

## MFPA Leipzig GmbH

Testing, Inspection and Certification Authority for Construction Products and Construction Types

Leipzig Institute for Materials Research and Testing **Business Division III - Structural Fire Protection** Dipl.-Ing. Sebastian Hauswaldt

Work Group 3.2 - Fire Behaviour of Building Components and special Constructions

> Dipl.-Ing. S. Bauer Tel.: +49 (0) 341-6582-194 s.bauer@mfpa-leipzig.de

#### Notice of extension of the Expert Opinion No. GS 3.2/11-243-3Ä

1 March 2019 No. Copy 1

Subject matter:

Fire protection assessment of fischer Superbond

Client:

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen

Date of order: 21 January 2019

Person in charge: Dipl.-Ing. S. Bauer

This notice consists of two pages. It is only valid in conjunction with the above-mentioned expert opinion and may only be used in conjunction with it.

Note fischer: Tables concerning post installed Rebar Connections outdated. For values see Expert Report GS 3.2/15-128-2-r1 dated 6.June 2019 MFPA Leipzig

This document may only be reproduced in its unabbreviated form. All publication, even in excerpts, requires the prior written permission of MFPA Leipzig GmbH. The legal binding form is the written German form with the original signatures and original stamp of the authorized signatory / signatories. General terms and conditions of MFPA Leipzig GmbH are valid.

Gesellschaft für Materialforschung und Prüfungsanstalt für das Bauwesen Leipzig mbH (MFPA Leipzig GmbH)

Head Office: Hans-Weigel-Str. 2b – 04319 Leipzig/Germany Managing Director: Dr.-Ing. habil. Jörg Schmidt Comm. Register: Local Court Leipzig HRB 17719 DE 813200649 +49 (0) 341-6582-0 +49 (0) 341-6582-135 VAT-ID: Tel.: Fax:



MFPA Leipzig GmbH Structural Fire Protection

#### 1 General

MFPA Leipzig GmbH was commissioned on 21 January 2019 to extend the expert opinion no. GS 3.2/11-243-3Ä of 13 March 2014 and to replace the expired European Technical Approval ETA-12/0258 of 8 August 2012 by the newly issued European Technical Assessment ETA-12/0258 of 19 May 2016.

#### 2 Basics

- [1] Technical Report TR 020 "Evaluation of Anchorages in Concrete concerning Resistance to Fire" (May 2004) of the European Organisation for Technical Approvals (EOTA),
- [2] European Technical Assessment ETA-12/0258 of DIBt Berlin: "fischer Superbond" dated 19 May 2016,
- [3] Expert opinion no. GS 3.2/11-243-3Ä of MFPA Leipzig GmbH dated 13 March 2014,
- [4] manufacturer's declaration on the fischer Superbond of fischerwerke GmbH dated 3 January 2019.

#### 3 Validity

This notice extends the period of validity of the expert opinion No. GS 3.2/11-243-3Ä of MFPA Leipzig GmbH dated 13 March 2014.

The validity of the expert opinion is unlimited and ends as soon as technical regulations change or the reference documents become invalid.

The results of the tests exclusively relate to the items tested. This document does not replace a certificate of conformity or suitability according to national and European building codes.

Leipzig GmbH III Leipzig, 1 March 2019 paup Dipl.-Ing. S. Hauswaldt Dipl.-Ing. S. Bauer

Head of Business Division

Dipl.-Ing. S. Bauer Testing Engineer



## MFPA Leipzig GmbH

Prüf-, Überwachungs- und Zertifizierungsstelle für Baustoffe, Bauprodukte und Bausysteme

> Geschäftsbereich III - Baulicher Brandschutz Dipl.-Ing. Sebastian Hauswaldt

Arbeitsgruppe 3.2 - Brandverhalten von Bauarten und Sonderkonstruktionen

Dipl.-Ing. S. Hauswaldt Telefon +49 (0) 341 - 6582-136 hauswaldt@mfpa-leipzig.de

Gutachterliche Stellungnahme Nr. GS 3.2/11-243-3 Ä Ersatz für GS 3.2/11-243-3

vom 13. März 2014 1. Ausfertigung

#### English translation. Original document in German language.

| Subject:          | fischer Superbond<br>Fire protection design concept for fischer Superbond               |
|-------------------|-----------------------------------------------------------------------------------------|
| Contracting body: | <b>fischerwerke GmbH &amp; Co.KG</b><br>Otto-Hahn-Str.15<br>79211 Denzlingen<br>Germany |
| Date of order:    | 13/07/13                                                                                |
| Editor:           | DiplIng. S.Hauswaldt,                                                                   |

The validity of this report ends on 13/09/2019. The report consists of 8 ages and 4 annexes.

Dieses Dokument darf nur ungekürzt vervielfältigt werden. Eine Veröffentlichung – auch auszugsweise – bedarf der vorherigen schriftlichen Zustimmung der MFPA Leipzig GmbH. Als rechtsverbindliche Form gilt die deutsche Schriftform mit Originalunterschriften und Originalstempel des/der Zeichnungsberechtigten. Es gelten die Allgemeinen Geschäftsbedingungen (AGB) der MFPA Leipzig GmbH. Durch die DAkkS GmbH nach DIN EN ISO/IEC Maring gilt für die in der Urkunde aufgetührten Prüdierung gilt für die in der Urkunde aufgetührten Prüsichnet). Die Urkunde kann unter www.mfpaleipzig die eingesehen werden. Bauwesen teit unter www.mfpaleipzig.de eingesehen werden. Bauwesen teit 2003 441-6582-0 Fax: +49 (0) 341 - 6582-135



## 1 The reason of the order

On the 13th April 2013 fischerwerke GmbH & Co. KG assigned MFPA Leipzig GmbH to prepare an expert opinion on the fire behavior of fischer injection system - fischer Superbond (FIS SB); the test specimens included fischer injection mortar FIS SB in connection with a threaded rod, fischer anchor rod FIS A, fischer anchor with internal thread RG MI and rebars. All specimens are arranged vertical to the surface, unilaterally exposed to fire in slabs and walls.

