

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0624 of 28 April 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Bolt Anchor FBZ, FBZ R

Mechanical anchor for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

17 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

ETA-17/0624 issued on 8 September 2017

European Technical Assessment ETA-17/0624 English translation prepared by DIBt

Page 2 of 17 | 28 April 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 17 | 28 April 2020

European Technical Assessment ETA-17/0624 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer Bolt Anchor FBZ is an anchor made of galvanised steel (FBZ) or made of stainless steel (FBZ R) which is placed into a drilled hole and anchored by torque-controlled expansion. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 3
Displacements (static and quasi-static loading)	See Annex C 5
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed
Durability	See Annex B 1

3.1 Mechanical resistance and stability (BWR 1)

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 4

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

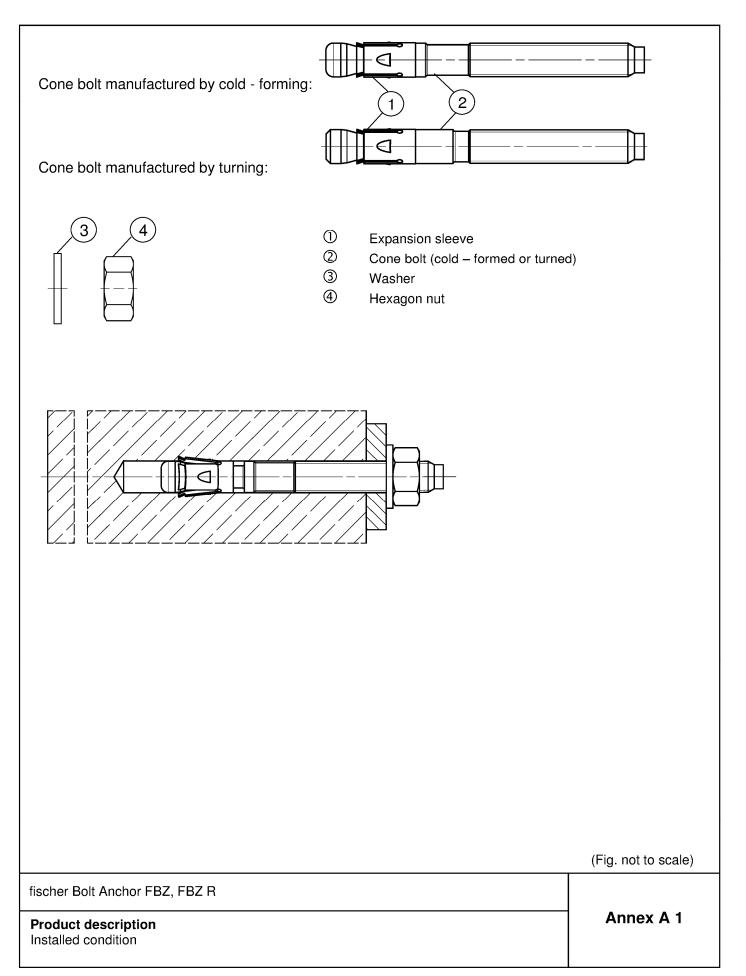
The system to be applied is: 1

European Technical Assessment ETA-17/0624 English translation prepared by DIBt

Page 4 of 17 | 28 April 2020

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

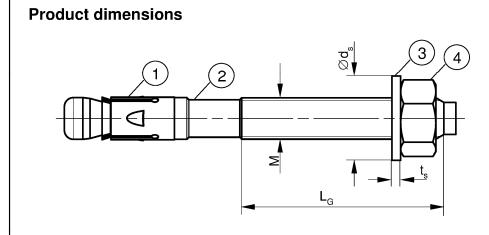
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 28 April 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-17/0624 of 28 April 2020

