

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0786 of 13 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer injection system FIS PLUS for use in masonry

Injection system for use in masonry

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

26 pages including 3 annexes which form an integral part of this assessment

ETAG 029, April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0786 English translation prepared by DIBt

Page 2 of 26 | 13 December 2017

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 26 | 13 December 2017

Specific Part

1 Technical description of the product

The fischer injectionsystem FIS PLUS for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with fischer injection mortar FIS PLUS, FIS PLUS Low Speed and FIS PLUS High Speed, a perforated sieve sleeve and an anchor rod with hexagon nut and washer or an internal threaded rod. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1 – C 4
Characteristic resistance for bending moments	See Annex C 5
Displacements under shear and tension loads	See Annex C 5
Reduction Factor for job site tests (β -Factor)	See Annex C 6
Edge distances and spacing	See Annex C 7 – C8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

European Technical Assessment

ETA-17/0786

Page 4 of 26 | 13 December 2017

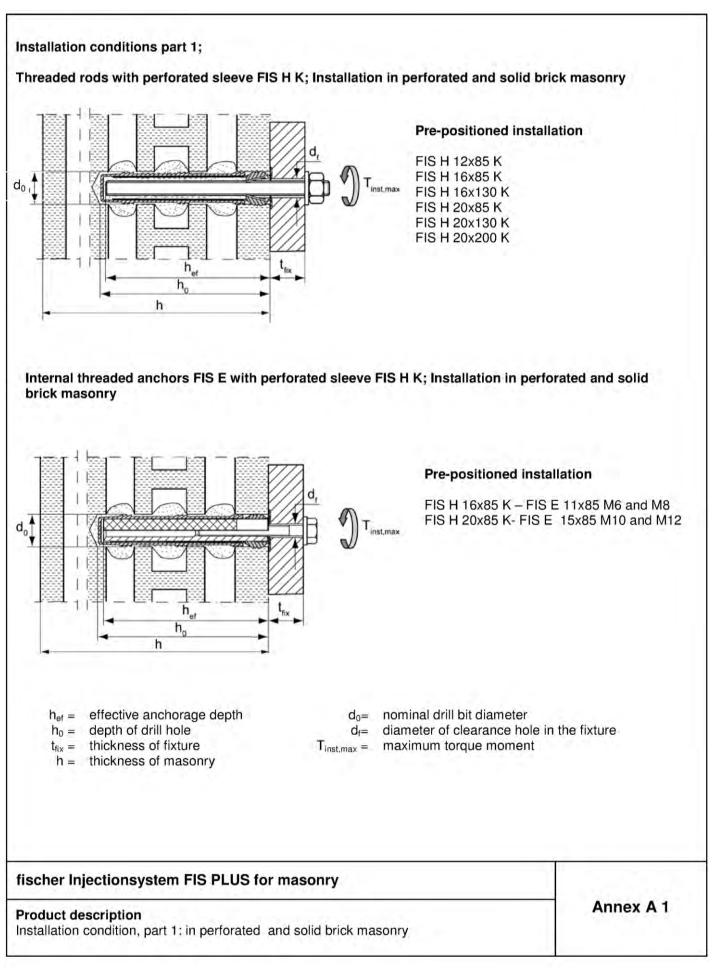
English translation prepared by DIBt

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

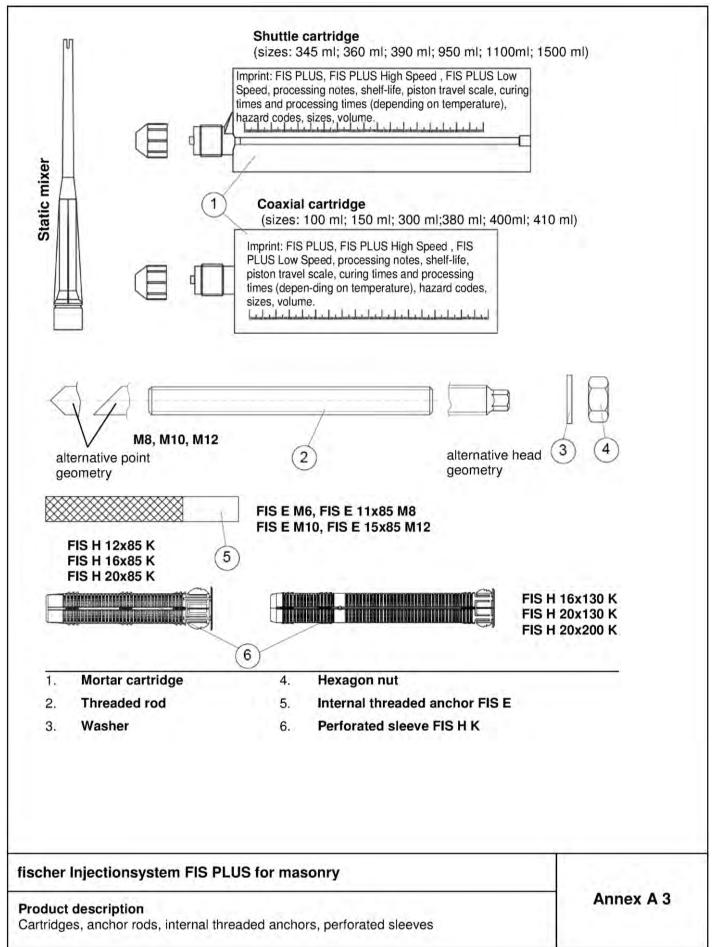
In accordance with guideline for European technical approval ETAG 029, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/177/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 December 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider



