value for
the anchorage
length for
FIS SB | Basic value for
the anchorage
length for
FIS V | Maximum
anchorage depth | Maximum
design resistance
for
axial tensile load | Maximum
permissible
tensile load | | | | | | | lb,rqd ⁴⁾
[mm] | l _{b,rqd} 4)
[mm] | l _{b,rqd} 4)
[Nm] | l _{v,max} | N _{Rd,s} ³⁾ | N _{perm,s} ³)
[kN] | | | | | | Ø 8 mm | 378 | 378 | 378 | 1800 (3000) ⁸⁾ | 21,9 | 15,6 | | | | | | Ø 10 mm | 473 | 473 | 473 | 1800 (3000) ⁸⁾ | 34,1 | 24,4 | | | | | | Ø 12 mm | 567 | 567 | 567 | 1800 (3000) ⁸⁾ | 49,2 | 35,1 | | | | | | Ø 14 mm | 662 | 662 | 662 | 1800 (3000) ⁸⁾ | 66,9 | 47,8 | | | | | | Ø 16 mm | 756 | 756 | 756 | 1800 (3000) ⁸⁾ | 87,4 | 62,4 | | | | | | Ø 20 mm | 945 | 945 | 945 | 1800 (3000) ⁸⁾ | 136,6 | 97,6 | | | | | | Ø 22 mm ⁷⁾ | 1040 | - | - | 2000 | 165,3 | 118,1 | | | | | | Ø 24 mm ⁷⁾ | 1134 | - | - | 2000 | 196,7 | 140,5 | | | | | | Ø 25 mm | 1181 | 1181 | 1181 | 2000 (3000)8) | 213,4 | 152,4 | | | | | | Ø 26 mm ⁷⁾ | 1229 | - | - | 2000 | 230,8 | 164,9 | | | | | | Ø 28 mm | 1323 | 1323 | 1323 | 2000 (3000)8) | 267,7 | 191,2 | | | | | | Ø 30 mm ⁷⁾ | 1418 | - | - | 2000 | 307,3 | 219,5 | | | | | | Ø 32 mm ⁹⁾ | 1512 | 1512 | - | 2000 (3000)8) | 349,7 | 249,8 | | | | | | Ø 34 mm ⁷⁾ | 1607 | - | - | 2000 | 394,7 | 282,0 | | | | | | Ø 36 mm ⁷⁾ | 1701 | - | - | 2000 | 442,6 | 316,1 | | | | | | Ø 40 mm ⁷⁾ | 1890 | _ | _ | 2000 | 546.4 | 390.3 | | | | | For planning and design the complete European Technical Assessments ETA-09/0089 (FIS EM), ETA-13/0651 (FIS SB) or resp. ETA-08/0266 (FIS V) have to be considered. For determination of the installation parameters (minimum concrete cover distance, etc.) as well as required transverse reinforcement see EN 1992-1-1 and general installation rules of the assessments. - 1) The partial safety factors for resistance taken from the European standard EN 1992-1-1 as well as a partial safety factor for action of γ_1 = 1,4 are considered. - ²¹ The ETAs for FIS EM, FIS SB and FIS V permit post-installed rebar connections in concrete C12/15 up to C50/60. The above mentioned basic value for anchorage length changes depending on the relevant concrete strength class. - 3) For utilisation of the full steel capacity. - 4) Basic value of the anchorage length in accordance with EN 1992-1-1, section 8.4.3 for concrete strength class C20/25 and good bond conditions. - Reinforcing steel with characteristic yield strength $f_{VK} = 400 600 \text{ N/mm}^2$ in accordance with EN 1992-1-1 Annex C, Table C.1 and C.2N is approved. The above mentioned basic value for the anchorage - length as well as maximum steel resitance (see foot note 3) will change accordingly. - With FIS EM, FIS SB or FIS V post-installed rebars are approved in dry or wet concrete with temperatures up to +50 °C (resp. short term up to +80 °C) and drill hole cleaning in accordance with ETA. - 7) Only FIS EM. - Values in brackets apply for FIS SB. - 9) Only FIS EM or FIS SB. ## Rebar anchor FRA with injection systems FIS EM, FIS SB and FIS V in accordance with rebar theory | Design resistances and permissible loads ¹⁾⁵⁾ of single, post-installed Rebar anchor in cracked or non-cracked normal concrete of the strength class C20/25 ²⁾ | | | | | | | | | | |--|-----------------------|--------------------|------------------------|-------------------|-----------------------|------------------------|--|--|--| | Туре | Basic value for | Maximum | Maximum | Maximum | Maximum | Maximum | | | | | | the anchorage length | anchorage depth | embedment depth | torque moment | design resistance for | permissible tensile | | | | | | | | | | axial tensile load | load | | | | | | | | | | | | | | | | | l _{b,rqd} 4) | I _{v,max} | l _{e,ges,max} | T _{inst} | N _{Rd,s} 3) | N _{perm,s} ³) | | | | | | [mm] | [mm] | [mm] | [Nm] | [kN] | [kN] | | | | | FRA 12/900 M12 | 567 | 800 | 900 | ≤ 50 | 49,2 | 35,1 | | | | | FRA 16/1100 M16 | 756 | 1000 | 1100 | ≤ 100 | 87,4 | 62,4 | | | | | FRA 20/1400 M20 | 945 | 1300 | 1400 | ≤ 150 | 136,6 | 97,6 | | | | For planning and design the complete European Technical Assessments ETA-09/0089 (FIS EM), ETA-13/0651 (FIS SB) or resp. ETA-08/0266 (FIS V) have to be considered. For determination of the installation parameters (minimum concrete cover distances, etc.) as well as required transverse reinforcement see EN 1992-1-1 and general installation rules of the assessments. - 11 The partial safety factors for resistance taken from the European standard EN 1992-1-1 as well as a partial safety factor for action of $\gamma_1 = 1.4$ are considered. - ²⁾ The ETAs for FIS EM, FIS SB and FIS V permit post-installed rebar connections in concrete C12/15 up to C50/60. The above mentioned basic value for anchorage length changes depending on the relevant concrete strength class. - 3) For utilisation of the full steel capacity. - 4) Basic value of the anchorage length in accordance with EN 1992-1-1, section 8.4.3 for concrete strength class C20/25 and good bond conditions. - With FIS EM, FIS SB or FIS V post-installed Rebar anchors are approved in dry or wet concrete with temperatures up to +50 °C (resp. short term up to +80 °C) and drill hole cleaning in accordance with ETA. ## General rules of consstructions - The Rebar anchor FRA is permitted to transfer tension loads in direction of the axis of the rebar only. - I_v and I_s according to approval. - According to approval it has to be proved that sufficient transverse reinforcement is available. - c Concrete cover of the post-installed rebar anchor c1 Concrete cover of the front side of the existing rebar c2 Concrete cover above the welding - min c Minimum concrete cover acc. to approval - d_S Diameter of the post-installed rebar anchor - Lap length - v Effective anchorage depth of the rebar anchor - e,qes Embedment depth of the rebar anchor - l_O Nominal drill diameter $^{^{1)}}$ If the clear distance of the lapped bars is larger than 4 x d $_{\rm S}$, EC2 has to be applied.