English translation prepared by DIBt



Produ	ict lat	oel an	d lette	er-cod	e:										
Ma	arking a	irea 3 .	expans	sion sle	eve			— –							
				<u> </u>	1			=			arking a		cone b	olt,	
-	╎┼┼┤	<u></u>		12/30					} -	-{					
					B					_					
	,	Morkino	/	/	halt										
	I	Marking	j area 2	- cone	DOIL										
Prod	uct lab	el, exar	nple:			<u>3Z 12</u>	/30 R								
Bran	d type	e of fast	ener				L	hread s	ize / ma	ax. thicl	kness o	f the fix	cture (t _{fi}	.)	
		arking a		or mark	ing are	a 3		lentifica						()	
FBZ:	carl	bon ste	el, galv	anized											
FBZ R:		nless st													
Table A	2.1: l	_etter	- code	at ma	arkina	area 1	:								
Marking		(a)	(b)	(C)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(K)
Max. t _{fix}	1	5	10	15	20	5	10	15	20	25	30	35	40	45	50
	M8	40	45		-	50	55	60	65	70	75	80	85	90	95
B ≥ [mm]	M10 M12	45 55	50 60	55 65	60 70	65 75	70 80	75 85	80 90	85 95	90 100	95 105	100	105 115	110 120
o = [iiiii]	M16	70	75	80	85	90	95	100	105	110	115	120	125	130	135
	M20			-		105	110	115	120	125	130	135	140	145	150
Marking		(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix}	M8	60 105	70 115	80 125	90 135	100 145	120 165	140 185	160 205	180 225	200 245	250 295	300 345	350 395	400 445
	M10	120	130	140	150	145	180	200	203	240	245	310	360	410	460
B ≥ [mm]		130	140	150	160	170	190	210	230	250	270	320	370	420	470
	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485
	M20	160	170	180	190	200	220	240	260	280	300	350	400	450	500
				Calcu	lation	existing	a h _{ef} foi	r install	ed fast	eners:					
							_								
				exist	ing h _{ef}	= B _{(acco}	ording to ta	able A2.1)	– existi	ng t _{fix}					
Thi	ckness	of the f	ixture t	_{fix} inclue						e.g. th	ickness	of gro	ut layer	t _{grout}	
					or	other no	on-struc	tural la	yers						
													(Fig. no	ot to sca	ale)
fischer B	olt Anc	hor FB2	Z, FBZ	R											
													Ann	iex A :	2
Product Product I			r code										<i>r</i> 3111		-
1.00001	abor a		5000												

Z36159.20

Table A3.1: Dimensions [mm]

Dort	Decignation					FBZ, FBZ R		
Part	Designation			M8	M10	M12	M16	M20
1	Expansion sleeve	Sheet thickne	ss	1,3	1,4	1,6	2	,4
2	Cono halt	Thread	size M	8	10	12	16	20
2	Cone bolt	L _G		19	26	31	40	50
3	Weeber	ts	≥	1,4	1,8	2,3	2	,7
3	Washer	$\emptyset d_s$		15	19	23	29	36
4	Hexagon nut	Wrench	size	13	17	19	24	30

(Fig. not to scale)

fischer Bolt Anchor FBZ, FBZ R

Product description Dimensions Annex A 3

Page 8 of European Technical Assessment ETA-17/0624 of 28 April 2020

English translation prepared by DIBt

Table	e A4.1: Materials FBZ (ISO 4042:20	018/Zn5/An(A2K))
Part	Designation	Material
1	Expansion sleeve	Cold strip, EN 10139:2016 or stainless steel EN 10088:2014
2	Cone bolt	Cold form steel or free cutting steel
3	Washer	Cold strip, EN 10139:2016
4	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012

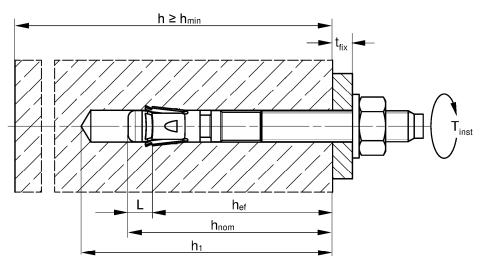
Table A4.2: Materials FBZ R

Part	Designation	Material
1	Expansion sleeve	
2	Cone bolt	Stainless steel EN 10088:2014
3	Washer	
4	Hexagon nut	Stainless steel EN 10088:2014; ISO 3506-2:2018; property class – min. 70

