

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0501 of 22 January 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Superbond dynamic

Post-installed fasteners in concrete under fatigue cyclic loading

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

28 pages including 3 annexes which form an integral part of this assessment

EAD 330250-01-0601, Edition 11/2020

ETA-19/0501 issued on 30 October 2019

European Technical Assessment ETA-19/0501 English translation prepared by DIBt

Page 2 of 28 | 22 January 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 28 | 22 January 2021

Specific Part

ETA-19/0501

1 Technical description of the product

The fischer superbond dynamic is a bonded anchor consisting of a cartridge with injection mortar FIS SB or FIS SB High Speed or mortar capsule RSB, an anchor rod FIS A or RG M, a centering sleeve (only for push-through installation), a conical washer with bore, a hexagon nut with spherical contact surface and a locknut. Alternatively the hexagon nut with spherical contact surface can be replaced by a spherical disc with hexagon nut. For the sizes M20 and M24, the variant with centering sleeve, washer, hexagon nut and look nut is available as an alternative for push-through installation.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The resin capsule is placed into the hole and the steel element is driven by machine with simultaneous hammering and turning. The anchor rod is anchored via the bond between steel element, chemical mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

Performance of the product and references to the methods used for its assessment 3

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Assessment method C: Linearized function	
Characteristic steel fatigue resistance under tension loading	See Annex C1, C3 and C4
Characteristic concrete cone, pull-out, splitting and blow out fatigue resistance under tension loading	See Annex C1, C3 and C4
Characteristic pull-out or combined pull-out /concrete cone fatigue resistance under tension loading	See Annex C1, C3 and C4
Characteristic steel fatigue resistance under shear loading	See Annex C2, C3 and C4
Characteristic concrete edge fatigue resistance under shear loading	See Annex C2, C3 and C4
Characteristic concrete pry-out fatigue resistance under shear loading	See Annex C2, C3 and C4
Characteristic steel fatigue resistance under tension and shear	See Annex C1 to C4

European Technical Assessment ETA-19/0501

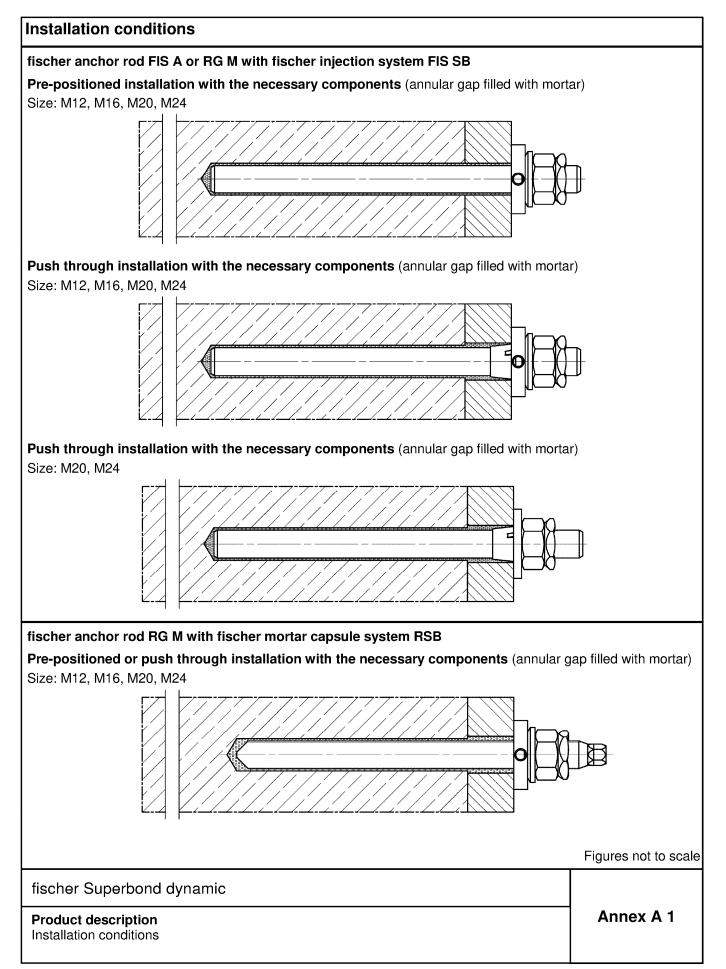
Page 4 of 28 | 22 January 2021

English translation prepared by DIBt

Essential characteristic	Performance
Load transfer factor for tension and shear loading	See Annex C1 to C4

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document No. 330250-01-0601, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 22 January 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Overview system components Part 1	
Mortar cartridge (shuttle cartridge) with sealing cap; Size: 390 ml, 585 ml, 1100 ml, 15	00 ml
Imprint: fischer FIS SB, FIS SB High Speed, processing not piston travel scale (optional), curing times and processing tim (depending on temperature), hazard code, size, volume	
Mortar cartridge (coaxial cartridge) with sealing cap; Size: 150 ml, 300 ml ,380 ml, 410	ml
Imprint: fischer FIS SB, FIS SB High Speed, processing not piston travel scale (optional), curing times and processing tin (depending on temperature), hazard code, size, volume	
Mortar capsule	
Size: 12 mini, 12, 16 mini, 16, 20, 20 E /24	
RSB	
Static mixer FIS MR Plus for injection cartridges up to 410 ml	
Static mixer FIS UMR for injection cartridges from 585 ml	
Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS UMR	
	Figures not to scale
fischer Superbond dynamic	
System description Overview system components part 1; cartridges / capsule / static mixer / injection adapter	Annex A 2