## 2 Basics and documents of the expert opinion

For the expert opinion the following documents are taken into account:

- [1] Technical report TR 020 from May 2004 of the European Organization for Technical Approvals (EOTA): Evaluation of Anchorages in Concrete concerning Resistance to fire
- [2] Technical report TR 020, chapter 4 (draft January 2012) of the European Organization for Technical Approvals (EOTA): Evaluation of Anchorages in Concrete concerning Resistance to fire
- [3] European technical approval ETA-12/0258 from 8<sup>th</sup> august 2012 of DIBt: bonded anchors sizes M8 to M30 for anchoring in concrete
- [4] Test report PB 3.2/11-242-1 from 28<sup>th</sup> June 2012 of MFBA Leipzig GmbH: fischer Superbond - Test according to TR 020 (May 2004) to determine the characteristic steel stress under tensile stress
- [5] Test report PB 3.2/12-293-1 from 06<sup>th</sup> november 2012 of MFPA Leipzig GmbH:
   fischer Superbond with steel of strength class 8.8 Test according to TR 020 (May 2014) to determine the characteristic steel stress under tensile stress
- [6] Test report PB 3.2/-243-1 from the 24<sup>th</sup> August 2012 of MFPA Leipzig GmbH: Test of characteristic shear resistance of the connected surfaces under tensile stress at elevated temperatures and
- [7] Kordina, K; Meyer-Ottens, C.: Beton Brandschutz Handbuch, publishing company Verlag Bau und Technik, 1999,
- [8] Experimental results of the pull-out test at FIS SB by constant temperature of 150°,
   FIS SB High Speed and FIS SB Low Speed form 7<sup>th</sup> May 2013
- [9] prEN 13381-3:2012- Pr
  üfverfahren zur Bestimmung des Beitrages zum Feuerwiderstand von tragenden Bauteilen – Teil3: Brandschutzma
  ßnahmen f
  ür Betonbauteile.



MFPA Leipzig GmbH Baulicher Brandschutz

In addition to these documents, extensive experience in testing of the MFPA Leipzig concerning the fire behavior of fastenings and reinforced concrete constructions incorporates the fire protection assessment.

In accordance with [9], the expert opinion is based on temperature curves of the behavior of reinforced concrete made of normal concrete with quartzitic aggregates. Picture 1 shows the temperature of components unilaterally exposed to fire.



Figure 1: Temperatures in reinforced concrete members after 30, 60, 90, and 120 min with single-sided fire exposure according to EN 1363-1, values of [9]

## 3 Description of the tested construction

In the European technical approval [2] the system fischer Superbond is described in detail. For the sections of reinforcing steel and threaded rods, variable anchor depths are permitted. The system can be mounted with injection mortar FIS SB, FIS SB Low Speed, FIS SB High Speed, and mortar cartridge RSB. For further descriptions, see ETA [2]



### 4 Fire protection design concept

The determination of the characteristic resistance values in case of fire was prepared for the pullout failure  $N_{Rk,p,fi(t)}$  and steel failure  $N_{Rk,s,fi(t)}$ . The bases for this are the results of steel failure at high temperature (see test report PB 3.2/11-242-1 [4] and PB 3.2/12-293-1 [5]) and the lost of the bonding quality (see test report PB 3.2/11-243-1 [6]).

### 4.1 Installation of fischer anchor rod FIS A and fischer internal threaded anchors RG MI with fischer system fischer Superbond

The characteristic parameters for steel failure by centric tension are shown in table 1 and 2. Differing from TR 020, the figures for the fire resistance designed for duration of 30 minutes were increased in accordance to the available test results. The increased F30-values of steel failure resulted from the average of the figures from the design straight line and the design curve. The averaged figures are conservative results which have been proven through conducted tets with a longer fire exposure time.

| fischer Superbo | ond                        | M8  | M10 | M12 | M16 | M20  | M24  | M30  |
|-----------------|----------------------------|-----|-----|-----|-----|------|------|------|
| 30 min          | NRk,s,fi(30)               | 0.9 | 1.6 | 2.6 | 6.4 | 10.1 | 14.5 | 23.1 |
| 60 min          | NRk,s,fi(60)               | 0.6 | 1.1 | 1.8 | 4.7 | 7.3  | 10.6 | 16.8 |
| 90 min          | NRk,s,fi(90)               | 0.4 | 0.8 | 1.4 | 3.8 | 5.9  | 8.6  | 13.6 |
| 120 min         | N <sub>Rk,s</sub> ,fi(120) | 0.4 | 0.7 | 1.2 | 3.3 | 5.2  | 7.6  | 12.0 |

Table 1: Characteristic tension load  $N_{Rk,s,fi(t)}$  in kN for steel failure fischer Superbond, under the centric tension for threaded rod of the strength category 5.8, values of [4]

Table 2: Characteristic tension load  $N_{Rk,s,fi(t)}$  in kN for steel failure fischer Superbond, under the centric tension for threaded rod of the strength category 8.8, values of [5]

| fischer Superbo | ond           | M8  | M10 | M12 | M16  | M20  | M24  | M30  |
|-----------------|---------------|-----|-----|-----|------|------|------|------|
| 30 min          | NRk,s,fi(30)  | 1.5 | 2.8 | 4.7 | 12.0 | 18.8 | 27.0 | 43.0 |
| 60 min          | NRk,s,fi(60)  | 1.0 | 1.8 | 3.0 | 7.7  | 12.0 | 17.3 | 27.6 |
| 90 min          | NRk,s,fi(90)  | 0.7 | 1.3 | 2.2 | 5.5  | 8.6  | 12.5 | 19.8 |
| 120 min         | NRk,s,fi(120) | 0.6 | 1.0 | 1.7 | 4.4  | 6.9  | 10.0 | 16.0 |





The characteristic resistance of the anchorage against pull out force is determined with the calculation:

| $N_{Rk,p,fi(t)}$ | $= h_{ef}$ | * <b>d</b> * | $\pi *$ | $\tau_{Rk,p,fi(t)}$ |
|------------------|------------|--------------|---------|---------------------|
|------------------|------------|--------------|---------|---------------------|

| h <sub>ef</sub>     | = | effective anchorage depth |
|---------------------|---|---------------------------|
| đ                   | = | thread diameter           |
| $\tau_{Rk,p,fi(t)}$ | = | shear resistance          |

The shear resistance can be calculated with the formula:

$$\tau_{\rm Rk,p,fi}(\theta) = 9083 \ \theta_{\rm c,d}^{-1,587}$$

described in [5] as a function of the concrete temperature  $\theta_{c,d}$ .

The equivalence of the variants FIS SB Low Speed and FIS SB High Speed is proved in [8]. But this figure is limited by the characteristic bond strengths given in the ETA for rods with diameter M30 with 10 N/mm<sup>2</sup>.