fischer Bolt Anchor FBZ, FBZ R

Annex A 4

Opecifica	tions of in	tended us	se		
Anchorages subject to:					
Size -			FBZ, FBZ R		
	M8	M10	M12	M16	M20
Static and quasi-static loads Cracked and uncracked concrete			/		
			1		
 Fire exposure Base materials: Compacted reinforced and unreinforced normal according to EN 206-1:2013+A1:2016 Strength classes C20/25 to C50/60 according to Jse conditions (Environmental conditions): Structures subject to dry internal conditions (FBZ Structures subject to external atmospheric expose permanently damp internal condition, if no partic (FBZ R) Note: Particular aggressive conditions are e.g. perma chloride atmosphere of indoor swimming pools or atm (e.g. in desulphurization plants or road tunnels where Design: Anchorages are to be designed under the response work Verifiable calculation notes and drawings are to position of the anchor is indicated on the design to supports, etc.) Design of fastenings according to EN 1992-4:20 For effective embedment depth h_{ef} < 40 mm only ceilings with internal exposure) are covered by the support of the anchor is a covered by the support of the support of the covered by the support of the covert of the covert of the covere of the covert of the co	EN 206-1:20 Z, FBZ R) sure (includir ular aggress nent, alternatin osphere with o deicing mater nsibility of an be prepared drawings (e. 18 and EOT/ y statically ind	013+A1:2016 ng industrial a ive condition ng immersion extreme chem ials are used) engineer ex taking accou g. position of A Technical I	and marine envir s exist in seawater or the ical pollution aperienced in and unt of the loads to f the anchor rela Report TR 055	ronment) an splash zone chorages ar o be anchor tive to reinfo	d to of seawater nd concrete ed. The prcement o


Intended Use Specifications Annex B 1

Electronic copy of the ETA by DIBt: ETA-17/0624

Table B2.1: Installation parameters

<u> Ciac</u>					FBZ, FBZ F	3	
Size			M8	M10	M12	M16	M20
Nominal drill hole diameter	d0 =	_	8	10	12	16	20
Maximum bit diameter with hammer or hollow drilling	d	[mm]	8,45	10.45	12,5	16,5	20,55
Maximum bit diameter with diamond drilling	d _{cut,max}		8,15	10,45	12,25	16,45	20,50
Overall fastener embedment depth in the concrete	h _{nom} ≥ (L)		44,5 (9,5)	52,0 (12)	63,5 (13,5)	82,5 (17,5)	120 (20)
concrete		[mm]		Exist	ing h _{ef} + L =	= h _{nom}	
Depth of drill hole to deepest point	$h_1 \geq$			h _{nom}	+ 5		h _{nom} + 10
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	9	12	14	18	22
Required setting torque	T _{inst} =	[Nm]	20	45	60	110	200

- h_{ef} = Effective embedment depth
- t_{fix} = Thickness of the fixture
- h_1 = Depth of drill hole to deepest point
- h = Thickness of the concrete member
- h_{min} = Minimum thickness of concrete member
- h_{nom} = Overall fastener embedment depth in the concrete
- T_{inst} = Required setting torque

(Fig. not to scale)

fischer Bolt Anchor FBZ, FBZ R

Intended Use Installation parameters Annex B 2

Г

				FBZ, FBZ R						
Size				M8	M10	M12	M16	M20		
Standard	anchorage depth	h _{ef.sta} ≥		45	60	70	85	100		
~	Minimum thickness of concrete member	h _{min,1}	[mm]	100	120	140	170	200		
Concrete members with thickness ≥ 2 x h _{ef,sta}	Uncracked concrete	-				-				
Ś	Minimum spacing	Smin			40	50	65	95		
ember ness h _{ef,sta}	Minimum spacing	for c ≥	[mm]	50	60	70	95	180		
te membe thickness ≥ 2 x h _{ef,st}	Minimum odgo diotopoo	Cmin	fuuul [40	45	55	65	95		
ckr ckr	Minimum edge distance	for s ≥		100	80	110	150	190		
P ti	Cracked concrete					-				
C L	Minimum anaging	Smin		35	40	50	65	95		
no	Minimum spacing	for c ≥	[mama]	50	55	70	95	140		
0		Cmin	[mm] -	40	45	55	65	85		
	Minimum edge distance	for s ≥		70	80	110	150	190		
th	Minimum thickness of concrete member	h _{min,2}	[mm]	80	100	120	140	160		
Concrete members with thickness < 2 x hot str	Cracked and uncracked c	oncrete					-			
r ä ä r		Smin		35	40	50	80	125		
	Ninimum spacing	for $c \ge$	[mm] -	70	100	90	130	220		
v te -		Cmin	[uuu] –	40	6	50	65	125		
-	Minimum edge distance	for s ≥	-	100	90	120	180	230		