Overview system	Overview system components Part 2					
fischer anchor rod F	IS A					
Size: M12, M16, M20,	M24					
fischer anchor rod R	GM					
Size: M12, M16, M20,	M24					
	/	h.				
		V				
spherical washer	cc	onical washer (various	versions; partly fillabl	e)		
	without drill hole	radial	angular	axial		
\bigcirc A						
centering sleeve	-	hexagonal nut with				
(only push through installation)	washer	spherical contact surface	hexagon nut	lock nut		
		\uparrow	$\land \Box$	\land 0		
•				0		
Injection adapter						
Cleaning brush BS	مان ران ران ران ران ران ران ران ران ران ر	la da d				
		HARRANA HARAA 				
Blow-out pump ABP	with cleaning nozzle	or ABG				
			4			
	64	7				
	i)		fischer =)		
	-	*	No. 85300			
				Figures not to scale		
fischer Superbond dynamic System description Annex A 3						
	Overview system components part 2;					
Steel components / injection adapter / cleaning brush / blow-out pump						

Z5768.21

Materials

Specification	Specifications of intended use (part 1)					
Table B1.1: Overview use and performance categories injection motar system						
		FIS SB with				
		fischer anchor rod FIS A or fischer anchor rod RG M				
		M12 - M24				
		M20 + M24				
Hammer drilling with standard dri	etter ill bit					
Hammer drilling with hollow drill b	oit T	Nominal drill bit diameter (do)				
(fischer "FHD", F Expert"; Bosch " Hilti "TE-CD, TE DreBo "D-Plus";	Speed Clean"; -YD";		14 mm to 28 mm			
Diamond drilling		no performance assessed				
Fatigue load, in	uncracked concrete cracked concrete	Steel, zinc plated: M12 and M16		ess steel R: 5, M20 and M24		
Design method I acc. to EOTA TF		n = 1 to n = ∞				
Design method I acc. to EOTA TF		N = ∞				
Use category I1 dr	y or wet concrete	M12, M16, M20 and M24				
Installation direc	tion	D3 Downwards, horizontal and upwards (overhead) installation				
Installation meth	od	pre-positioned or push through installation				
Installation temp	erature	FIS SB: $T_{i,min} = -15 \text{ °C to } T_{i,max} = +40 \text{ °C}$ FIS SB High Speed: $T_{i,min} = -20 \text{ °C to } T_{i,max} = +40 \text{ °C}$				
In-service	Temperature range I:	-40 °C to +40 °C	(max. short term tem max. long term tem			
temperature	Temperature range II:	-40 °C to +80 °C	(max. short term tem max. long term tem			
fischer Super	rbond dynamic					
Intended use		em FIS SB (part 1)		Annex B 1		

Specifications of intended	l use (part 2)		
Table B2.1:Overview us	se and performance categories res	in capsule system	
	RSB	with	
	fischer anch	or rod RG M	
Hammer drilling with standard drill			
Hammer drilling with hollow drill bit	Nominal drill bi	it diameter (d₀) o 28 mm	
(fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD"; DreBo "D-Plus"; DreBo "D-Max")	14 11111 (0.20 11111	
Diamond drilling	Nominal drill bi 18 mm to	it diameter (d₀) o 28 mm	
Fatigue load, in concrete cracked concrete	Steel, zinc plated: M12 and M16	Stainless steel R: M12, M16, M20 and M24	
Design method I acc. to TR061:2020-08	n = 1 to n = ∞		
Design method II acc. to TR061:2020-08	n = ∞		
Use category I1 dry or wet concrete	e M12, M16, M	120 and M24	
Installation direction	D Downward, horizontal and up	3 wards (overhead) installation	
Installation method	pre-positioned or push through installation		
Installation temperature		30 °C to $T_{i,max} = +40$ °C	
In-service range I:	-40 °C to +40 °C ma	ax. short term temperature +40 °C; ax. long term temperature +24 °C)	
temperature Temperature range II:		ax. short term temperature +80 °C; ax. long term temperature +50 °C)	
fischer Superbond dynamic	2		
Intended use Specifications resin capsule syst	tem RSB (part 2)	Annex B 2	

Specifications of intended use (part 3)

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibers of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel R).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 4 table A4.1.

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages have to be designed in accordance with:
 - EN 1992-4:2018 or
 - EOTA Technical Report TR 061 "Design method for fasteners in concrete under fatigue cyclic loading", Edition August 2020
- Static and quasi static loading see ETA-12/0258:2020
- · Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
- Fastenings in stand-off installation or with a grout layer are not covered by this European Technical Assessment (ETA)

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- · Anchorage depth should be marked and adhered to on installation
- · If only tension loads are involved in the application, the annular gap does not need to be filled
- · Overhead installation is allowed