If the concrete temperature is known, the characteristic tensile load can be obtained with:

$$N_{Rk,p,fit} = h_{ef} \cdot d \cdot \pi \cdot 9083 \theta_{c,d}^{-1,587}$$

as a function of temperature

The characteristic values of steel failure, respectively pull-out failure have to be calculated in relative to the setting depth. The design of the injection system fischer Superbond was established according to TR 020 (Calculation 2.1). The safety factor of the resistance under fire exposure is  $\tau_{M,fi} = 1,0$ . For the design, the smaller resistance:

$$N_{Rd,fi(t)} = \min(N_{Rk,p,fi(t)}, N_{Rk,s,fi(t)})$$

of the two failure modes, steel failure and pull-out failure, has to be considered.

Picture 1 illustrates the temperature distribution of a reinforced concrete sample subjected to single sided fire at 30, 60, 90, and 120 min. By graphical evaluation of the figure, the characteristic tensile load  $N_{Rk,p,fi}$  t is calculated for different anchorage depths. The values are then compared with the characteristic tension resistance  $N_{Rk,s,fi}$  t of the steel failure. The values for steel grade A4-70 and C70 were determined by the attenuation of the defined steel tensile strength of the strength class 8.8. In annexes 2, 3, and 4, the resulting maximum tension resistance is assembled as a function of the anchorage depths for anchoring rods, respectively internal threaded anchor. The characteristic values of the concrete cone failure have to be calculated in relation to the variable anchorage depths using the calculation 2.11 and 2.12 according to TR 020.



#### 4.2 Rebar connection with fischer injection system FIS SB proof of reinforcement steel as anchor application.

The determination of the characteristic values of fire resistance for pull-out failure  $N_{Rk,p,fi(t)}$ using reinforcement steel as anchor application is also based on the integration of the critical

temperature-dependent bond strength with respect to the setting depth of the rebar  $h_{ef}$  and the duration exposed to heat. In figure 2, the function of the anchor application is explained.

The anchorage of the rebar is vertical to the fire exposed surface and has different temperature areas.



to 500MPa, diamete safety factor for the

The characteristic values against pullout are listed in annex 1 for BSt 500. The characteristic fire resistance values for steel failure limit the values for pullout failure and are marked in gray. It is allowed to interpolate interim values. An extrapolation is not allowed. The given values are valid for the following load direction: centric tension, shear tension, and oblique tension acting at every single angle.

Steel failure and concrete failure were not considered. The attached member must have the same fire resistance as the anchor application.



MFPA Leipzig GmbH Baulicher Brandschutz Nr. GS 3.2/13-104-1 Ä vom 13. März 2014

## 5 Special hints

This evaluation was made for the fischer Superbond in cracked and not-cracked concrete .Products are to be installed in accordance with the installation codes found in the above mentioned European technical approval [3]

This evaluation was made under the aspect of a single-side fire exposure. In the case of a multilateral fire exposure, this calculation method is only valid when the edge distance of the rod is  $c \ge 300mm \ge 2h_{ef}$ .

A transfer from the allowable loads determined at steel of the minimum strength class 8.8 to the injection system fischer Superbond with reinforcement steel BSt 500 S and on internal threaded anchor rod RG MI or anchor rod made of stainless steel (1.4401, 1.4571, and 1.4404) is possible due to their better high temperature behavior and the existing testing experience. All annexes of the characteristic tension resistance values are valid for the installation with injection mortar as well as for other options, including FIS SB; FIS SB Low Speed and FIS SB High Speed, and also with mortar cartridge RSB

From this principle, the stated loads are also valid for shear and/or oblique-tension.

This assessment is only valid in combination with reinforced concrete slabs, with strength  $\geq$  *C* 20/25 and  $\leq$  *C*50/60 by EN 206-1: 2000-12 that corresponds to the minimum fire resistance class of the rod. To avoid concrete spalling, guidelines can be found in DIN EN 1992-1-2 (section 4.5). The moisture content therefore has to amount to less than 3 weight-percent (4% according to national appendix).

This test results exclusively concerns the described test specimen and are not applicable to any other products. This document does not replace a certificate of compliance or usability according to the building code (national/European).



|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | R30   | R60   | R90   | R120  |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-------|-------|-------|
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60  | 3,79  | 1,33  | 0,80  | 0,61  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70  | 6,30  | 2,11  | 1,21  | 0,89  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80  | 8,82  | 3,31  | 1,80  | 1,27  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90  | 11,33 | 5,09  | 2,64  | 1,79  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 | 13,84 | 7,60  | 3,83  | 2,50  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110 | 16,35 | 10,12 | 5,48  | 3,47  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120 | 18,87 | 12,63 | 7,70  | 4,76  |
| 8                                                                                                               | 10 oder 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130 | 21,38 | 15,14 | 10,22 | 6,47  |
| 0                                                                                                               | 10 0061 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140 | 23,89 | 17,66 | 12,73 | 8,67  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150 | 25,13 | 20,17 | 15,24 | 11,18 |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 160 | 25,13 | 22,68 | 17,76 | 13,69 |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170 | 25,13 | 25,13 | 20,27 | 16,21 |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180 | 25,13 | 25,13 | 22,78 | 18,72 |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 190 | 25,13 | 25,13 | 25,13 | 21,23 |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 | 25,13 | 25,13 | 25,13 | 23,75 |
| in the second | and the second se | 210 | 25,13 | 25,13 | 25,13 | 25,13 |



| Table A 1.2: fischer | Superbond 10. | BSt 500 as | s bolting application | n (steel not exposed to |
|----------------------|---------------|------------|-----------------------|-------------------------|
| fire)                |               |            |                       |                         |

