

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0899 of 1 March 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Rebar connection with fischer T-BOND PRO.1 or FIS C700 HP PRO.1

System for post installed rebar connection with mortar

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

20 pages including 3 annexes which form an integral part of this assessment

EAD 330087-01-0601, Edition 06/2021

ETA-17/0899 issued on 27 October 2017

European Technical Assessment ETA-17/0899

Page 2 of 20 | 1 March 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z21285.22 8.06.01-351/21

European Technical Assessment ETA-17/0899

Page 3 of 20 | 1 March 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Rebar connection with fischer T-BOND PRO.1 or FIS C700 HP PRO.1" in accordance with the regulations for reinforced concrete construction. Reinforcing bars with a diameter ϕ from 8 to 20 mm Annex A and the fischer injection mortar T-BOND PRO.1 or FIS C700 HP PRO.1 are used for the post-installed rebar connection. The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded reinforcing bar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1
Characteristic resistance under seismic action	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 2

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system(s) to be applied is (are): 1

Z21285.22 8.06.01-351/21

European Technical Assessment ETA-17/0899

Page 4 of 20 | 1 March 2022

English translation prepared by DIBt

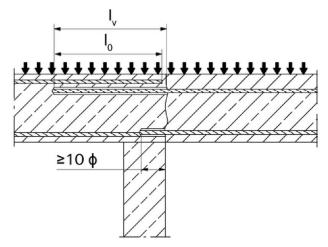
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

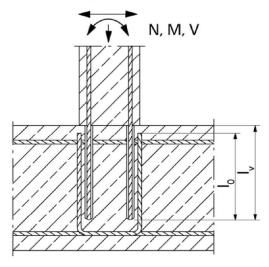
Issued in Berlin on 1 March 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section

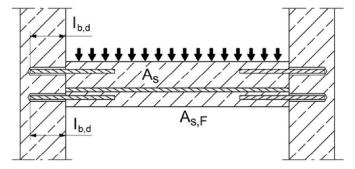
beglaubigt: Baderschneider


Z21285.22 8.06.01-351/21

Installation conditions and application examples reinforcing bars, part 1


Figure A1.1:

Overlap joint with existing reinforcement for rebar connections of slabs and beams


Figure A1.2:

Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed

Figure A1.3:

End anchoring of slabs or beams (e.g. designed as simply supported)

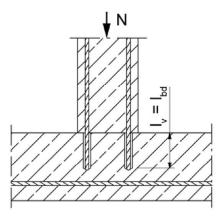
Figures not to scale

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1

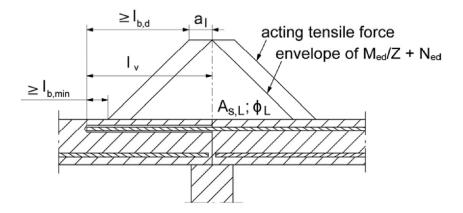
Product description

Installation conditions and application examples reinforcing bars, part 1

Annex A 1


Z21304.22

Installation conditions and application examples reinforcing bars, part 2


Figure A2.1:

Rebar connection for stressed primarily in compression

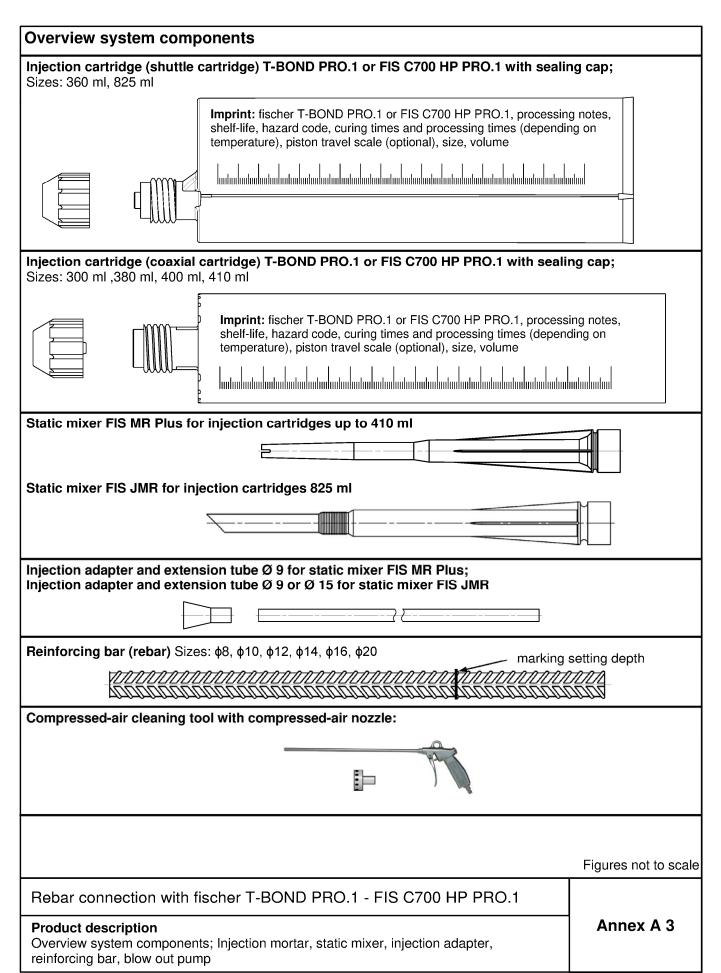
Figure A2.2:

Anchoring of reinforcement to cover the enveloped line of acting tensile force in the bending member

Note to figure A1.1 to A1.3 and figure A2.1 to A2.2

In the figures no traverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1: 2004+AC:2010.

Preparing of joints according to Annex B 2


Figures not to scale

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1

Product description
Installation conditions and application examples reinforcing bars, part 2

Annex A 2

Properties of reinforcing bars (rebar)

Figure A4.1:

- The minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- The maximum outer rebar diameter over the rips shall be:
 - The nominal diameter of the rip ϕ + 2 * h (h ≤ 0,07 * ϕ)
 - (φ: Nominal diameter of the bar; h_{rib} = height of the bar)

Table A4.1: Installation conditions for rebars

Nominal diameter of the bar		ф	8	1)	10) ¹⁾	12	2 ¹⁾	14	16	20
Nominal drill hole diameter	d₀		10	12	12	14	14	16	18	20	25
Drill hole depth	h ₀	$h_0 = I_v$									
Effective embedment depth	Ι _ν	[mm]	[mm] acc. to static calculation								
Minimum thickness of concrete member	h _{min}				l _v + 30 ≥ 100				I	_v + 2d ₀	

¹⁾ Both drill hole diameters can be used

Table A4.2: Materials of rebars

Designation	Reinforcing bar (rebar)
Reinforcing bar	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Figures not to scale

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1

Product description
Properties and materials of reinforcing bars (rebar)

Annex A 4

Specifications of intended use part 1 Overview use and performance categories Table B1.1: Anchorages subject to T-BOND PRO.1 or FIS C700 HP PRO.1 with ... Reinforcing bar Hammer drilling with standard drill all sizes bit Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Nominal drill bit diameter (do) 12 mm to 25 mm Expert", Bosch "Speed Clean", Hilti "TE-CD, TE-YD") uncracked Tables: concrete Static and quasi C1.1 all sizes C1.2 static load, in cracked C1.3 concrete Installation temperature $T_{i,min} = 0$ °C to $T_{i,max} = +40$ °C Resistance to fire all sizes Annex C2 Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1 Annex B 1 Intended use Specifications part 1

Z21304.22

Specifications of intended use part 2

Anchorages subject to:

- Static and quasi-static loads: reinforcing bar (rebar) size 8 mm to 20 mm
- Fire exposure

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016
- Concrete strength classes C20/25 to C35/45 according to EN 206:2013+A1:2016
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+A1:2016
- · Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1 :2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature Range:

-40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

Installation temperature:

0 °C to +40 °C

Design:

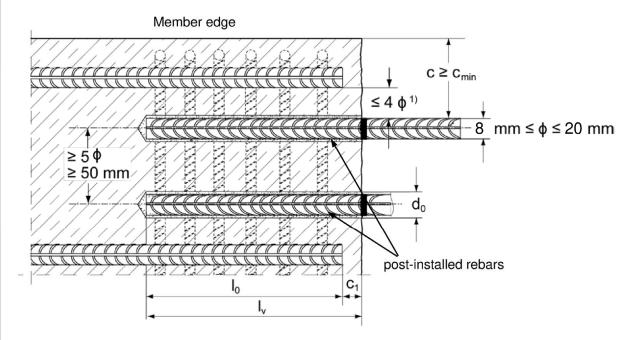
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010; EN 1992-1-2:2004+AC:2008 and Annex B 3.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- Dry or wet concrete
- Installation in water filled holes is not allowed
- · Hole drilling by hammer drill, hollow drill or compressed air drill mode
- · Overhead installation allowed
- The installation of post-installed rebar shall be done only by suitable trained installer and under Supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for Supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1

Intended use
Specifications part 2


Annex B 2

General construction rules for post-installed rebars

Figure B3.1:

- · Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

- $^{1)}$ If the clear distance between lapped bars exceeds 4 φ then the lap length shall be increased by the difference between the clear bar distance and 4 φ
 - c concrete cover of post-installed rebar
 - c₁ concrete cover at end-face of existing rebar
 - c_{min} minimum concrete cover according to table B5.1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 - φ nominal diameter of reinforcing bar
 - lo lap length, according to EN 1992-1-1:2004+AC:2010
 - I_v effective embedment depth, $\geq I_0 + c_1$
 - d₀ nominal drill bit diameter, see Annex B 5

Figures not to scale

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1

Intended use
General construction rules for post-installed rebars

Annex B 3

English translation prepared by DIBt

Deutsches
Institut
für
Bautechnik

Table B4.1:	Minimum concrete cover c _{min} 1) depending of the drilling method and the
	drilling tolerance

	drilling tolerand	<u> </u>		
Drilling method	nominal diameter of reinforcing bar \(\phi \) [mm]	Without drilling aid [mm]	Minimum concrete cove With dril	er c _{min} ling aid [mm]
Hammer drilling with standard drill bit	≤ 20	30 mm + 0,06 l _v ≥ 2 φ	30 mm + 0,02 l _v ≥ 2 φ	
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert", Bosch "Speed Clean", Hilti "TE-CD, TE- YD")	≤ 20	30 mm + 0,06 l _ν ≥ 2 φ	30 mm + 0,02 l _v ≥ 2 φ	Drilling aid
Compressed air drilling	≤ 20	50 mm + 0,08 l _v	50 mm + 0,02 l _√	

¹⁾ See Annex B3, figure B3.1

Note: The minimum concrete cover as specified in EN 1992-1-1:2004+AC:2010 must be observed.

Table B4.2: Dispensers and cartride sizes corresponding to maximum embedment depth $I_{v,max}$

reinforcing bars (rebar)	Manual dispenser	Accu and pneumatic dispenser (small)	Accu and pneumatic dispenser (large)
	<	500 ml	> 500 ml
φ [mm]	I _{v,max} / I	e,ges,max [mm]	I _{v,max} / I _{e,ges,max} [mm]
8		1000	
10		1000	
12	1000	1200	1800
14		1200	1800
16		1500	
20	700	1300	

Figures not to scale

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1

Intended use
Minimum concrete cover;
dispenser and cartridge sizes corresponding to maximum embedment depth

Table B5.1: Working times twork and curing times tcure					
Temperature in the anchorage base [°C]	Maximum working time ¹⁾ twork T-BOND PRO.1 or FIS C700 HP PRO.1	Minimum curing time ²⁾ t _{cure} T-BOND PRO.1 or FIS C700 HP PRO.1			
>±0 to +5	13 min ³⁾	3 h			
>+5 to +10	9 min ³⁾	90 min			
>+10 to +20	5 min	60 min			
>+20 to +30	4 min	45 min			
>+30 to +40	2 min ⁴⁾	35 min			