Page 7 of European Technical Assessment ETA-17/0786 of 13 December 2017

English translation prepared by DIBt

electronic copy of the eta by dibt: eta-17/0786

Table A1: Materials

Part	Designation		Material	
1	Mortar cartridge	I	mortar, hardener; filler	
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C
2	Threaded rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanized \geq 40 µm EN ISO 10684:2004 f _{uk} \leq 1000 N/mm ² A ₅ > 8 % fracture elongation	$\begin{array}{c} \mbox{Property class} \\ 50, 70 \mbox{ or } 80 \\ \mbox{EN ISO } 3506\mbox{-}1:2009 \\ 1.4401; 1.4404; \\ 1.4578; 1.4571; \\ 1.4439; 1.4362; \\ 1.4062, 1.4662, \\ 1.4462 \\ \mbox{EN } 10088\mbox{-}1:2014 \\ f_{uk} \leq 1000 \mbox{ N/mm}^2 \\ A_5 > 8 \mbox{\%} \end{array}$	$\begin{array}{c} \mbox{Property class} \\ 50 \mbox{ or } 80 \\ \mbox{EN ISO } 3506\mbox{-}1\mbox{:}2009 \\ \mbox{or property class } 70 \\ \mbox{with } f_{yk}\mbox{= } 560 \mbox{ N/mm}^2 \\ \mbox{1.4565; } 1\mbox{.4529} \\ \mbox{EN } 10088\mbox{-}1\mbox{:}2014 \\ \mbox{f}_{uk} \leq 1000 \mbox{ N/mm}^2 \\ A_5 > 8 \mbox{ \%} \\ \mbox{fracture elongation} \end{array}$
	Maalaan	-inc. alated > 5 years	fracture elongation	1 4505-1 4500
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanized ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanized ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	Internal threaded anchor FIS E	Property class 5.8 EN 10277-1:2008-06 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
	Screw or threaded rod for internal threaded anchor FIS E	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Perforated sleeve FIS H K		PP / PE	

fischer Injectionsystem FIS PLUS for masonry

Product description Materials

Annex A 4

Specifications of intended use part 1

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Solid brick masonry (Use category b) and autoclaved aerated concrete (Use category d), acc. to Annex B8.
 Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength of the masonry unit.
- · Hollow brick masonry (use category c), according to Annex B8
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010
- For other bricks in solid masonry, hollow or perforated masonry and autoclaved aerated concrete, the characteristic resistance of the anchor may be determined by job site tests according to ETAG 029, Annex B under consideration of the β-factor according to Annex C6, Table C4

Temperature Range:

• From - 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar)
- Structures subject to dry internal conditions exist
 (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

fischer Injectionsystem FIS PLUS for masonry

Intended Use Specifications part 1

Annex B 1

Specifications of intended use part 2

Design:

 The anchorages have to be designed in accordance with the ETAG 029, Annex C, Design method A under the responsibility of an engineer experienced in anchorages and masonry work
 Applies to all bricks, if no other values are specified:

 $N_{Rk} = N_{Rk,s} = N_{Rk,p} = N_{Rk,b} = N_{Rk,pb}$

 $V_{Rk} = V_{Rk,s} = V_{Rk,b} = V_{Rk,c} = V_{Rk,pb}$

• Verifiable calculation notes and drawings have to be prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings

Installation:

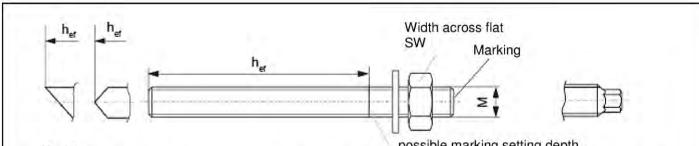
- · Category d/d: -Installation and use in dry structures
- · Category w/w: -Installation and use in dry and wet structures
- · Hole drilling by hammer drill mode
- · In case of aborted hole: The hole shall be filled with mortar
- Bridging of unbearing layer (e.g. plaster) see Annex B 4 (Table B1.3)
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or threaded rods (including nut and washer) must comply with the appropriate material and property class of the fischer internal threaded anchor FIS E
- minimum curing time see Annex B5. Table B3
- Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

Material dimensions and mechanical properties of the metal parts according to the specifications are given in Annex A4, Table A1

Conformation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents shall be stored

Marking of the threaded rod with the envisage embedment depth. This may be done by the manufacturer of the rod **or** by a person on job site

fischer Injectionsystem FIS PLUS for masonry


Intended Use Specifications part 2

Annex B 2

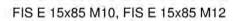
Page 11 of European Technical Assessment ETA-17/0786 of 13 December 2017