| di | Rod<br>ameter | Drill nominate<br>diameter | Anchor depth<br>in mm | Characteristic ter | nsile load in relat<br>time in l | ion of the fire res | sistance |
|----|---------------|----------------------------|-----------------------|--------------------|----------------------------------|---------------------|----------|
|    |               |                            |                       | R30                | R60                              | R90                 | R120     |
|    |               |                            | 60                    | 4,74               | 1,66                             | 1,00                | 0,76     |
|    |               |                            | 70                    | 7,88               | 2,64                             | 1,51                | 1,11     |
|    |               |                            | 80                    | 11,02              | 4,14                             | 2,25                | 1,59     |
|    |               |                            | 90                    | 14,16              | 6,36                             | 3,30                | 2,24     |
|    |               |                            | 100                   | 17,30              | 9,50                             | 4,79                | 3,13     |
|    |               |                            | 110                   | 20,44              | 12,65                            | 6,85                | 4,33     |
|    |               |                            | 120                   | 23,59              | 15,79                            | 9,63                | 5,95     |
|    |               |                            | 130                   | 00 70              | 10.00                            | 10 77               | B        |
|    |               |                            | 140                   |                    |                                  |                     | 3        |
| 10 |               | 12 oder 14                 | 150                   |                    | กลา                              | nAl                 | 8        |
|    |               |                            | 160                   | Uut                | uu                               |                     | 2        |
|    |               |                            | 170                   |                    | • / / •                          |                     | 6        |
|    |               |                            | 180                   | 39,27              | 34,64                            | 28,48               | 23,40    |
|    |               |                            | 190                   | 39,27              | 37,78                            | 31,62               | 26,54    |
|    |               |                            | 200                   | 39,27              | 39,27                            | 34,76               | 29,68    |
|    |               |                            | 210                   | 39,27              | 39,27                            | 37,90               | 32,82    |
|    |               |                            | 220                   | 39,27              | 39,27                            | 39,27               | 35,97    |
|    |               |                            | 230                   | 39,27              | 39,27                            | 39,27               | 39,11    |
|    |               | Section and the            | 240                   | 39,27              | 39,27                            | 39,27               | 39,27    |



| Table A 1.3: fischer | Superbond 12. | BSt 500 as | bolting application | (steel not exposed | to |
|----------------------|---------------|------------|---------------------|--------------------|----|
| fire)                |               |            |                     |                    |    |

| Rod<br>diameter | Drill nominate<br>diameter | Anchor depth<br>in mm    | Characteristic te | nsile load in rela<br>time in | tion of the fire re<br>kN | esistance      |
|-----------------|----------------------------|--------------------------|-------------------|-------------------------------|---------------------------|----------------|
|                 |                            |                          | R30               | R60                           | R90                       | R120           |
|                 |                            | 70                       | 9,45              | 3,17                          | 1,82                      | 1,33           |
|                 |                            | 80                       | 13,22             | 4,97                          | 2,70                      | 1,90           |
|                 |                            | 90                       | 16,99             | 7,63                          | 3,96                      | 2,68           |
|                 |                            | 100                      | 20,76             | 11,40                         | 5,75                      | 3,75           |
|                 |                            | 110                      | 24,53             | 15,17                         | 8,22                      | 5,20           |
|                 |                            | 120                      | 28,30             | 18,94                         | 11,56                     | 7,14           |
|                 |                            | 130                      | 32,07             | 22,71                         | 15,33                     | 9,70           |
| 12              | 14 oder 16                 | 140<br>150<br>160<br>170 | Dut               | dat                           | ted                       | )(<br>;4<br>;1 |
|                 |                            | 190                      | 54.69             | 45.33                         | 37.95                     | 31.85          |
|                 |                            | 200                      | 56,55             | 49,10                         | 41,72                     | 35,62          |
|                 |                            | 210                      | 56,55             | 52,87                         | 45,49                     | 39,39          |
|                 |                            | 220                      | 56,55             | 56,55                         | 49,26                     | 43,16          |
|                 |                            | 230                      | 56,55             | 56,55                         | 53,03                     | 46,93          |
|                 |                            | 240                      | 56,55             | 56,55                         | 56,55                     | 50,70          |
|                 |                            | 250                      | 56,55             | 56,55                         | 56,55                     | 54,47          |
|                 |                            | 260                      | 56,55             | 56,55                         | 56,55                     | 56.55          |



| Table A 1.4: fischer | Superbond 14. | BSt 500 as | bolting applicati | on (steel not ex | kposed to |
|----------------------|---------------|------------|-------------------|------------------|-----------|
| fire)                |               |            |                   |                  |           |

| Rod<br>diameter | Drill nominate<br>diameter | Anchor depth<br>in mm | Characteristic t | ensile load in re<br>time | lation of the fire<br>in kN | resistance |
|-----------------|----------------------------|-----------------------|------------------|---------------------------|-----------------------------|------------|
|                 | L'en genere                |                       | R30              | R60                       | R90                         | R120       |
|                 |                            | 70                    | 11,03            | 3,70                      | 2,12                        | 1,56       |
|                 |                            | 80                    | 15,43            | 5,80                      | 3,15                        | 2,22       |
|                 |                            | 90                    | 19,82            | 8,91                      | 4,62                        | 3,13       |
|                 |                            | 100                   | 24,22            | 13,31                     | 6,71                        | 4,38       |
|                 |                            | 110                   | 28,62            | 17,70                     | 9,59                        | 6,07       |
|                 |                            | 120                   | 33,02            | 22,10                     | 13,48                       | 8,34       |
|                 |                            | 130                   | 37,42            | 26,50                     | 17,88                       | 11,31      |
|                 |                            | 140                   | 44.00            | 00.00                     | 00.00                       | 15 17      |
|                 |                            | 150                   |                  |                           |                             | 57         |
|                 |                            | 160                   | )  †/            | nai                       | nΔt                         | 96         |
|                 |                            | 170                   |                  | ua                        |                             | 36         |
| 14              | 18                         | 180                   |                  |                           |                             | /6         |
|                 |                            | 190                   | 63,81            | 52,89                     | 44,27                       | 37,16      |
|                 |                            | 200                   | 68,21            | 57,29                     | 48,67                       | 41,56      |
|                 |                            | 210                   | 72,60            | 61,69                     | 53,07                       | 45,95      |
|                 |                            | 220                   | 76,97            | 66,08                     | 57,46                       | 50,35      |
|                 |                            | 230                   | 76,97            | 70,48                     | 61,86                       | 54,75      |
|                 |                            | 240                   | 76,97            | 74,88                     | 66,26                       | 59,15      |
|                 |                            | 250                   | 76,97            | 76,97                     | 70,66                       | 63,55      |
|                 |                            | 260                   | 76,97            | 76,97                     | 75,06                       | 67,95      |
|                 |                            | 270                   | 76,97            | 76,97                     | 76,97                       | 72,34      |
|                 |                            | 280                   | 76,97            | 76,97                     | 76,97                       | 76,74      |
|                 |                            | 290                   | 76,97            | 76,97                     | 76,97                       | 76.97      |



| Table A 1.5: fischer S | Superbond 16. | BSt 500 as | bolting application | (steel not exposed to |  |
|------------------------|---------------|------------|---------------------|-----------------------|--|
| fire)                  |               |            |                     |                       |  |