fischer Superbond dynamic

Intended use Specifications (part 3) Annex B 3

Page 12 of European Technical Assessment ETA-19/0501 of 22 January 2021

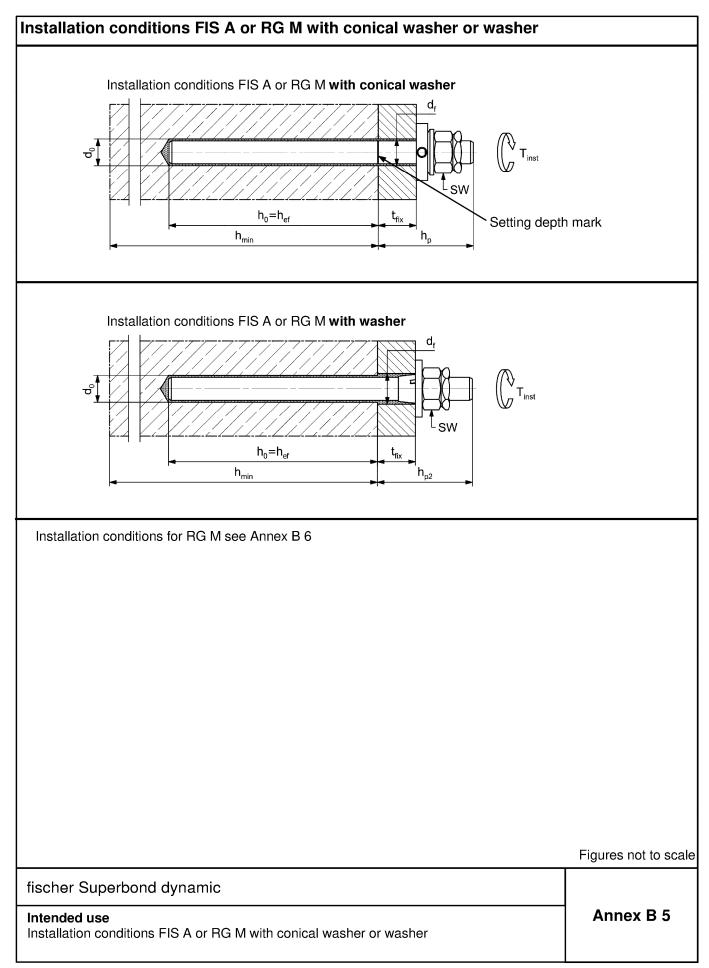

English translation prepared by DIBt

Table B4.1:Installation parameters for fischer anchor rods in combination with injection
mortar system FIS SBfischer anchor rodsThreadM12M16M20M24

fischer anchor rods		Thread	M12	M16	M20	M24
Material	al zinc plated steel or stainless steel R			stainle	ss steel R	
Width across flats	SW		19	24	30	36
Nominal drill hole diameter	d ₀		14	18	24	28
Drill hole depth	ho			h0 =	= h _{ef}	1
Effective embedment depth	h _{ef, min}		70	80	90	96
	h _{ef, max}		240	320	400	480
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	65	85	105
Diameter of the clearance hole of	d d _f		14-16	18-20	22-26	26-30
the fixture push through installation	n d _f		15-16	19-20	25-26	29-30
Fixture thickness	t _{fix,min}		12	16	20	24
	tfix,max			20	00	
Minimum thickness of concrete member	h _{min}		h _{ef} + 30	h _{ef} + 2d ₀	h _{ef} + 2d ₀	h _{ef} + 2d ₀
Installation with conical washer	•	,		1	1	
Protrusion anchor rod FIS A or RG M without hexagon head	$\mathbf{h}_{\mathrm{p,min}}$	- [mm]	25 + t _{fix}	30 + t _{fix}	36 + t _{fix}	43 + t _{fix}
Protrusion anchor rod RG M (with hexagon head)	$h_{\text{p,min}}$	[]	$32 + t_{fix}$	38 + t _{fix}	43 + t _{fix}	
Installation with washer (M20 +	M24)			I		
Protrusion anchor rod FIS A or RG M without hexagon head	h _{p2,min}	[mm]			27 + t _{fix}	32 + t _{fix}
Protrusion anchor rod RG M (with hexagon head)		[,,,,,]			34 + t _{fix}	
Required installation torque	T _{inst}	[Nm]	40	60	120	150
fischer anchor rod FIS A or RG M Thread Marking (on random place) fischer anchor rod: Property class 8.8: + or colour coding acc. to DIN 976-1:2016						
Installation conditions see Ar	nnex B 5				Fig	ures not to scale
fischer Superbond dynamic						
Intended use Installation parameters fischer ar mortar system FIS SB	nchor rods	FIS A ar	nd RG M in com	bination with in		Annex B 4