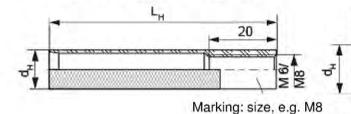
English translation prepared by DIBt

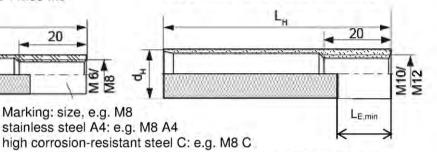
Marking:

possible marking setting depth

Property class (p.c.) 8.8, Stainless steel A4, p.c. 80 or high corrosion-resistant steel C, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel C, property class 50: ••


ble B1.1: Installation parameters f	or threaded rod w	ithout	perfo	rated sl	eeve
Size	and the bar is the set		M8	M10	M12
Nominal drill hole diameter	d _{nom} =d ₀	[mm]	10	12	14


	anom-00	from 1	10		1.1
	SW	[mm]	13	17	19
oth ¹⁾	h _{ef.min}	[mm]		50	
Depth of drill hole $h_0 = h_{ef}$		[mm]	h-30 and ≤ 200 mm		
oth AAC	h _{ef.min}	mm]		100	
JITAAC	h _{ef,max}	[mm]		120	
ent	T _{inst,max}	[Nm]		10	
r autoclaved aerated concrete	T _{inst.max}	[Nm]	1		2
Pre-position anchorage	d₁≤	[mm]	9	12	14
Push through anchorage	d _f ≤	[mm]	11	14	16
	oth ¹⁾ Def Doth AAC ant r autoclaved aerated concrete Pre-position anchorage	$\begin{array}{c c} & & & \\ & & \\ \hline SW \\ $	$\begin{array}{c c} & SW & [mm] \\ SW & [mm] \\ \hline \\ \text{oth}^{1)} & h_{ef,min} & [mm] \\ \hline \\ h_{ef} & h_{ef,max} & [mm] \\ \hline \\ \text{oth} AAC & h_{ef,min} & mm] \\ \hline \\ h_{ef,max} & [mm] \\ \hline \\ h_{ef,max} & [mm] \\ \hline \\ h_{ef,max} & [mm] \\ \hline \\ h_{ef,max} & [Nm] \\ \hline \\ nt & T_{inst,max} & [Nm] \\ \hline \\ r \text{ autoclaved aerated concrete} & T_{inst,max} & [Nm] \\ \hline \\ Pre-position anchorage & d_{f} \leq [mm] \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


¹⁾ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible.

fischer internal threaded anchor FIS E

FIS E 11x85 M6, FIS E 11x85 M8

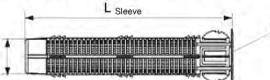
Table B1.2: Installation parameters for internal threaded anchor FIS E without perforated sleeve

Size FIS E			M6	M8	M10	M12
diameter of internal threaded anchor	d _H	[mm]	1	1	d	5
Nominal drill hole diameter	d _{nom} =d ₀	[mm]	1	4	1	8
Depth of drill hole	ho	[mm]			85	
Effective anchorage depth	L _H =h _{ef}	[mm]			85	
Maximum torque moment	T _{inst, max}	[Nm]	4		10	
Max. torque moment for autoclaved aerated concrete	T _{inst, max}	[Nm]		0 11	1	2
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14
Screw-in depth	L _{E,min}	[mm]	6	8	10	12

fischer Injectionsystem FIS PLUS for masonry

Intended Use

Installation parameters, part 1


Perforated sleeves FIS H 12x85; 16x85; 16x130; 20x85; 20x130; 20x200 K

Sleeve

0

Marking:size D_{Sleeve} x L_{Sleeve} e.g. 16x85

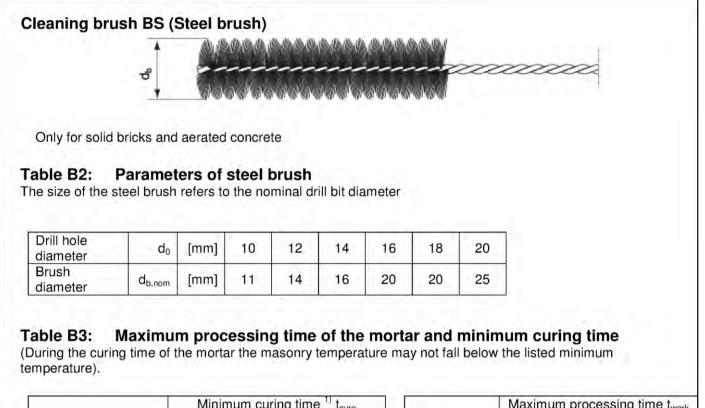

Marking

Table B1.3: Installation parameters (threaded rod and internal threaded anchor with perforated sleeve; only pre-positioned anchorage)

Size FIS HK			12x85	16x85	16x130 ²⁾	20x85	20x130 ²⁾	20x200 ²⁾
Nominal drill hole diameter ($d_0 = D_{Sleeve}$)	d _{nom} =d ₀	[mm]	12		16		20	
Depth of drill hole	ho	[mm]	90	90	135	90	135	205
Effective anchorage	h _{ef,min}	[mm]	85	85	110	85	110	180
depth ¹⁾	h _{ef,max}	[mm]	85	85	130	85	130	200
Size of threaded rod		[-]	M8	M8	, M10		M12	
Size of internal threaded anchor		[-]	است	FIS E 11x85 M6/M8		FIS E 15x85 M10/M12		
Maximum torque moment threaded rod and internal threaded anchor	T _{inst,max}	[mm]		1.4.3		2		