| Rod<br>diameter | Drill nominate<br>diameter | Anchor depth<br>in mm | Characteristic tensile load in relation of the fire resistance time in kN |        |        |        |  |
|-----------------|----------------------------|-----------------------|---------------------------------------------------------------------------|--------|--------|--------|--|
|                 |                            |                       | R30                                                                       | R60    | R90    | R120   |  |
|                 |                            | 80                    | 17,63                                                                     | 6,63   | 3,60   | 2,54   |  |
|                 |                            | 90                    | 22,66                                                                     | 10,18  | 5,28   | 3,58   |  |
|                 |                            | 100                   | 27,68                                                                     | 15,21  | 7,67   | 5,00   |  |
|                 |                            | 110                   | 32,71                                                                     | 20,23  | 10,96  | 6,93   |  |
|                 |                            | 120                   | 37,74                                                                     | 25,26  | 15,41  | 9,53   |  |
|                 |                            | 130                   | 42,76                                                                     | 30,29  | 20,43  | 12,93  |  |
|                 |                            | 140                   | 47,79                                                                     | 35,31  | 25,46  | 17,33  |  |
|                 |                            | 150                   | 22/22                                                                     |        |        | 6      |  |
|                 |                            | 160                   |                                                                           |        |        | 9      |  |
|                 |                            | 170                   |                                                                           | กลา    | nAl    | 1      |  |
|                 |                            | 180                   |                                                                           | uu     |        | 4      |  |
| 16              | 20                         | 190                   |                                                                           |        |        |        |  |
| 10              | 20                         | 200                   | 77,95                                                                     | 65,47  | 55,62  | 47,49  |  |
|                 |                            | 210                   | 82,98                                                                     | 70,50  | 60,65  | 52,52  |  |
|                 |                            | 220                   | 88,00                                                                     | 75,52  | 65,67  | 57,55  |  |
|                 |                            | 230                   | 93,03                                                                     | 80,55  | 70,70  | 62,57  |  |
|                 |                            | 240                   | 98,05                                                                     | 85,58  | 75,73  | 67,60  |  |
|                 |                            | 250                   | 100,53                                                                    | 90,60  | 80,75  | 72,63  |  |
|                 |                            | 260                   | 100,53                                                                    | 95,63  | 85,78  | 77,65  |  |
|                 |                            | 270                   | 100,53                                                                    | 100,53 | 90,81  | 82,68  |  |
|                 |                            | 280                   | 100,53                                                                    | 100,53 | 95,83  | 87,71  |  |
|                 |                            | 290                   | 100,53                                                                    | 100,53 | 100,53 | 92,73  |  |
|                 |                            | 300                   | 100,53                                                                    | 100,53 | 100,53 | 97,76  |  |
|                 |                            | 310                   | 100,53                                                                    | 100,53 | 100,53 | 100,53 |  |



| Table A 1.6: | fischer Superbond 20. BSt 500 as bolting application (steel not exposed |
|--------------|-------------------------------------------------------------------------|
| to fire)     |                                                                         |

| Rod<br>diameter | Drill nominate<br>diameter | Anchor depth<br>in mm | Characteristic ter | nsile load in relat<br>time in l | ad in relation of the fire resistance time in kN |        |
|-----------------|----------------------------|-----------------------|--------------------|----------------------------------|--------------------------------------------------|--------|
|                 |                            |                       | R30                | R60                              | R90                                              | R120   |
|                 |                            | 90                    | 28,32              | 12,72                            | 6,61                                             | 4,47   |
|                 |                            | 100                   | 34,60              | 19,01                            | 9,59                                             | 6,25   |
|                 |                            | 110                   | 40,89              | 25,29                            | 13,70                                            | 8,67   |
|                 |                            | 120                   | 47,17              | 31,57                            | 19,26                                            | 11,91  |
|                 |                            | 130                   | 53,45              | 37,86                            | 25,54                                            | 16,16  |
|                 |                            | 140                   | 59,74              | 44,14                            | 31,83                                            | 21,67  |
|                 |                            | 150                   | 66,02              | 50,42                            | 38,11                                            | 27,95  |
|                 |                            | 160                   | 70.00              | 50.74                            | 11.00                                            | at op  |
|                 |                            | 170                   |                    |                                  |                                                  | 2      |
|                 |                            | 180                   |                    | กลา                              | nAl                                              | þ      |
|                 |                            | 190                   | Uut                | uu                               |                                                  | 3      |
|                 |                            | 200                   | State Barrata      | and the second                   | 1000 1000 1000 1000 1000 1000 1000 100           | 7      |
|                 |                            | 210                   | 103,72             | 88,12                            | 75,81                                            | 65,65  |
| 20              | 25                         | 220                   | 110,00             | 94,41                            | 82,09                                            | 71,93  |
| 20              | 25                         | 230                   | 116,29             | 100,69                           | 88,38                                            | 78,22  |
|                 |                            | 240                   | 122,57             | 106,97                           | 94,66                                            | 84,50  |
|                 |                            | 250                   | 128,85             | 113,26                           | 100,94                                           | 90,78  |
|                 |                            | 260                   | 135,14             | 119,54                           | 107,23                                           | 97,07  |
|                 |                            | 270                   | 141,42             | 125,82                           | 113,51                                           | 103,35 |
|                 |                            | 280                   | 147,70             | 132,10                           | 119,79                                           | 109,63 |
|                 |                            | 290                   | 153,98             | 138,39                           | 126,07                                           | 115,92 |
|                 |                            | 300                   | 157,08             | 144,67                           | 132,36                                           | 122,20 |
|                 |                            | 310                   | 157,08             | 150,95                           | 138,64                                           | 128,48 |
|                 |                            | 320                   | 157,08             | 157,08                           | 144,92                                           | 134,76 |
|                 |                            | 330                   | 157,08             | 157,08                           | 151,21                                           | 141,05 |
|                 |                            | 340                   | 157,08             | 157,08                           | 157,08                                           | 147,33 |
|                 |                            | 350                   | 157,08             | 157,08                           | 157,08                                           | 153,61 |
|                 |                            | 360                   | 157,08             | 157,08                           | 157,08                                           | 157,08 |



| Table A 1.7: fischer | Superbond 25. | BSt 500 as | bolting application | n (steel not exposed | l to |
|----------------------|---------------|------------|---------------------|----------------------|------|
| fire)                |               |            |                     |                      |      |