Page 14 of European Technical Assessment ETA-19/0501 of 22 January 2021

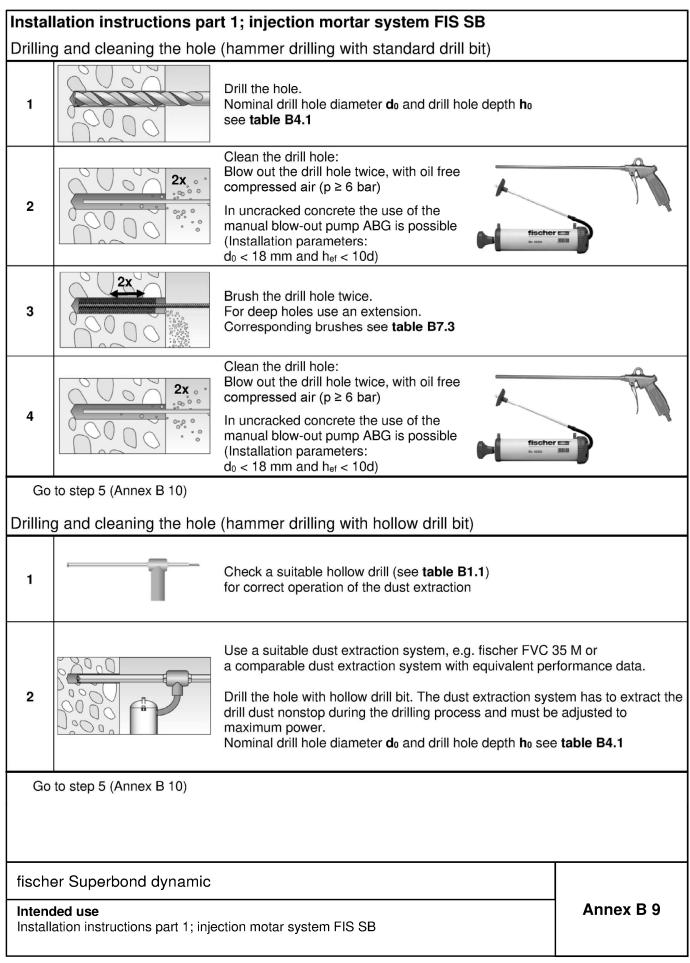
English translation prepared by DIBt

Table B6.1: Installation parameters for fischer anchor rods RG M in combination with resin capsule system RSB fischer anchor rod RG M Thread M12 M16 M20 M24 zinc plated steel or Material stainless steel R stainless steel R Width across flats SW 19 24 30 36 14 Nominal drill hole diameter d_0 18 25 28 Drill hole depth ho $h_0 = h_{ef}$ 75 95 h_{ef,1} ------110 125 170 210 Effective embedment depth h_{ef,2} 150 190 210 --h_{ef,3} Smin Minimum spacing and minimum 55 65 85 105 = edge distance [mm] Cmin pre-positioned 14-16 18-20 22-26 26-30 df Diameter of the installation clearance hole of push through the fixture df 15-16 19-20 26 29-30 installation 12 16 20 24 t_{fix,min} Fixture thickness 200 t_{fix,max} Minimum thickness of concrete h_{min} $h_{ef} + 30$ $h_{ef} + 2d_0$ $h_{ef} + 2d_0$ $h_{ef} + 2d_0$ member Installation with conical washer Protrusion anchor rod RG M 32 + t_{fix} 43 + t_{fix} ---38 + t_{fix} h_{p,min} [mm] Protrusion anchor rod RG M --h_{p,min} ------43 + t_{fix} without hexagon head Required installation torque Tinst [Nm] 40 60 120 150 fischer anchor rod RG M Thread Marking (on random place) fischer anchor rod RG M: Marking Property class 8.8: + or colour coding acc. to DIN 976-1:2016 Installation conditions: SW h₀=h_{ef} t_{fix} Setting depth mark hp h_{min} Figures not to scale fischer Superbond dynamic Annex B 6 Intended use Installation parameters fischer anchor rod RG M in combination with resin capsule system RSB

Page 15 of European Technical Assessment ETA-19/0501 of 22 January 2021

Resin capsule RSB	12 min	i 1	12	16 mini	16	20) 20 E / 2
Capsule diameter d _P [mm]		12,5 16,5		6,5	23,0		
Capsule L _P	72	g	97	72	95	16	0 190
	q		8.4048.4048.404	RSB ³	_		
_	nment of	-			r anchor	rod RG M	
Anchor rod RG M		M1:	2	M16		M20	M24
Effective anchorage depth	n _{ef,1} [mm]	75	;	95			
Related capsule RSB	[-]	12 m	ini	16 mini			
Effective anchorage depth	n _{ef,2} [mm]	11(0	125		170	210
Related capsule RSB	[-]	12	2	16		20	20 E / 24
Effective anchorage depth	n _{ef,3} [mm]	150	D I	190		210	
Related capsule RSB	[-]	2x 12 i	mini	2x 16 mii	ni	20 E / 24	
The size of the cleaning b Nominal drill hole do diameter			•	•	24	ith steel br 25	28
Steel brush db db	[]	16	20		26	27	30
-o	HANANAN KANANAN KANANAN	allallallalla Miantanianiani			~~~~		
fischer Superbond d	ynamic						Annex B 7
Dimensions of the capsu Cleaning brush (steel bru		ment of the	capsule to	the anchoi	rod RG M		••••••
3.21							8.06.01-61

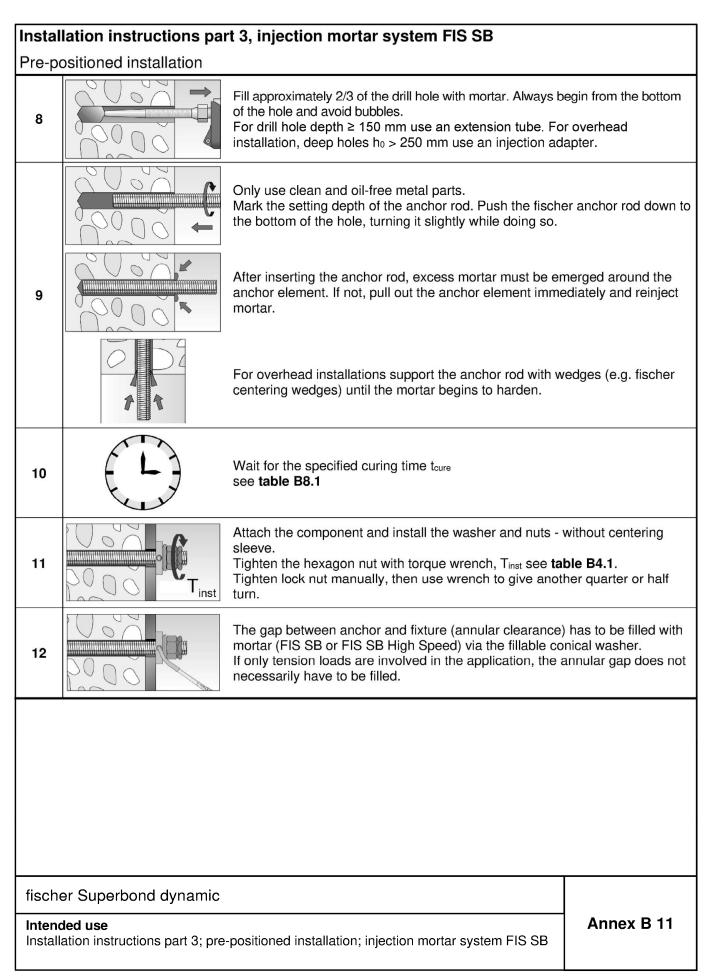
Table B8.1: Maximum processing time of the mortar and minimum curing time