Intended Use Installation parameters, part 2. Annex B 4

T			Minim	um curing tin [minutes]	ne ¹⁾ t _{cure}	System-	Maximum	processing [minutes]	g time t _{work}
		ure at base]	FIS PLUS High Speed ³⁾	FIS PLUS ²⁾	FIS PLUS Low Speed ²⁾	temperature (mortar) [°C]	FIS PLUS High Speed ³⁾	FIS PLUS ²⁾	FIS PLUS Low Speed ²⁾
-10	to	-5	12 hours			1			
>-5	to	±0	3 hours	24 hours		±0	5	14 <u>-</u>	-
>±0	to	+5	90	3 hours	6 hours	+5	5	13	20
>+5	to	+10	45	90	3 hours	+10	3	9	20
>+10	to	+20	30	60	2 hours	+20	1	5	10
>+20	to	+30		45	60	+30		4	6
>+30	to	+40		35	30	+40		2	4

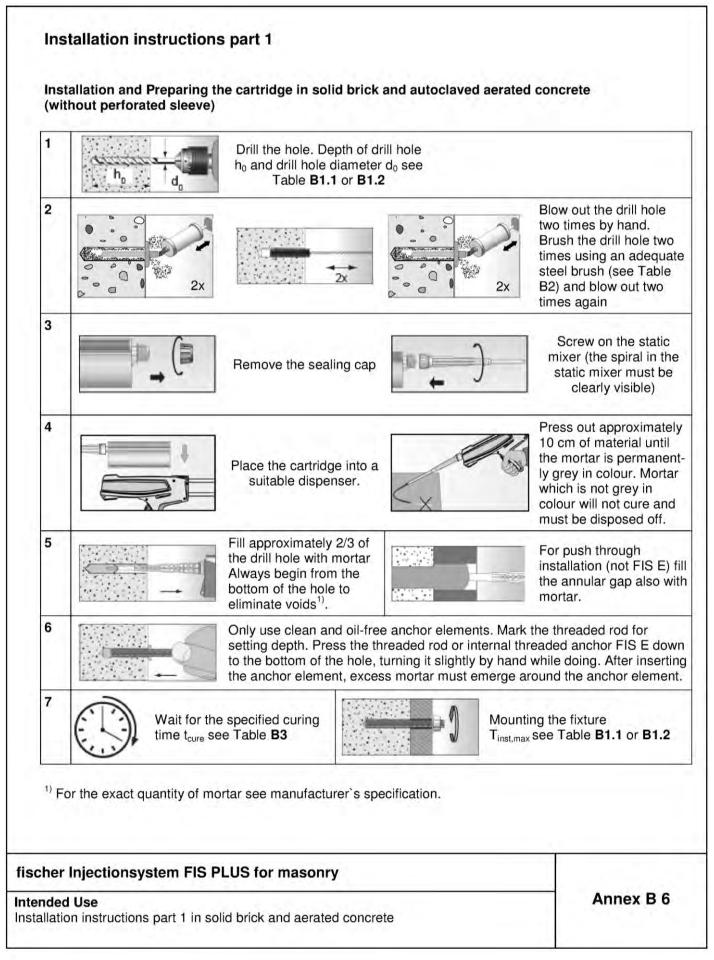
¹⁾ For wet bricks the curing time must be doubled

²⁾ Minimum cartridge temperature +5°C

³⁾ Minimum cartridge temperature ±0°C

fischer Injectionsystem FIS PLUS for masonry

Intended Use


Steel brush Processing times and curing times

electronic copy of the eta by dibt: eta-17/0786

Page 14 of European Technical Assessment ETA-17/0786 of 13 December 2017

English translation prepared by DIBt

1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ole diameter	bricks or soli	perforated sleeves in solid d areas of hollow bricks, also le by blowing out and
2	Remove the sealin cap)	Screw on the static mixer (the spiral in the static mixer must be clearly visible)
3	Place the cartridge into a suitable dispenser			Press out approximately 10 cm of material until the mortar is permanent-ly grey in colour. Mortar which is not grey in colour will not cure and must be disposed off
1	Insert the perforated sleeve flush with the surface of the masonry or plaste			Fill the perforated sleeve completely with mortar beginning from the bottom of the hole ¹⁾ .
5		Only use the threa threaded by hand setting de	ded rod for set I rod or the inte using light turn	ree anchor elements. Mark ting depth. Insert the rnal threaded anchor FIS E ing motions until reaching the hreaded rod) or flush with the ed anchor).
3	Wait for the specified curing tin t _{cure} see Table B3	ne		Mounting the fixture. T _{inst,max} see Table B1.3
) F	or the exact quantity of mortar see manufactur	er`s specifica	tion.	