| Rod<br>diameter | Drill nominate<br>diameter | Anchor depth<br>in mm | th Characteristic tensile load in relation of the fire resistance time in kN |        |                 |       |
|-----------------|----------------------------|-----------------------|------------------------------------------------------------------------------|--------|-----------------|-------|
|                 |                            |                       | R30                                                                          | R60    | R90             | R120  |
|                 |                            | 100                   | 43,00                                                                        | 23,58  | 11,98           | 7,81  |
|                 |                            | 110                   | 50,85                                                                        | 31,43  | 17,13           | 10,83 |
|                 |                            | 120                   | 58,71                                                                        | 39,29  | 24,08           | 14,89 |
|                 |                            | 130                   | 66,56                                                                        | 47,14  | 31,93           | 20,20 |
|                 |                            | 140                   | 74,41                                                                        | 55,00  | 39,78           | 27,08 |
|                 |                            | 150                   | 82,27                                                                        | 62,85  | 47,64           | 34,94 |
|                 |                            | 160                   | 90,12                                                                        | 70,70  | 55,49           | 42,79 |
|                 |                            | 170                   |                                                                              |        |                 | 75    |
|                 |                            | 180                   | $\frown$                                                                     |        |                 | ic.   |
|                 |                            | 190                   |                                                                              | กวเ    | na <sup>.</sup> | 5     |
|                 |                            | 200                   | Uut                                                                          | uu     |                 | 1     |
|                 |                            | 210                   |                                                                              |        |                 |       |
|                 |                            | 220                   | 137,25                                                                       | 117,83 | 102,62          | 89,92 |
|                 |                            | 230                   | 145,10                                                                       | 125,68 | 110,47          | 97,77 |
|                 |                            | 240                   | 152,95                                                                       | 133,54 | 118,32          | 105,6 |
| 25              | 30                         | 250                   | 160,81                                                                       | 141,39 | 126,18          | 113,4 |
| 25              | 50                         | 260                   | 168,66                                                                       | 149,24 | 134,03          | 121,3 |
|                 |                            | 270                   | 176,52                                                                       | 157,10 | 141,89          | 129,1 |
|                 |                            | 280                   | 184,37                                                                       | 164,95 | 149,74          | 137,0 |
|                 |                            | 290                   | 192,22                                                                       | 172,81 | 157,59          | 144,8 |
|                 |                            | 300                   | 200,08                                                                       | 180,66 | 165,45          | 152,7 |
|                 |                            | 310                   | 207,93                                                                       | 188,51 | 173,30          | 160,6 |
|                 |                            | 320                   | 215,79                                                                       | 196,37 | 181,16          | 168,4 |
|                 |                            | 330                   | 223,64                                                                       | 204,22 | 189,01          | 176,3 |
|                 |                            | 340                   | 231,49                                                                       | 212,07 | 196,86          | 184,1 |
|                 |                            | 350                   | 239,35                                                                       | 219,93 | 204,72          | 192,0 |
|                 |                            | 360                   | 245,44                                                                       | 227,78 | 212,57          | 199,8 |
|                 |                            | 370                   | 245,44                                                                       | 235,64 | 220,43          | 207,7 |
|                 |                            | 380                   | 245,44                                                                       | 243,49 | 228,28          | 215,5 |
|                 |                            | 390                   | 245,44                                                                       | 245,44 | 236,13          | 223,4 |
|                 |                            | 400                   | 245,44                                                                       | 245,44 | 243,99          | 231,2 |
|                 |                            | 450                   | 245.44                                                                       | 245,44 | 245.44          | 245.4 |



| Table A 1.8: fischer | Superbond 28. | BSt 500 as | bolting application | n (steel not expos | ed to |
|----------------------|---------------|------------|---------------------|--------------------|-------|
| fire)                |               |            |                     |                    |       |

| Rod<br>diameter | Drill nominate<br>diameter | Anchor depth<br>in mm | Characteristic to | ensile load in rela<br>time ir | load in relation of the fire resistance time in kN |        |  |
|-----------------|----------------------------|-----------------------|-------------------|--------------------------------|----------------------------------------------------|--------|--|
|                 |                            |                       | R30               | R60                            | R90                                                | R120   |  |
|                 |                            | 110                   | 56,95             | 35,21                          | 19,18                                              | 12,13  |  |
|                 |                            | 120                   | 65,75             | 44,00                          | 26,96                                              | 16,67  |  |
|                 |                            | 130                   | 74,55             | 52,80                          | 35,76                                              | 22,63  |  |
|                 |                            | 140                   | 83,34             | 61,59                          | 44,56                                              | 30,33  |  |
|                 |                            | 150                   | 92,14             | 70,39                          | 53,35                                              | 39,13  |  |
|                 |                            | 160                   | 100,94            | 79,19                          | 62,15                                              | 47,93  |  |
|                 |                            | 170                   | 109,73            | 87,98                          | 70,95                                              | 56,72  |  |
|                 |                            | 180                   | 11150             |                                |                                                    | 52     |  |
|                 |                            | 190                   | <b>1</b>          |                                |                                                    | 32     |  |
|                 |                            | 200                   |                   | nai                            | -eo                                                | 11     |  |
|                 |                            | 210                   |                   |                                |                                                    | 91     |  |
|                 |                            | 220                   | 153,72            | 131,97                         | 114,93                                             | 100,71 |  |
|                 |                            | 230                   | 162,51            | 140,76                         | 123,73                                             | 109,50 |  |
|                 |                            | 240                   | 171,31            | 149,56                         | 132,52                                             | 118,30 |  |
|                 |                            | 250                   | 180,11            | 158,36                         | 141,32                                             | 127,10 |  |
| 28              | 25                         | 260                   | 188,90            | 167,15                         | 150,12                                             | 135,89 |  |
| 20              | 35                         | 270                   | 197,70            | 175,95                         | 158,91                                             | 144,69 |  |
|                 |                            | 280                   | 206,49            | 184,75                         | 167,71                                             | 153,48 |  |
|                 |                            | 290                   | 215,29            | 193,54                         | 176,50                                             | 162,28 |  |
|                 |                            | 300                   | 224,09            | 202,34                         | 185,30                                             | 171,08 |  |
|                 |                            | 310                   | 232,88            | 211,13                         | 194,10                                             | 179,87 |  |
|                 |                            | 320                   | 241,68            | 219,93                         | 202,89                                             | 188,67 |  |
|                 |                            | 330                   | 250,48            | 228,73                         | 211,69                                             | 197,47 |  |
|                 |                            | 340                   | 259,27            | 237,52                         | 220,49                                             | 206,26 |  |
|                 |                            | 350                   | 268,07            | 246,32                         | 229,28                                             | 215,06 |  |
|                 |                            | 360                   | 276,87            | 255,12                         | 238,08                                             | 223,86 |  |
|                 |                            | 370                   | 285,66            | 263,91                         | 246,88                                             | 232,65 |  |
|                 |                            | 380                   | 294,46            | 272,71                         | 255,67                                             | 241,45 |  |
|                 |                            | 390                   | 303,26            | 281,51                         | 264,47                                             | 250,25 |  |
|                 |                            | 400                   | 307,88            | 290,30                         | 273,27                                             | 259,04 |  |
|                 |                            | 450                   | 307,88            | 307,88                         | 307,88                                             | 303,02 |  |
|                 |                            | 500                   | 307,88            | 307,88                         | 307,88                                             | 307,88 |  |