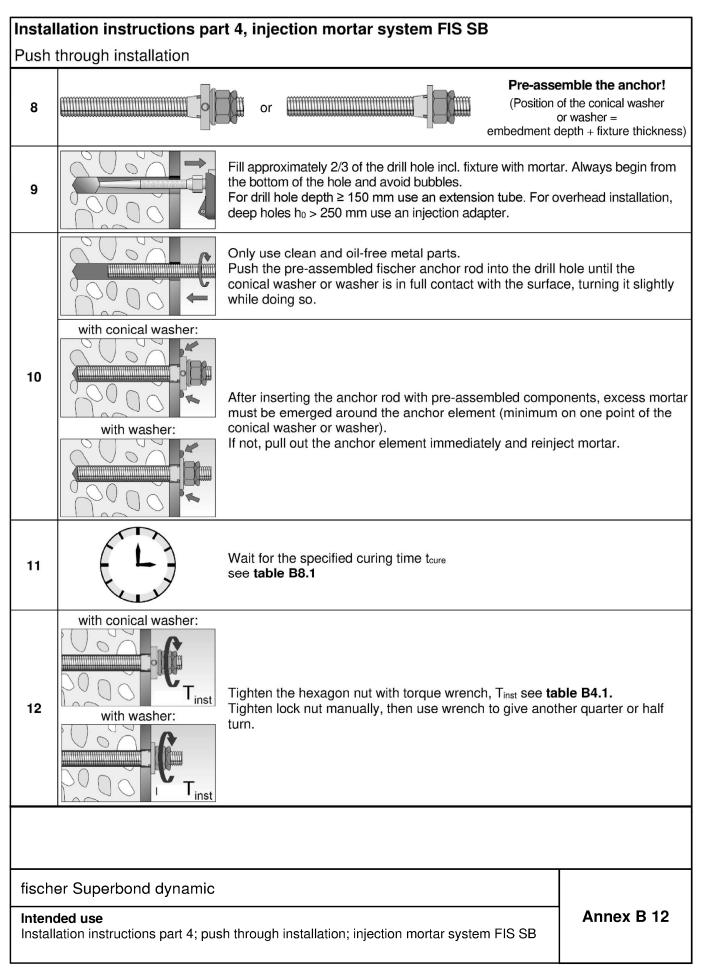

During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature. Minimal cartridge temperature +5 °C; minimal resin capsule temperature -15 °C

Temperature at	Maximum processing time twork		Minimum curing time t _{cure}		
anchoring base [°C]	FIS SB	FIS SB High Speed	FIS SB	FIS SB High Speed	RSB
-30 to -20					120 h
>-20 to -15		60 min		24 h	48 h
>-15 to -10	60 min	30 min	36 h	8 h	30 h
>-10 to -5	30 min	15 min	24 h	3 h	16 h
> -5 to 0	20 min	10 min	8 h	2 h	10 h
> 0 to 5	13 min	5 min	4 h	1 h	45 min
> 5 to 10	9 min	3 min	2 h	45 min	30 min
> 10 to 20	5 min	2 min	1 h	30 min	20 min
> 20 to 30	4 min	1 min	45 min	15 min	5 min
> 30 to 40	2 min		30 min		3 min

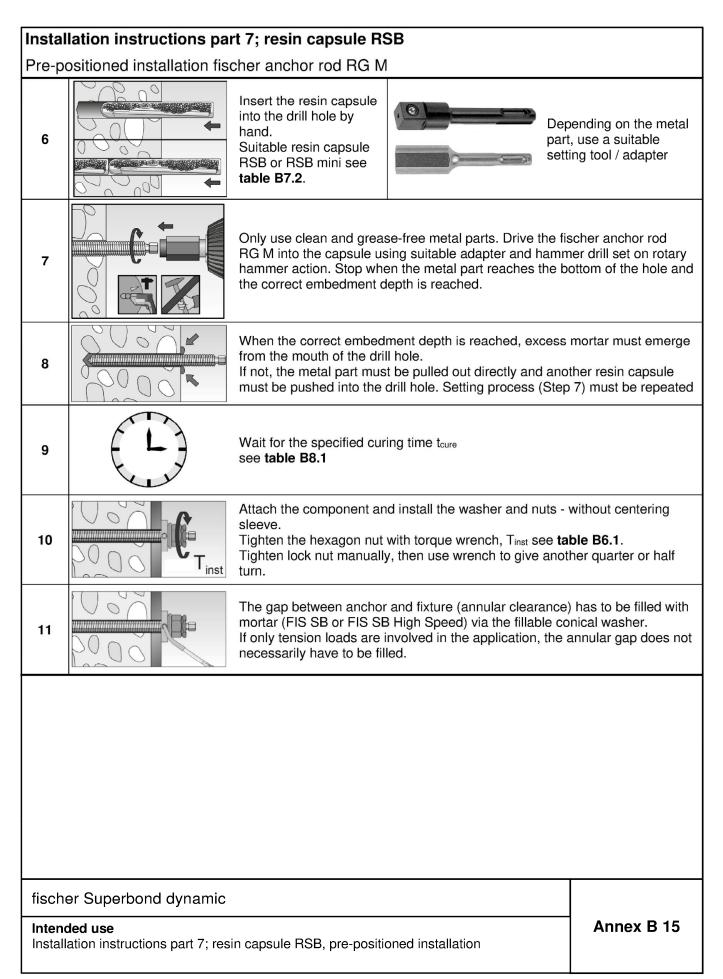
fischer Superbond dynamic

Intended use Processing time and curing time Annex B 8





	Ilation instructions pa aring the cartridge	rt 2; injection mortar	system FIS SB	
5		Remove the sealing cap Screw on the static mixer (the spiral in the static mi	xer must be clearly visible)	
6		, , , , , , , , , , , , , , , , , , , 	Place the cartridge into the d	spenser
7	X	×	Extrude approximately 10 cm the resin is evenly grey in col mortar that is not uniformly g	our. Do not use
Go	to step 8 (pre-positioned in	stallation Annex B 11 or pu	sh through installation Annex B	12)
fisch	er Superbond dynamic			
	ded use lation instructions part 2; inje	ection motar system FIS SE	3	Annex B 10