fischer Injectionsystem FIS PLUS for masonry

Intended Use

Installation instructions part 2 in hollow brick masonry

Brick No. 1 Solid brick Mz according to EN 771-2 $p \ge 1,8 [kg/dm^3]$ fb ≥ 10 or 20 $[N/mm^2]$	Brick No. 6 Perforated brick HLz according to EN 771-1 $p \ge 1,4 [kg/dm^3]$ fb $\ge 20 [N/mm^2]$	
Brick No. 2 Solid sand-lime brick according to EN 771-2 $\rho \ge 1,8 [kg/dm^3]$ fb ≥ 10 or 20 [N/mm ²]	Brick No. 7 Perforated brick HLz according to EN 771-1 $\rho \ge 1,0 [kg/dm^3]$ fb $\ge 10 [N/mm^2]$	
Brick No. 3 Solid sand-lime brick according to EN 771-2 $\rho \ge 1,8 [kg/dm^3]$ fb ≥ 10 or 20 [N/mm ²]	Brick No. 8 Perforated brick HLz filled with mineral wool according to EN 771-1 $p \ge 0.6 [kg/dm^3]$ fb $\ge 8 [N/mm^2]$	
Brick No. 4 Sand-lime hollow brick according to EN 771-2 $p \ge 1,4$ [kg/dm ³] fb ≥ 12 or 20 [N/mm ²]	Brick-No. 9 Light-weight con- crete hollow block Hbl according to EN 771-1 $p \ge 1,0 [kg/dm^3]$ fb $\ge 4 [N/mm^2]$	17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
Brick No. 5 Perforated brick HLz according to EN 771-1 $\rho \ge 0.9 [kg/dm^3]$ fb $\ge 10 [N/mm^2]$	Brick No. 10 Autoclaved aerated concrete block $p \ge 0,35, 0,5 \text{ or}$ $0,65 [kg/dm^3]$ fb $\ge 2, 4 \text{ or } 6$ $[N/mm^2]$	

Imaging of the bricks are not scaled

fischer Injectionsystem FIS PLUS for masonry

Intended Use

Types and dimensions of blocks and bricks

Annex B 8

Kind of masonry	Brick	Valid anchor rods and perfora	ted sleeves	P
Brick No. 1 Solid brick Mz according to EN 771-2 $\rho \ge 1.8 [kg/dm^3]$ fb ≥ 10 or 20 [N/mm ²]			M8; M10; M FIS E 11x8 M6, M8	
Brick No. 2 Solid sand-lime brick according to EN 771-2 $\rho \ge 1.8 [kg/dm^3]$ fb $\ge 10 \text{ or } 20$ [N/mm ²]			M8; M10; M FIS E 11x8 M6, M8	
Brick No. 3 Solid sand-lime brick according to EN 771-2 $\rho \ge 1.8 [kg/dm^3]$ fb $\ge 10 \text{ or } 20$ [N/mm ²]	A CONTRACTOR OF		FIS H 12x85 FIS H 16x85 FIS H 20x85 FIS H 16x130 FIS H 20x130	к к ок
Brick No. 4 Sand-lime hollow brick according to EN 771-2 $\rho \ge 1,4 [kg/dm^3]$ fb ≥ 12 or 20 [N/mm ²]	STATE OF CONTRACTOR		FIS H 12x85 FIS H 16x85 FIS H 20x85 FIS H 16x130 FIS H 20x130	K K DK
Brick No. 5 Perforated brick HLz according to EN 771-1 $\rho \ge 0.9 [kg/dm^3]$ fb $\ge 10 [N/mm^2]$	TER		FIS H 12x85 FIS H 16x85 FIS H 20x85 FIS H 16x130 FIS H 20x130	K K OK
Brick No. 6 Perforated brick HLz according to EN 771-1 $\rho \ge 1,4 [kg/dm^3]$ fb $\ge 20 [N/mm^2]$			FIS H 12x85 FIS H 16x85 FIS H 20x85	к
¹⁾ Other combination ²⁾ Sleeve/anchor rod The β- factor for this Imaging of the bricks	combination se job site tests a	re given in Table C4	, Annex B.	
her Injectionsyste				2.42.5
nded Use				Annex B 9

Page 18 of European Technical Assessment ETA-17/0786 of 13 December 2017

English translation prepared by DIBt

and of masonry	Brick	Valid anchor rods and perfo	rated sleeves
Perforated brick Lz according to N 771-1 $\ge 1,0 [kg/dm^3]$ $p \ge 10 [N/mm^2]$			FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 20x130 K
ick No. 8 prforated brick .z filled with neral wool cording to 1 771-1 ± 0,6 [kg/dm ³] ≥ 8 [N/mm ²]			FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 16x130 K FIS H 20x130 K FIS H 20x200 K
ck-No. 9 ht-weight con- e hollow block according to 771-1 1,0 [kg/dm ³] 4 [N/mm ²]			FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K FIS H 16x130 K FIS H 20x130 K
ck No. 10 toclaved rated concrete	-		M8; M10; M12
ock ≥ 0,35, 0,5 or 65 [kg/dm ³] ≥ 2, 4 or 6 /mm ²]			FIS E 11x85 M6 FIS E 11x85 M8 FIS E 15x85 M10 FIS E 15x85 M12

¹⁾ Other combinations can be used after job site tests acc. to ETAG 029, Annex B.