¹⁾ Maximum time from the beginning of the injection to rebar setting and positioning

Table B5.2: Installation tools for drilling and cleaning the bore hole and injection of the mortar

reinforcing bars (rebar)		Drilling and cleaning			Inj	ection
	Nominal drill bit diameter	Diameter of cutting edge	Steel brush diameter	Diameter of cleaning nozzle	Diameter of extension tube	Injection adapter
φ [mm]	d₀ [mm]	d _{cut} [mm]	d₀ [mm]	[mm]	[mm]	[colour]
8 ¹⁾	10	≤ 10,50	11,0			
87	12	≤ 12,50	12,5			nature
101)	12	≤ 12,50	12,5	11	9	Hatule
107	14	≤ 14,50	15			blue
12 ¹⁾	14	≤ 14,50	15]	blue
12"	16	≤ 16,50	17	15		red
14	18	≤ 18,50	19			yellow
16	20	≤ 20,55	21,5	19	9 or 15	green
20	25	≤ 25,55	26,5	19		black

¹⁾ Both drill bit diameters can be used

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1

Intended use
Working times and curing times;
Installation tools for drilling and cleaning the bore hole and injection of the mortar

²⁾ For wet concrete the curing time must be doubled

³⁾ If the temperature in the concrete falls below 10°C the cartridge has to be warmed up to +15°C.

⁴⁾ If the temperature in the concrete exceeds 30 °C the cartridge has to be cooled down to +15°C up to 20°C

Safety regulations

Review the Safety Data Sheet (SDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with mortar T-BOND PRO.1 or FIS C700 HP PRO.1.

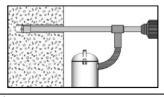
Important: Observe the instructions for use provided with each cartridge.

Installation instruction part 1; Installation with T-BOND PRO.1 or FIS C700 HP PRO.1

Hole drilling

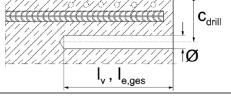
Note: Before drilling, remove carbonized concrete; clean contact areas (see Annex B 2) In case of aborted drill holes the drill hole shall be filled with mortar.

Drill the hole to the required embedment depth using a hammer drill with carbide drill bit set in rotation hammer mode or a pneumatic drill. Drill bit sizes see table B5.2.


Hammer drilling with hollow drill bit

Hammer drilling or compressed air drilling

1b


2

1a

Drill the hole to the required embedment depth using a hammer drill with hollow drill bit in rotation hammer mode. Dust extraction conditions see drill hole cleaning annex B 7.

Drill bit sizes see table B5.2.

Measure and control concrete cover c

 $(C_{drill} = C + \emptyset / 2)$

Drill parallel to surface edge and to existing rebar. Where applicable use drilling aid.

For holes $I_V > 20$ cm use drilling aid. Three different options can be considered:

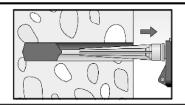
- A) drilling aid
- B) Slat or spirit level
- C) Visual check

Minimum concrete cover cmin see table B4.1

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1	
Intended use Safety regulations; Installation instruction part 1, hole drilling	Annex B 6

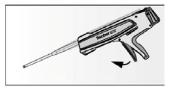
Installation instruction part 2; Installation with T-BOND PRO.1 or FIS C700 HP PRO.1 Drill hole cleaning COMMUNITY . Hammer or compressed air drilling **Blowing** three times from the back of the hole with the appropriate nozzle (oil-free compressed air ≥ 6 bar) until return air stream is free of noticeable dust. Personal protective equipment must be used (see regulations Annex B 6). Brushing (with power drill) three times with the suitable brush size (brush diameter > drill hole diameter). Switch on the power drill after inserting the 3a steel brush into the drill hole. The brush must produce a noticeable resistance when it is inserted into the drill hole. If this is not the case, use a new or larger brush. If necessary, check with brush inspection template. Suitable brushes see table B5.2. **Blowing** three times from the back of the hole with the appropriate nozzle (oil-free compressed air ≥ 6 bar) until return air stream is free of noticeable dust. Personal protective equipment must be used. (see regulations Annex B 6). Hammer drilling with hollow drill bit Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with 3b equivalent performance data. Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. No further drill hole cleaning necessary