Instal	lation instructions pa	rt 5; resin capsule RSB					
Drilling	Drilling and cleaning the hole (hammer drilling with standard drill bit)						
1		Drill the hole. Nominal drill hole diameter d o and drill hole depth h o see table B6.1					
2	4x	Clean the drill hole: Blow out the drill hole four times, with oil free compressed air ($p \ge 6$ bar) In uncracked concrete the use of the manual blow-out pump ABG is possible (Installation parameters: $d_0 < 18$ mm and $h_{ef} < 10d$)					
Go	to step 6 (pre-positioned ins	stallation Annex B 15 or push through installation Annex B	16)				
Drillin	g and cleaning the hole	(hammer drilling with hollow drill bit)					
1	Ī	Check a suitable hollow drill (see table B2.1) for correct operation of the dust extraction					
2		Use a suitable dust extraction system, e.g. fischer FVC 3 a comparable dust extraction system with equivalent per Drill the hole with hollow drill bit. The dust extraction syst drill dust nonstop during the drilling process and must be maximum power. Nominal drill hole diameter d_0 and drill hole depth h_0 see	formance data. tem has to extract the adjusted to				
Go	to step 6 (pre-positioned ins	stallation Annex B 15 or push through installation Annex B	16)				
fische	er Superbond dynamic						
	led use ation instructions part 5; res	in capsule RSB	Annex B 13				

Instal	lation instructions pa	rt 6; resin capsule RSB	
Drilling	g and cleaning the hole	e (wet drilling with diamond drill bit)	
1		Drill the hole. Drill hole diameter d_0 and nominal drill hole depth h_0 see table B6.1	Break the drill core and remove it
2		Flush the drill hole, until clear water emerges from the d	rill hole.
3	2x	Blow out the drill hole twice, using oil-free compressed a	air (p > 6 bar)
4	2x	Brush the drill hole twice using a power drill. Corresponding brushes see table B7.3	
5	2x	Blow out the drill hole twice, using oil-free compressed a	air (p > 6 bar)
	to step 6 (pre-positioned ins	stallation Annex B 15 or push through installation Annex B	0 10)
fische	er Superbond dynamic		
	led use ation instructions part 6; res	in capsule RSB	Annex B 14

ush	through installation fise	her anchor rod RG M					
6		Insert the resin capsule through the fixture into the drill hole by hand. Suitable resin capsule RSB or RSB mini see table B7.2 .	ра	pending on the meta rt, use a suitable tting tool / adapter			
7		RG M into the capsule us	se-free metal parts. Drive the f ing suitable adapter and ham en the metal part reaches the l epth is reached.	mer drill set on rotary			
8	<u> </u>	visible in the mounting pa	ment depth is reached, excess Irt. If not, the metal part must l e must be pushed into the drill d	be pulled out directly			
9		Wait for the specified cur see table B8.1	ng time t _{cure}				
10	T _{inst}	Install the washer and nuts - without centering sleeve. Tighten the hexagon nut with torque wrench, T_{inst} see table B6.1 . Tighten lock nut manually, then use wrench to give another quarter or half turn.					
11		mortar (FIS SB or FIS SE	and fixture (annular clearance High Speed) via the fillable c nvolved in the application, the ed.	onical washer.			
fisch	er Superbond dynamic						
	ded use			Annex B 16			

		teristics under I according to		n fatigue load for FIS 1	SB / RSB;			
		Required	eviden	ice				
		Number of lo	ad cycl	es (n)				
$n \le 10^4$	10 ⁴ < n	$1 \leq 5 \cdot 10^6$		$5 \cdot 10^6 < n \le 10^8$	n > 10 ⁸			
		Tension loa	ad capa	acity				
	Characteristi	c steel fatigue re ∆N _{Rk,s,0,n}		e (zinc plated steel 8.8) N]	_			
0,75 [.] N _{Rk,s,(8.8)} .0,33		;)·10 ^{(−0,12·log(n))} Rk,s,(8.8)· 0,33	0,75·N	$I_{Rk,s,(8.8)} \cdot 10^{(-0,438-0,057 \cdot \log(n))}$)) 0,75·N _{Rk,s,(8.8)} ·0,12			
Char	acteristic steel f	atigue resistance ΔN _{Rk,s,0,n} (-	less steel R, property cl ‹N]	ass 70)			
0,75·N _{Rk,s,(R-70)} ·0,33	0,75·N _{Rk,s,(R-70)} ·	$10^{(-0,16-0,09\cdot\log(n))}$	0,75·N	Rk,s,(R-70) [.] 10 ^{(-0,469–0,043·log(†}	0,75·N _{Rk,s,(R-70)} ·0,15			
Characteristic co	mbined pull-out	fatigue resistano cracked		crete failure and pull ou te	t, in uncracked and			
	Characte		gth in u	Incracked concrete				
τ _{Rk,ucr} · 0,575	$ au_{Rk,ucr}\cdot 10$	$(-0,06 \cdot \log(n))$	τ _{Rk}	$_{, ucr} \cdot 10^{(-0, 207 - 0, 029 \cdot \log(n))}$	$\tau_{\text{Rk,ucr}} \cdot 0,35$			
	Charact	eristic bond stre Δτ _{Rk,p,cr,0,r}	-	cracked concrete 1 ²]				
τ _{Rk,cr} · 0,575	$ au_{Rk,cr}\cdot 10$	(−0,06·log(<i>n</i>))	τRI	$x_{c,cr} \cdot 10^{(-0,207-0,029\cdot\log(n))}$	τ _{Rk,cr} · 0,35			
Cha	racteristic fatigu	e resistance for	concre	te cone and concrete sp	litting			
	Characteristic c	oncrete fatigue r ΔN _{Rk,c/sp,}		ice in uncracked concre N]	te			
N _{Rk,c/sp,ucr} · 0,66	$N_{\text{Rk,c/sp,ucr}} \cdot 0,66 \qquad \qquad N_{\text{Rk,c/sp,ucr}} \cdot 1,1 \cdot n^{-0,055} \ge N_{\text{Rk,c/sp,ucr}} \cdot 0,50 \qquad \qquad N_{\text{Rk,c/sp,ucr}} \cdot 0,66 \qquad \qquad N_{\text{Rk,c/sp,ucr}} \cdot 0,6$							
	Characteristic	concrete fatigue ΔN _{Rk,c/sp.}		Ince in cracked concrete	; ;			
N _{Rk,c/sp,cr} · 0,66		$N_{Rk,c/sp,cr}\cdot 1,\!1\cdot n^{-0}$	^{.055} ≥ Ni	Rk,c/sp,cr · 0,50	N _{Rk,c/sp,cr} · 0,50			
	E	Exponents and lo	ad-trar	sfer factor				
Exponent for combine	d load							
	M12	M16		M20	M24			
$\alpha_{s} = \alpha_{sn}$ [-]	$\alpha_{s} = \alpha_{sn}$ [-] 0,5 0,7							
Load-transfer factor								
ΨFN [-]			0,	5				
NRk,s, τRk,ucr , τRk,cr NRk,c/sp,ucr , NRk,c/sp,α) ≤ 0,85 · τ _{Rk} (M20-R-70) 18				
fischer Superbon	d dynamic							
Performance Essential characteris Design method I acc		fatigue load;			Annex C 1			