²⁾ Sleeve/anchor rod combination see table B1.3

The $\beta\text{-}$ factor for this job site tests are given in Table C4

Imaging of the bricks are not scaled

fischer Injectionsystem FIS PLUS for masonry

Intended Use

Allocation of threaded rods, perforated sleeves and bricks, part 2

Annex B 10

	Density p			Effect ancho		Characteristic resistance [kN]			
Brick	[kg/dm ³]	Perforated	Anchor size or screw	depth		N _{Rk}		V _{Rk}	
	Compressive strength fb	sleeve FIS HK	size in internal threaded anchor	h _{ef,min}	h _{ef,max}	50/9	mp. 30°C	All categories	
	[N/mm ²]			[mm]	[mm]		w/w		
			M8	50	200	4,0	2,5	2,5	
			M10	50	79	3,5	2,0	4,0	
			M10	80	199	5,0	3,0	4,0	
	ρ≥1,8		M10	200	200	8,5	7,5	8,5	
	f _b ≥ 10		M12	50	79	3,0	2,0	4,0	
10 -			M12	80	199	5,5	3,5	4,0	
-			M12	200	200	8,0	5,0	8,5	
			FIS E 11x85 M6/ M8	85	85	5,5	3,5	2,5	
No.1 Solid brick Mz		without	M8	50	200	5,5	3,5	4,0	
			M10	50	79	5,0	3,0	0.0	
			M10	80	199	7,0	4,5	6,0	
	p≥1,8		M10	200	200	8,5	8,5	8,5	
	f _b ≥ 20		M12	50	79	4,5	3,0	5,5	
			M12	80	199	8,0	5,0	5,5	
			M12	200	200	8,5	7,0	8,5	
		n anna '	FIS E 11x85 M6/ M8	85	85	8,0	5,0	4,0	
	6		M8	50	200				
			M10	50	79	2,5	1,5		
			M10	80	199	12-	1	4,0	
	ρ≥1,8		M10	200	200	8,5	6,0		
	f _b ≥ 10		M12	50	79	2,5	1,5		
45			M12	80	199		1 Contract	5,0	
			M12	200	200	8,5	6,5		
		without	FIS E 11x85 M6/ M8	85	85	2,5	1,5	3,0	
240			M8	50	200				
No.2			M10	50	79	3,5	2,0	5,5	
Solid sand-lime brick			M10	80	199	-	-	5,5	
2020	ρ≥1,8 f _b ≥20		M10	200	200	8,5	8,5		
	10 = 20		M12	50	79	3,5	2,0	1	
			M12	80	199	0,0	2,0	7,0	
			M12	200	200	8,5	8,5		

Imaging of the bricks are not scaled

fischer Injectionsystem FIS PLUS for masonry

Performances

Characteristic values of resistance under tension loads and under shear loads, part 1

Annex C 1

electronic copy of the eta by dibt: eta-17/0786

1.1.1.1	Density p		Anchor size or		ective lorage	Char		tic resistance kN]	
Brick	[kg/dm ³]	Perforated	screw size in	de	pth	NRk		V _{Rk}	
	Compressive strength fb	sleeve FIS HK	internal threaded anchor	h _{ef,min}	h _{ef,max}	Temp. 50/80°C		All categories	
	[N/mm ²]		1 1 - 1 - Cash 1	[mm]	[mm]	d/d	w/w		
		12x85	M8	85	85	6,0	3,5	3,0	
		16x85	FIS E 11x85 M6	85	85	3,5	2,0	3,0	
No.3 Solid sand-lime brick	ρ≥1,8	16x85	M8/M10, FIS E 11x85 M8	85	85	3,5	2,0		
	f _b ≥ 10	20x85	M12, FIS E 15x85 M10/M12	85	85	8,5	6,5	3,5	
		16x130	M8/M10	110	130	3,5	2,0		
	1	20x130	M12	110	130	7,0	4,5	1	
	ρ≥1,8	12x85	M8	85	85	8,5	5,0	- 4,5	
	f _b ≥ 20	16x85	FIS E 11x85 M6	85	85	5,5	3,0		
		16x85	M8/M10, FIS E 11x85 M8	85	85	5,5	3,0		
		20x85	M12, FIS E 15x85 M10/M12	85	85	8,5	8,5	5,5	
		16x130	M8/M10	110	130	5,0	3,0		
		20x130	M12	110	130	8,5	6,0		
		12x85	M8	85	85	2,5	2,5	2,5	
		16x85	FIS E 11x85 M6	85	85	3,0	2,5	2,5	
	ρ≥1,4	16x85	M8/M10, FIS E 11x85 M8	85	85	3,0	2,5	4,5	
175 .	f _b ≥ 12	20x85	M12, FIS E 15x85 M10/M12	85	85	25			
A Sta		16x130	M8/M10	110	130	3,5	3,0	4,5	
		20x130	M12	110	130			· · · · · · ·	
40		12x85	M8	85	85	4,5	4,0	4,5	
No.4 Sand-lime hollow brick		16x85	FIS E 11x85 M6	85	85	5,0	4,0	4,0	
	ρ≥1,4	16×85	M8/M10, FIS E 11x85 M8	85	85	5,0	4,5	7,5	
	f _b ≥ 20	20x85	M12, FIS E 15x85 M10/M12	85	85	6.0	5,5	7 5	
		16x130	M8/M10	110	130	6,0	5,5	7,5	
		20x130	M12	110	130			L	

Imaging of the bricks are not scaled

fischer Injectionsystem FIS PLUS for masonry

Performances

Characteristic values of resistance under tension loads and under shear loads, part 2