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1	
Intended use Installation instruction part 2, drill hole cleaning	Annex B 7

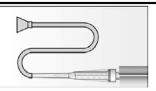

Installation instruction part 3; Installation with T-BOND PRO.1 or FIS C700 HP PRO.1 reinforcing bars (rebar) and cartridge preparation Before use, make asure that the rebar is dry and free of oil or other residue. Mark the embedment depth I_v (e.g. with tape) 4 Insert rebar in borehole, to verify drill hole depth and setting depth I_v resp. I_{e,ges} Twist off the sealing cap Twist on the static mixer (the spiral in the static mixer must be 5 clearly visible). Place the cartridge into a suitable dispenser. 6 Press out approximately 10 cm of mortar until the resin is 7 permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed.

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1	
Intended use Installation instruction part 3, reinforcing bars (rebar) and cartridge preparation	Annex B 8

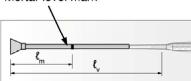
Installation instruction part 4; Installation with T-BOND PRO.1 or FIS C700 HP PRO.1


Injection of the mortar; borehole depth ≤ 250 mm

Inject the mortar from the back of the hole towards the front and slowly withdraw the static mixer step by step with each trigger pull. Avoid bubbles.


Fill holes approximately 2/3 full, to ensure that the annular gap between the rebar and the concrete will be completely filled with adhesive over the entire embedment length.

8a

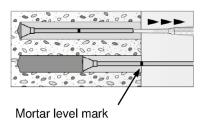

After injecting, release the dispenser. This will prevent further mortar discharge from the static mixer.

Injection of the mortar; borehole depth > 250 mm

Assemble static mixer, extension tube and appropriate injection adapter (see table B5.2)

Mortar level mark

Mark the required mortar level I_m and embedment depth I_v resp. $I_{e,ges}$ with tape or marker on the injection extension tube.


a) Estimation:

$$l_m = \frac{1}{3} * l_v resp. l_m = \frac{1}{3} * l_{e,ges}[mm]$$

b) Precise equation for optimum mortar volume:

$$l_m = l_v \, resp. \, l_{e,ges} \, \left((1,2 * \frac{d_s^2}{d_o^2} - 0,2) \right)$$
[mm]

8b

Insert injection adapter to back of the hole. Begin injection allowing the pressure of the injected adhesive mortar to push the injection adapter towards the front of the hole. Do not actively pull out!

Fill holes approximately 2/3 full, to ensure that the annular gap between the rebar and the concrete will be completely filled with adhesive over the embedment length.

When using an injection adapter continue injection until the mortar level mark I_m becomes visible.

Maximum embedment depth see table B4.2

After injecting, release the dispenser. This will prevent further mortar discharge from the static mixer.

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1

Intended use

Installation instruction part 4, mortar injection

Annex B 9

Electronic copy of the ETA by DIBt: ETA-17/0899

Installation instruction part 5; Installation with T-BOND PRO.1 or FIS C700 HP PRO.1 Insert rebar Insert the rebar slowly twisted into the borehole until the embedment mark is 9 reached. For overhead installation, support the rebar and secure it from falling till mortar 10 started to harden, e.g. using wedges. After installing the rebar the annular gap must be completely filled with mortar. Proper installation Desired embedment depth is reached lv: 11 embedment mark at concrete surface Excess mortar flows out of the borehole after the rebar has been fully inserted up to the embedment mark. Observe the working time "twork" (see table B5.1), which varies according to temperature of base material. Minor adjustments to the rebar position may be performed during the working time 12 Full load may be applied only after the curing time "tcure" has elapsed (see table B 5.1) Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1 Annex B 10 Intended use Installation instruction part 5, insert rebar

Minimum anchorage length and minimum lap length

The minimum anchorage length lb,min and the minimum lap length lo,min according to EN 1992-1-1:2004+AC:2010 shall be multiply by the relevant amplification factor α_{lb} according to table C1.1.