Table C2.1:				0	[/] RS	ŝB;
			Required evide	ence		
			-			
$n \le 10$)4	10	$0^4 < n \le 5 \cdot 10^6$	$5 \cdot 10^6 < n \le 10^8$		n > 10 ⁸
Design method I according to TR 061Required evidenceNumber of load cycles (n)n $\leq 10^4$ $10^4 < n \leq 5 \cdot 10^6$ $5 \cdot 10^6 < n \leq 10^8$ $n > 10^8$ Shear load capacityCharacteristic steel fatigue resistance (zinc plated steel 8.8) $\Delta V_{Rk,a,(B,B)} \cdot 0,23$ $V_{Rk,a,(B,B)} \cdot 0,23$ $V_{Rk,a,(B,B)} \cdot 0,08$ $V_{Rk,a,(B,B)} \cdot 0,08$ $V_{Rk,a,(B,B)} \cdot 0,08$ V = Required evidence (dv=n,a,(B,B) \cdot 0,23 $V_{Rk,a,(B,B)} \cdot 0,23$ $V_{Rk,a,(B,B)} \cdot 0,08$ $V_{Rk,a,(B,B)} \cdot 0,08$ $V_{Rk,a,(B,B)} \cdot 0,08$ V = Required evidence (stainless steel R, property class 70) $\Delta V_{Rk,a,(B,70)} \cdot 0,31$ $V_{Rk,a,(R,70)} \cdot 10^{(-0,042-0,118 \cdot 10g(n))}$ $V_{Rk,a,(R,70)} \cdot 10^{(-0,461-0,056 \cdot 10g(n))}$ $V_{Rk,a,(R,70)} \cdot 0,12$ Characteristic concrete pry out fatigue resistance in cracked and uncracked concrete $\Delta V_{Rk,cp,0,n}$ [KN] $V_{Rk,cp} \cdot 0,574$ $V_{Rk,cp,0,n}$ [KN]Characteristic concrete edge fatigue resistance in cracked and uncracked concrete $\Delta V_{Rk,cp,0,n}$ [KN]V = Rk,cp · 0,574 $V_{Rk,cp,0,n}$ [KN]V = Reponent for combined load, steel failure $\Delta V_{Rk,c,0,n}$ [KN]M12M16M20M24 α_c [-]0,50,7Exponent for combined load, steel failure α_c [-]0,50,7Exponent for combined load, steel failure α_c [-]0,50,7<						
	Char	racteristic	-	· · · ·		
Designn $\leq 10^4$ ChaVRK,S,(8.8) \cdot 0,23Characteristic colspan="2">Characteristic colspan="2"					n))	$V_{\text{Rk},s,(8.8)}\cdot0,08$
	Characterist	ic steel fa	-		3 S 7	0)
$V_{Rk,s,(R ext{-70})}$ ·	· 0,31	VRk,s,(R-70	$10^{(-0.042-0.118 \cdot \log(n))}$	$V_{Rk,s,(R-70)} \cdot 10^{(-0,461-0,056 \cdot \log n)}$		
Chara	acteristic co	ncrete pry	out fatigue resistance	e in cracked and uncracke	d co	oncrete
			$\Delta V_{Rk,cp,0,n}$ [kN]		
$V_{Rk,cp} \cdot 0,$,574		$V_{Rk,cp}\cdot 1,\!2\cdot n^{-0,c}$	⁰⁸ ≥ V _{Rk,cp} · 0,50		V _{Rk,cp} · 0,50
Cha	racteristic co	oncrete ec	lge fatigue resistance	in cracked and uncracked	l cor	ncrete
			ΔV _{Rk,c,0,n} [kN]		
$V_{Rk,c} \cdot 0, 0$	574	$V_{Rk,c} \cdot 1, 2 \cdot n^{-0,08} \ge V_{Rk,c} \cdot 0,50$ $V_{Rk,c} \cdot 0,50$		V _{Rk,c} · 0,50		
			Exponents, load-tran	sfer factor		
Exponent for com		steel failure)			
				M24		
	nbined load, v	verification	regarding failure mode			
	tor			1,5		
	101			0.5		
	10/0050-00	20		0,0		
· ·						
VRK,c, VRK,cp Se	ee ETA-12/02	258:2020 o	r EN 1992-4:2018			
fischer Super	bond dyna	mic			Γ	
Performance					1	Annex C 2
Essential charac Design method			igue load;			