	Density p [kg/dm ³]	Perfor-	Anchor size or screw size	anch	ctive orage pth			teristic ice [kN]
Brick	Comprospius	ated sleeve	in internal threaded			N	Rk	V _{Rk}
	Compressive strength f _b [N/mm ²]	FIS HK	anchor	h _{ef,min}	h _{ef,max}	50/8	mp. 30°C	All
				[mm]	[mm]	d/d	w/w	categorie
In .		12x85	M8	85	85	4,0	3,5	4,0
1.1		16x85	FIS E 11x85 M6	85	85	3,5	3,5	4,0
	p≥0,9	16x85	M8/M10, FIS E 11x85 M8	85	85	3,5	3,5	5,5
40	f _b ≥ 10	20x85	M12, FIS E 15x85 M10/M12	85	85	5,0	4,5	6,0
No.5 Perforated brick HLz	1	16x130	M8/M10	130	130	5,0	4,5	5,5
		20x130	M12	110	130	5,0	4,5	6,0
		12x85	M8	85	85	4,0	3,5	7,5 (5,5) ¹
	0214	16x85	FIS E 11x85 M6	85	85	5 2,5		4,0
	ρ≥1,4 f _b ≥20	16x85	M8/M10, FIS E 11x85 M8	85	85	2	,5	4,5
No.6 Perforated brick HLz		20x85	M12, FIS E 15x85 M10/M12	85	85	3	,0	8,5 (5,5) ¹
12 Carlos	-	12x85	M8	85 85		0	,9	
	ρ≥1,0 f _b ≥10	16x85	M8/M10, FIS E 11x85 M6/M8	85	85	85 85 2,5		1,2
		20x85	M12, FIS E 15x85 M10/M12	85	85			
and the second		16x130	M8/M10	110	130			1,5
No.7 Perforated brick HLz		20x130	M12	110	130	3,5	3,0	1,5
1		12x85	M8	85	85	2,0	2,0	2,5
1255	1	16x85	FIS E 11x85 M6	85	85	2,0	1,5	2,5
	ρ≥0,6	16x85	M8/M10, FIS E 11x85 M8	85	85	2,0	1,5	3,0
	f _b ≥ 8	20x85	M12, FIS E 15x85 M10/M12	85	85	2,0	2,0	1,5
No.8 Perforated brick HLz		16x130	M8/M10	130	130	3,0	2,5	3,0
NO.0 FEITOTALEO DITCK HLZ		20x130	M12	110	130	2,0	2,0	1,5
		20x200	M12	180	200	3,0	3,0	1,5
The second		12x85	M8	85 85				
	ρ≥1,0	16x85	M8/M10, FIS E 11x85 M6/M8	85	85	3	,0	2,0
	f _b ≥ 4	20x85	M12, FIS E 15x85 M10/M12	85	85			E ,0
No.9 Light-weight		16x130	M8/M10	130	130			
concrete hollow block		20x130	M12	110	130	· · · · ·		

 $^{1)}$ Characteristic value of pushing out of one brick $V_{\text{Rk},\text{pb}}$ = 5,5 kN Imaging of the bricks are not scaled

fischer Injectionsystem FIS PLUS for masonry

Performances

Characteristic values of resistance under tension loads and under shear loads, part 3

Table C1.4:	Characte shear loa		ues of resistan	ce un	der ter	nsion	load	s and und					
	Density p [kg/dm³]			γ_ρ		Density p Effective depth		Density p		orage	Chara		ic resistance N]
Brick	[kg/dm³]	Perforated	Screw Size III						Rk	V _{Rk}			
BICK	Compressive strength fb	sleeve FIS HK				Te 50/8	mp. 30°C	A11					
	[N/mm ²]			h _{ef,min} [mm]	h _{ef,max} [mm]	d/d	w/w	All categories					
			M8	100	120	1		1,2					
			M10	100	120			1,2					
	p≥ 0,35		M12	100	120		2	1,5					
	f _b ≥2	without	FIS E 11x85 M6/M8 FIS E 15x85 M10/M12	85		1,5		1,2					
1		n	M8	100	120	2,0		2,5					
1			M10	100	120	2,5		2,0					
	ρ≥0,5	Sac2.a	M12	100	120			2,5					
lo.10 Aerated concrete	ρ ≥ 0,5 f _b ≥ 4	without	FIS E 11x85 M6/M8 FIS E 15x85 M10/M12	85		2,0		2,0					
lock	11	i = i	M8	100	120	3,5	3,0	3,0					
			M10	100	120	5.0	4.5	3,0					
	ρ≥0,65	utilities with	M12	100	120	5,0	4,5	3,5					
	$\rho \ge 0.65$ $f_b \ge 6$ without		FIS E 11x85 M6/M8 FIS E 15x85 M10/M12	85		3,5		2,5					

Imaging of the bricks are not scaled

fischer Injectionsystem FIS PLUS for masonry

Performances

Characteristic values of resistance under tension loads and under shear loads, part 4

Size				- 272 3	M8	M10	M12
Zinc-plated steel		Zine plated steel	Broporty close	5.8 [Nm]	19	37	65
en la construction en la construction de la constru	Zinc-plated steel Property class		Property class	8.8 [Nm]	30	60	105
lip	Stainless steel A4	Droportu ologo	50 [Nm]	19	37	65	
per		Property class	70 [Nm]	26	52	92	
M _{Hk.s}				80[Nm]	30	60	105
teri	t le			50 [Nm]	19	37	65
ອີ່ອີ High cor ຮີຍ steel C	High corrosion-resistant steel C	Property class	70 ¹⁾ [Nm]	26	52	92	
High corrosion-resistant Bigh corrosion-resistant Steel C				80 [Nm]	30	60	105

¹⁾ f_{uk} = 700 N/mm²; f_{vk} =560 N/mm²

Table C2.1: Characteristic bending moments for internal threaded anchors FIS E

Size FIS	E			M6	M8	M10	M12
-	zinc	Property	5.8 [Nm]	8	19	37	65
ending K.s	plated steel,	class of screw	8.8 [Nm]	12	30	60	105
Characteristic bending moments M _{Rk.s}	stainless steel A4	Property class of screw	70 [Nm]	11	26	52	92
Charact	high corrosion resistant steel C	Property class of screw	70 [Nm]	11	26	52	92