| Rod<br>diameter | Drill nominate<br>diameter | Anchor depth<br>in mm | Characteristic | c tensile load in time | relation of the fire | e resistance |
|-----------------|----------------------------|-----------------------|----------------|------------------------|----------------------|--------------|
| 1004            |                            |                       | R30            | R60                    | R90                  | R120         |
|                 |                            | 130                   | 85,20          | 60,34                  | 40,87                | 25,86        |
|                 |                            | 140                   | 95,25          | 70,39                  | 50,92                | 34,67        |
|                 |                            | 150                   | 105,30         | 80,45                  | 60,98                | 44,72        |
|                 |                            | 160                   | 115,36         | 90,50                  | 71,03                | 54,77        |
|                 |                            | 170                   | 125,41         | 100,55                 | 81,08                | 64,83        |
|                 |                            | 180                   | 135,46         | 110,61                 | 91,14                | 74,88        |
|                 |                            | 190                   | 145,52         | 120,66                 | 101,19               | 84,93        |
|                 |                            | 200                   |                | 1.11                   |                      |              |
|                 |                            | 210                   | $\frown$       |                        | 1-                   |              |
|                 |                            | 220                   |                | 702                    | <b>Te</b> (          |              |
|                 |                            | 230                   |                | <b>L</b> AC            |                      |              |
|                 |                            | 240                   | 195,78         | 170,93                 | 151,45               | 135,20       |
|                 |                            | 250                   | 205,83         | 180,98                 | 161,51               | 145,25       |
|                 |                            | 260                   | 215,89         | 191,03                 | 171,56               | 155,30       |
|                 |                            | 270                   | 225,94         | 201,08                 | 181,61               | 165,36       |
| 32              | 40                         | 280                   | 235,99         | 211,14                 | 191,67               | 175,41       |
|                 |                            | 290                   | 246,05         | 221,19                 | 201,72               | 185,46       |
|                 |                            | 300                   | 256,10         | 231,24                 | 211,77               | 195,52       |
|                 |                            | 310                   | 266,15         | 241,30                 | 221,83               | 205,57       |
|                 |                            | 320                   | 276,21         | 251,35                 | 231,88               | 215,62       |
|                 |                            | 330                   | 286,26         | 261,40                 | 241,93               | 225,68       |
|                 |                            | 340                   | 296,31         | 271,46                 | 251,98               | 235,73       |
|                 |                            | 350                   | 306,37         | 281,51                 | 262,04               | 245,78       |
|                 |                            | 360                   | 316,42         | 291,56                 | 272,09               | 255,84       |
|                 |                            | 370                   | 326,47         | 301,62                 | 282,14               | 265,89       |
|                 |                            | 380                   | 336,52         | 311,67                 | 292,20               | 275,94       |
|                 |                            | 390                   | 346,58         | 321,72                 | 302,25               | 286,00       |
|                 |                            | 400                   | 356,63         | 331,77                 | 312,30               | 296,05       |
|                 |                            | 450                   | 402,12         | 382,04                 | 362,57               | 346,31       |
|                 |                            | 500                   | 402,12         | 402,12                 | 402,12               | 396,58       |
|                 |                            | 550                   | 402 12         | 402 12                 | 402 12               | 402 12       |

## Table A 1.9: fischer Superbond 32. BSt 500 as bolting application (steel not exposed to fire)



# Table A 2.1: Maximal Tensile load in relation to fire exposure of the fischer Superbond with anchor rods of the strength class 5.8,made of stainless steel of the material quality A4-50 or highly corrosion resistant steel C50

| Thread | Drill nominate<br>diameter | Anchor depth<br>in mm | Characteristic tensile loa | ad in relation of ti<br>time in kN | ne fire resistance |       |
|--------|----------------------------|-----------------------|----------------------------|------------------------------------|--------------------|-------|
|        |                            |                       | R30                        | R60                                | R90                | R120  |
| M8     | 10                         | 60                    | 0,90                       | 0,60                               | 0,40               | 0,40  |
| M10    | 12                         | 60                    | 1,60                       | 1,10                               | 0,80               | 0,70  |
| M12    | 14                         | 70                    | 2,60                       | 1,80                               | 1,40               | 1,20  |
| M16    | 18                         | 80                    | 6,40                       | 4,70                               | 3,60               | 2,54  |
|        |                            | 90                    | 6,40                       | 4,70                               | 3,80               | 3,30  |
| M20    | 24                         | 90                    | 10,10                      | 7,30                               | 5,90               | 4,47  |
|        |                            | 100                   | 10,10                      | 7,30                               | 5,90               | 5,20  |
| M24    | 28                         | 90                    | 14,50                      | 10,50                              | 7,93               | 5,37  |
|        |                            | 100                   | 14,50                      | 10,50                              | 8,60               | 7,50  |
|        |                            | 11(                   | 0 14,50                    | 10,50                              | 8,60               | 7,60  |
| M30    | 35                         | 120                   | 23,10                      | 16,80                              | 13,60              | 12,00 |

Table 2.2: Maximal Tensile load in relation to fire exposure of the fischer Superbondwith internal threaded anchor rodRG MI of the strength class 5.8

| Thread | Drill nominate<br>diameter | Anchor depth<br>in mm | Characteristic to | resistance |      |      |
|--------|----------------------------|-----------------------|-------------------|------------|------|------|
|        |                            |                       | R30               | R60        | R90  | R120 |
| M8     | 14                         | 90                    | 0,90              | 0,60       | 0,40 | 0,40 |
| M10    | 18                         | 90                    | 1,60              | 1,10       | 0,80 | 0,70 |
| M12    | 20                         | 125                   | 2,60              | 1,80       | 1,40 | 1,20 |
| M16    | 24                         | 160                   | 6,40              | 4,70       | 3,80 | 3,30 |
| M20    | 32                         | 200                   | 10,10             | 7,30       | 5,90 | 5,20 |