			nder tension and shear fation in the second structure in the second structure in the second second structure in the second s		
Size			M12	M16	
Tension load					
Effective embedment depth	h _{ef,min}	[mm]	95	125	
Steel failure					
Characteristic steel fatigue resistance	∆N _{Rk,s,0,} ∞	[kN]	6,1	11,3	
Exponent for combined load	α s = α sn	[-]	0,5	0,7	
Characteristic fatigue resistan in uncracked and cracked con		ed failu	ure, concrete failure and pull ou	Jt,	
Characteristic bond $\Delta \tau_{R}$	_{<,p,ucr,0,∞} [N/mm ²]		$ au_{ m Rk, ucr} \cdot 0,35$		
resistance $\Delta \tau_F$	lk,p,cr,0,∞ [N	/mm²]	$ au_{ m Rk,cr} \cdot 0,35$		
Concrete failure		-		·	
Characteristic concrete fatigue	∆N _{Rk,c,0,∞}	[-]	0,5 · N _{Rk.c} ¹⁾		
resistance	ΔN _{Rk,sp,0,∞}		0,5 · N _{Rk,sp} ¹⁾		
Exponent for combined load		[-]	1,5		
·		[-]	0,5		
Shear load	ΨFN			,	
Shear load capacity, steel failu	re without	lever	arm		
Characteristic steel fatigue resistance	∆V _{Rk,s,0,∞}	[kN]	2,7	5,0	
Exponent for combined load	$\alpha_s = \alpha_{sn}$		0,5	0,7	
Concrete pryout failure		•			
Characteristic concrete fatigue resistance	∆V _{Rk,cp,0,∞}	[kN]	0,5 · V _{Rk,cp} ¹⁾		
Concrete edge failure					
Characteristic concrete fatigue resistance	∆V _{Rk,c,0,∞}	[kN]	0,5 · V		
The value of h_{ef} (=l _f) under shear I_{f} [mm] ≥ 95 ≥ 125		≥ 125			
Effective outside diameter of the anchor	d _{nom}	[mm]	12	16	
Exponent for combined load	α_{c}		1,5	5	
Load-transfer factor	ΨFV	[-]	0,5	5	

¹⁾ N_{Rk,c}, N_{Rk,sp}, V_{Rk,c} and V_{Rk,cp} – Essential characteristics for concrete failure under static and quasi static load according to ETA-12/0258:2020 or EN 1992-4:2018.

fischer Superbond dynamic

Performance

Essential characteristics under tension / shear fatigue load; Design method II according to TR 061; zinc plated steel 8.8

Annex C 3

0!						-	
Size			M12	M16	M20	M24	
Tension load		[]		105	470	000	
Effective embedment depth	h _{ef,min}	[mm]	95	125	170	220	
Steel failure							
Characteristic steel fatigue resistance	∆N _{Rk,s,0,} ∞	[kN]	6,6	12,4	19,4	27,8	
Exponent for combined load	α s = α sn	[-]	0,5		0,7		
Characteristic fatigue resistan in uncracked and cracked con		ed failu	ire, concrete f	ailure and pull c	out,		
Characteristic bond $\Delta \tau_{RI}$	<,p,ucr,0,∞ [ľ	J/mm²]		TRk.ucr	· 0,35		
		J/mm²]	τ _{rk,cr} · 0,35				
Concrete failure							
Characteristic concrete fatigue	∆N _{Rk,c,0,} ∞	[-]	0,5 · N _{Rk,c} ¹⁾				
resistance	$\Delta N_{Rk,sp,0,\bullet}$	。 [-]	0,5 · N _{Rk,sp} ¹⁾				
Exponent for combined load	t for combined load α_c [-]		1,5				
Load-transfer factor ψ_{FN} [-]		[-]		0	,5		
Shear load							
Shear load capacity, steel failu	ire withou	t lever a	arm			1	
Characteristic steel fatigue resistance	∆V _{Rk,s,0,∞}	[kN]	3,6	6,6	10,3	14,9	
Exponent for combined load	$\alpha_s = \alpha_{sn}$		0,5 0,7				
Concrete pryout failure							
Characteristic concrete fatigue resistance	∆V _{Rk,cp,0,} ⊶	• [kN]	0,5 · V _{Rk,cp} ¹⁾				
Concrete edge failure							
Characteristic concrete fatigue resistance	∆V _{Rk,c,0,∞}	[kN]	0,5 · V _{Rk,c} ¹⁾				
The value of h _{ef} (=l _f) under shear load	- If	[mm]	≥ 95	≥ 125	≥ 160	≥ 190	
Effective outside diameter of the anchor	d _{nom}	[mm]	12	16	20	24	
Exponent for combined load	α_{c}			1	,5		
Load-transfer factor	ΨFV	[-]		0	,5		

¹⁾ N_{Rk,c}, N_{Rk,sp}, V_{Rk,c} and V_{Rk,cp} – Essential characteristics for concrete failure under static and quasi static load according to ETA-12/0258:2020 or EN 1992-4:2018, for τ_{Rk} (M24-R-70) ≤ 0,85 · τ_{Rk} (M20-R-70)

fischer Superbond dynamic

Performance

Essential characteristics under tension / shear fatigue load; Design method II according to TR 061; stainless steel R property class 70 Annex C 4