Amplification factor α_{lb} related to concrete strength class and drilling method Table C1.1:

Concrete strength class	Drilling method	Amplification factor α _{lb}
	Hammer drilling with standard drill bit	1,0
C20/25 to C35/45	Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert", Bosch "Speed Clean"; Hilti "TE-CD, TE-YD")	1,0
	Compressed air drilling	1,0

Table C1.2: Bond efficiency factor kb for hammer drilling, hollow drilling and compressed air drilling

Hammer drilling	, hollow	drilling and	compressed	air drilling
-----------------	----------	--------------	------------	--------------

Pohor		Bond efficie	ncy factor k₀	
Rebar	Concrete strength class			
φ [mm]	C20/25	C25/30	C30/37	C35/45
8 to 20	1,00			

Table C1.3: Design values of the bond strength fbd,PIR in N/mm² for hammer drilling, hollow drilling, compressed air drilling and for good bond conditions

 $f_{bd,PIR} = k_b \cdot f_{bd}$

Design value of the bond strength in N/mm² considering the concrete strength classes and the rebar diameter for good bond condition (for all other bond conditions multiply the values by $\eta_1 = 0.7$) and recommended partial factor γ_c = 1,5 according to EN 1992-1-1: 2004+AC:2010

Bond efficiency factor according to table C1.2

Hammer drilling, hollow drilling and compressed air drilling			
		bond strength fbd,PIR [N	1/

	bond strength fbd,PIR [N/mm²]			
Rebar	Concrete strength class			
φ [mm]	C20/25	C25/30	C30/37	C35/45
8 to 20	2,3	2,7	3,0	3,4

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1	
Performance	Annex C 1
Amplification factor α _{lb} , bond efficiency factor k _b ,	
design values of the bond strength fbd,PIR	

Bond strength f_{bd,fi} at increased temperature for concrete strength classes C20/25 to C35/45 (all drilling methods)

The bond strength f_{bd,fi} at increased temperature has to be calculated by the following equation:

$$f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \frac{\gamma_c}{\gamma_{m,fi}}$$

If:
$$\theta > 74$$
 °C
$$k_{fi}(\theta) = \frac{24,308 \cdot e^{-0,012 \cdot \theta}}{f_{bd,PIR} \cdot 4,3} \le 1.0$$

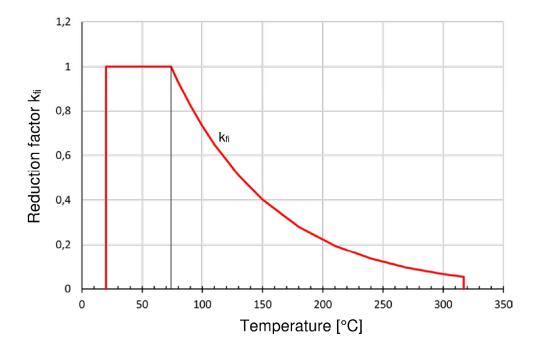
If:
$$\theta > \theta_{\text{max}} (317 \, ^{\circ}\text{C})$$
 $k_{\text{fi}} (\theta) = 0$

f_{bd,fi} = Bond strength at increased temperature in N/mm²

(θ) = Temperature in °C in the mortar layer

 $k_{fi}(\theta)$ = Reduction factor at increased temperature

f_{bd,PIR} = Design value of the bond strength in N/mm² in cold condition according to table C1.3 considering the concrete strength classes, the rebar diameter, the drilling method and


the bond conditions according to EN 1992-1-1:2004+AC:2010

 $\gamma_{\rm C}$ = 1,5 recommended partial factor according to EN 1992-1-1:2004+AC:2010

 $\gamma_{m,fi}$ = 1,0 recommended partial factor

For evidence at increased temperature the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent bond strength fbd,fi.

Figure C3.1: Example graph of reduction factor k_{fi} (θ) for concrete class C20/25 for good bond conditions

Rebar connection with fischer T-BOND PRO.1 - FIS C700 HP PRO.1

Performance

Bond strength fbd,fi at increased temperature

Annex C 2