# Table 3.2: Maximal Tensile load in relation to fire exposure of the fischer Superbond with anchor rods made of stainless high-grade steel A4 – A70 or highly corrosion resistant steel C50

| Thread | Drill nominate<br>diameter | Anchor depth<br>in mm | Characteristic tensile load in relation of the fire resistanc<br>time in kN |       |       |       |  |
|--------|----------------------------|-----------------------|-----------------------------------------------------------------------------|-------|-------|-------|--|
|        |                            |                       | R30                                                                         | R60   | R90   | R120  |  |
| M8     | 10                         | 60                    | 1,31                                                                        | 0,88  | 0,61  | 0,53  |  |
| M10    | 12                         | 60                    | 2,45                                                                        | 1,45  | 0,87  | 0,67  |  |
|        |                            | 70                    | 2,45                                                                        | 1,58  | 1,14  | 0,88  |  |
| M12    | 14                         | 70                    | 4,11                                                                        | 2,63  | 1,59  | 1,17  |  |
|        |                            | 80                    | 4,11                                                                        | 2,63  | 1,93  | 1,49  |  |
| M16    | 18                         | 80                    | 10,50                                                                       | 5,80  | 3,15  | 2,22  |  |
|        |                            | 90                    | 10,50                                                                       | 6,74  | 4,62  | 3,13  |  |
|        | _                          | 100                   | 10,50                                                                       | 6,74  | 4,81  | 3,85  |  |
| M20    | 24                         | 90                    | 16,45                                                                       | 10,50 | 5,78  | 3,91  |  |
|        |                            | 100                   | 16,45                                                                       | 10,50 | 7,53  | 5,47  |  |
|        |                            | 110                   | 16,45                                                                       | 10,50 | 7,53  | 6,04  |  |
| M24    | 28                         | 100                   | 23,63                                                                       | 15,14 | 10,07 | 6,56  |  |
|        |                            | 110                   | 23,63                                                                       | 15,14 | 10,94 | 8,75  |  |
| M30    | 35                         | 120                   | 37,63                                                                       | 24,15 | 17,33 | 14,00 |  |

Table 3.2: Maximal Tensile load in relation to fire exposure of the fischer Superbond with internal threaded anchor rod made of stainless high-grade steel A4 – A70 or highly corrosion resistant steel C50

| Thread | Drill nominate<br>diameter | Anchor depth<br>in mm | Characteristic tensile load in relation of the fire resistance time in kN |       |      |      |
|--------|----------------------------|-----------------------|---------------------------------------------------------------------------|-------|------|------|
|        |                            |                       | R30                                                                       | R60   | R90  | R120 |
| M8     | 14                         | 90                    | 1,31                                                                      | 0,88  | 0,61 | 0,53 |
| M10    | 18                         | 90                    | 2,45                                                                      | 1,58  | 1,14 | 0,88 |
| M12    | 20                         | 125                   | 4,11                                                                      | 2,63  | 1,93 | 1,49 |
| M16    | 24                         | 160                   | 10,50                                                                     | 6,74  | 4,81 | 3,85 |
| M20    | 32                         | 200                   | 16,45                                                                     | 10,50 | 7,53 | 6.04 |





# Table 4.1: Maximal Tensile load in relation to fire exposure of the fischer Superbond with anchor rods made of steel of the strength class 8.8, of stainless steel of the material quality A4-80 or highly corrosion resistant steel C80

| Thread | Drill nominate<br>diameter | Anchor depth<br>in mm | Characteristic tensile load in relation of the fire resistance time in kN |       |       |       |
|--------|----------------------------|-----------------------|---------------------------------------------------------------------------|-------|-------|-------|
|        |                            |                       | R30                                                                       | R60   | R90   | R120  |
| M8     | 10                         | 60                    | 1,50                                                                      | 1,00  | 0,70  | 0,60  |
| M10    | 12                         | 60                    | 2,80                                                                      | 1,66  | 1,00  | 0,76  |
|        |                            | 70                    | 2,80                                                                      | 1,80  | 1,30  | 1,00  |
| M12    | 14                         | 70                    | 4,70                                                                      | 3,00  | 1,82  | 1,33  |
|        |                            | 80                    | 4,70                                                                      | 3,00  | 2,20  | 1,70  |
| M16    | 18                         | 80                    | 12,00                                                                     | 6,63  | 3,60  | 2,54  |
|        |                            | 90                    | 12,00                                                                     | 7,70  | 5,28  | 3,58  |
|        |                            | 100                   | 12,00                                                                     | 7,70  | 5,50  | 4,40  |
| M20    | 24                         | 90                    | 18,80                                                                     | 12,00 | 6,61  | 4,47  |
|        |                            | 100                   | 18,80                                                                     | 12,00 | 8,60  | 6,25  |
|        |                            | 110                   | 18,80                                                                     | 12,00 | 8,60  | 6,90  |
| M24    | 28                         | 100                   | 27,00                                                                     | 17,30 | 11,50 | 7,50  |
|        |                            | 110                   | 27,00                                                                     | 17,30 | 12,50 | 10,00 |
| M30    | 35                         | 120                   | 43,00                                                                     | 27,60 | 19,80 | 16,00 |

Table 4.2: Maximal Tensile load in relation to fire exposure of the fischer Superbond with internal threaded anchor rod made of steel of the strength class 8.8

| Thread | Drill nominate<br>diameter | Anchor depth<br>in mm | Characteristic tensil | tance |      |      |
|--------|----------------------------|-----------------------|-----------------------|-------|------|------|
|        |                            |                       | R30                   | R60   | R90  | R120 |
| M8     | 14                         | 90                    | 1,50                  | 1,00  | 0,70 | 0,60 |
| M10    | 18                         | 90                    | 2,80                  | 1,80  | 1,30 | 1,00 |
| M12    | 20                         | 125                   | 4,70                  | 3,00  | 2,20 | 1,70 |
| M16    | 24                         | 160                   | 12,00                 | 7,70  | 5,50 | 4,40 |
| M20    | 32                         | 200                   | 18,80                 | 12,00 | 8,60 | 6,90 |