Tabelle C3: Displacements under tension loads and shear loads

Material	N [kN]	δN ₀ [mm]	δN∞ [mm]	V [kN]	δV₀ [mm]	δV∞ [mm]
solid units and autoclaved aerated - concrete	Ν _{Rk} 1,4 * γ _M	- 0,03	0,06	 1,4 * γ _M	0,59	0,88
hollow	Ν _{Rk} 1,4 * γ _M	- 0,03	0,06	 1,4 * γ _M	1,71	2,56

fischer Injectionsystem FIS PLUS for masonry

Performances

Characteristic bending moments; displacements

Table C4: β- factor for job site tests according to ETAG 029, Annex B

Using categories		w/w	d/d
Temperature range	[°C]	50/80	50/80
Brick	Size ¹⁾		
	M8	0,57	
	M10	0,59	
Solid brick	M12 FIS E 11x85 M6 / M8 FIS E 15x85 M10 / M12	0,60	0,96
Hollow brick	All sizes	0,86	0,96
Autoclaved aerated concrete	All size	0,73	0,81

fischer Injectionsystem FIS PLUS for masonry

Performances

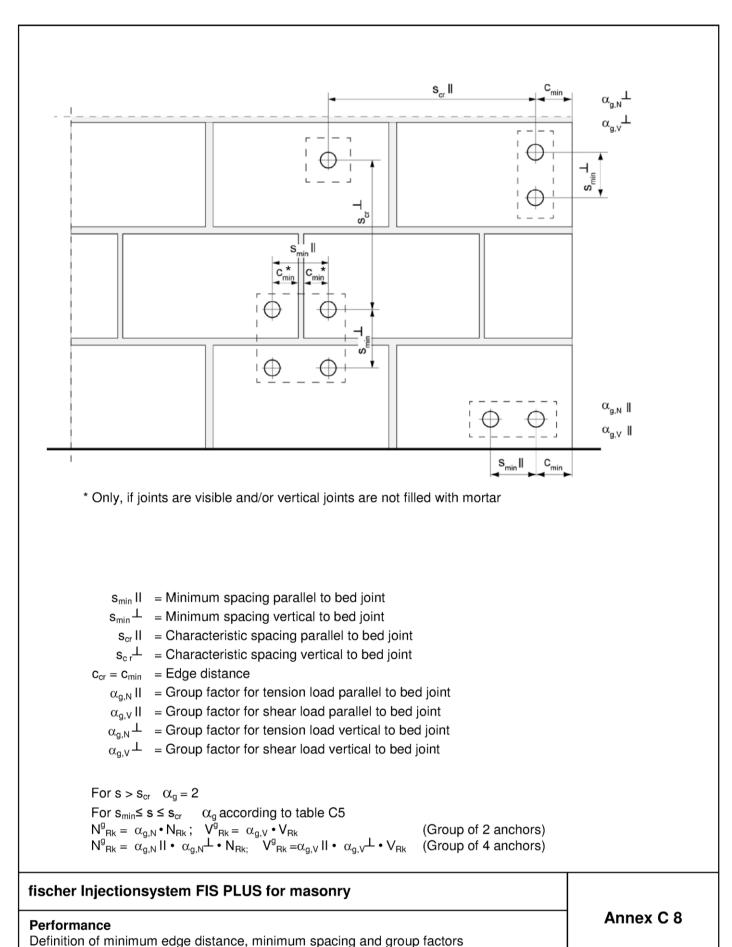
 β - factors for job site tests

Direction t	o bed joint		-	T				Grou	up fact	Min. thickness			
Brick No.	h _{ef}	C _{cr} =C _{min}	S _{min}	S _{cr}	S _{min}	S _{cr}	_	L			of the masonry members		
Briok Ho.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	$\alpha_{\text{g},\text{N}}$	$\alpha_{\text{g,V}}$	$\alpha_{\text{g},\text{N}}$	$\alpha_{g,V}$	[mm]		
	50	100	7	5	60 ¹⁾	150	2	2	1,5	1,4			
1	80	100	7	5	60 ¹⁾	240	2	2	1,5 1,4				
	200	150	7524027524027524027524021152402		75		150 75 240 2		2		2		
	50	100			240 2								
2	80	100			75								
	200	150			2	240			2				
3	85	100			240	2							
3	130	100	1.	15	2	240			2		h _{ef} + 30		
4	all sizes	100	1.	15	100	240	2	2	1,5	1,5	h _{ef} + 30 (≥ 80)		
5	all sizes	100	115		2	240	2						
6	all sizes	100	1.	15	2	40			2				
7	all sizes	100	100	240	100	375 (500) ²⁾	1	1	1 1				
8	all sizes	120	24	45	2	250		2					
9	all sizes	80	24	40	3	65			2				
10	all sizes	100	25	250		00	2						

Edge distance and spacing (installation with and without sleeves) Table C5:

 $^{1)}$ only valid for tension loads, for shear loads $s_{min} \| = s_{cr} \|$ $^{2)}$ spacing for alternative brick dimension, see table B4, brick 7

fischer Injectionsystem FIS PLUS for masonry


Performances

Edge distance and spacing

Page 26 of European Technical Assessment ETA-17/0786 of 13 December 2017

English translation prepared by DIBt