Intermediate values for smin and cmin inside of the same thickness of concrete member by linear interpolation

Table B3.2: Minimum thickness of concrete members, minimum spacings and minimum edgedistances of anchors for reduced anchorage depth (hef, red)

				FBZ,	FBZ R	
Size			M8	M10	M12	M16
Reduced	anchorage depth	h _{ef,red} ≥	35 ¹⁾	40	50	65
-	Minimum thickness of concrete member	[mm] [h _{min,3}	80		100	140
with	Uncracked concrete			-		
(S)	Minimum oppoing	Smin	40		50	65
bel SS	Minimum spacing	for c ≥ [mm]	100		110	130
members ckness 2 x h _{ef,red}	Minimum spacing Minimum edge distance Minimum edge distance	[mm] - C _{min} [mm] -	45		55	65
icki 2 x	Minimum edge distance	for s \geq	180)	220	250
Concrete thi ≥ 2	Cracked concrete					-
Š	Minimum anaging	Smin	40		50	65
lo	Minimum spacing	for c ≥ [mm]	90		110	130
0	Minimum adda diatanaa	C _{min_} [mm]	45		55	65
	Minimum edge distance	for s ≥	180		220	250

Intermediate values for s_{min} and c_{min} by linear interpolation

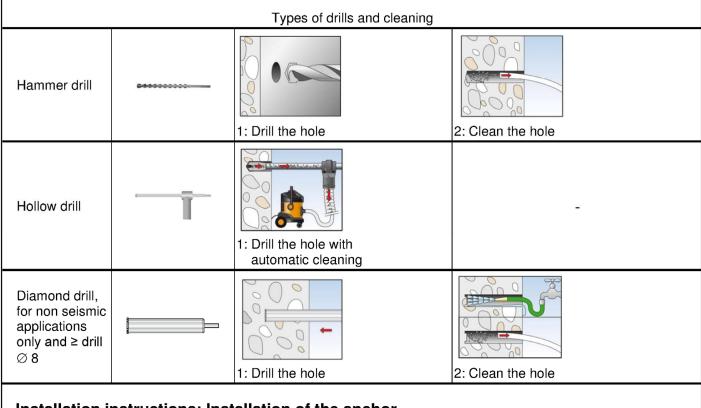
¹⁾ Only in anchoring structural components which are statically indeterminate

fischer Bolt Anchor FBZ, FBZ R

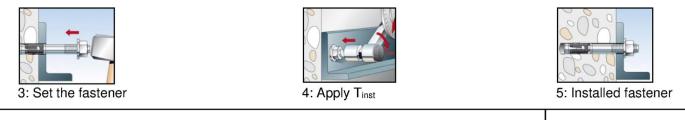
Intended Use

Minimum thickness of member, minimum spacing and edge distance

Annex B 3



Installation instructions:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor
- Checking before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids

Installation instructions: Drilling and cleaning the hole

- Hammer, hollow or diamond drilling according to Annex B4
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application
- · It must be ensured that in case of fire local spalling of the concrete cover does not occur
- Fastenings in stand-off installation or with a grout layer under seismic action are not covered
- In case of seismic applications the fastener shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure

Installation instructions: Installation of the anchor

fischer Bolt Anchor FBZ, FBZ R

Intended Use Installation instructions

Annex B 4

Sino					FBZ, FBZ F	7			
Size			M8	M10	M12	M16	M20		
Steel failure for standard anchorage dep	oth	-				-			
Characteristic resistance	- N _{Rk,s}	[kN] -	16,6	28,3	43,2	67,0	123,		
Partial factor for steel failure			17,0	29,0	44,3 1,5	70,6	124,		
Pullout failure for standard anchorage d	γ _{Ms} ¹⁾	[-]			1,5				
Effective embedment depth for calculation	h _{ef,sta}	[mm]	45	60	70	85	100		
Characteristic resistance in	rier,sta	[iiiii]							
cracked concrete C20/25	- N		6	10	16	26	30		
Characteristic resistance in uncracked	- N _{Rk,p}	[kN] -	11	16	17	34	42		
concrete C20/25		005/00	••	10					
	-	C25/30 C30/37			1,12 1,22				
Increasing factors for N for	-	C30/37 C35/45			1,22				
Increasing factors for N _{Rk,p} for cracked and uncracked concrete	ψc⁻		1,41						
	-	C40/30 C45/55	1,41						
	-	C50/60	1,58						
Installation factor	γinst	[-]			1,0				
Concrete cone and splitting failure for st			e depth	in applicati	-	ncrete mer	nbers (
thickness $\ge 2x h_{ef,sta}$									
Effective embedment depth	h _{ef,sta}	[mm]	45	60	70	85	100		
Factor for uncracked concrete	kucr,N	. 1			11,0 ²⁾				
Factor for cracked concrete	k _{cr,N}	[-]			7,72)				
Minimum thickness of concrete member	h _{min,1}		100	120	140	170	200		
Characteristic spacing	Scr,N	Γ			3 ⋅ h _{ef}	•			
Characteristic edge distance	Ccr,N	[mm]			1,5 · h _{ef}				
Spacing (splitting failure) ⁴⁾	Scr,sp		140	180	210	260	370		
Edge distance (splitting failure) ⁴⁾	C _{cr,sp}	Γ	70	90	105	130	185		
Characteristic resistance to splitting	N ⁰ Rk,sp	[kN]		m	in {N⁰ _{Rk,c} ; N _R	k,p} ³⁾			
Concrete cone and splitting failure for s	tandard	anchorag	e depth	in applicati	ions with co	ncrete mer	nbers o		
thickness ≥ 2x h _{ef,sta}			-			1			
Effective embedment depth	h _{ef,sta}	[mm]	45	60	70	85	100		
Factor for uncracked concrete	k _{ucr,N}	[-]			11,0 ²⁾				
Factor for cracked concrete	k cr,N				7,7 ²⁾	1			
Minimum thickness of concrete member	h _{min,2}	_	80	100	120	140	160		
Characteristic spacing	S _{cr,N}				3 · h _{ef}				
Characteristic edge distance	Ccr,N	[mm]	100	0.40	1,5 · h _{ef}	0.40	400		
Spacing (splitting failure) ⁴	Scr,sp		180	240	280	340	480		
Edge distance (splitting failure) ⁴⁾	Ccr,sp	[]_N []	90	120	140	170	240		
Characteristic resistance to splitting	$N^0_{Rk,sp}$	[kN]		m	in {N ⁰ Rk,c; NR	k,p} ³⁾			
 In absence of other national regulations Based on concrete strength as cylinder s N⁰_{Rk,c} according to EN 1992-4:2018 Intermediate values for s_{cr,sp} and c_{cr,sp} bet 	•	ncrete thic	kness h _m	in,2 and hmir	.,1 by linear ir	nterpolation			
fischer Bolt Anchor FBZ, FBZ R									
Performances						Annex	C 1		

Г

٦

				FBZ,	FBZ R		
Size			M8	M10	M12	M16	
Steel failure for reduced anchorage	e depth						
FBZ	N _{Rk,s}	FLA 11	16,6	28,3	43,2	67,0	
Characteristic resistance FBZ R	N _{Rk,s}	[kN]	17,0	29,0	44,3	70,6	
Partial factor for steel failure	$\gamma Ms^{3)}$	[-]		1	,5		
Pullout failure for reduced anchora	age depth						
Effective anchorage depth for calculation	$h_{\text{ef,red}} \geq$	[mm]	35 ¹⁾	40	50	65	
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	4	7	10	15	
Characteristic resistance in uncracked concrete 20/25	N _{Rk,p}		8	10	15	22	
Increasing factors for N _{Rk,p} for cracked and uncracked concrete	ψc- (C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	1,22 1,32 1,41 1,50				
Installation factor	γinst	[-]		1	,0		
Concrete cone and splitting failure	for reduce	d anchora		-			
Effective anchorage depth Factor for uncracked concrete Factor for cracked concrete	h _{ef,red} k _{ucr,N} k _{cr,N}	[mm] [-]	35 ¹⁾	40 17 7,	50 1 ²⁾ 7 ²⁾	65	
Min. thickness of concrete member Characteristic spacing Characteristic edge distance	h _{min,3} Scr,N Ccr,N	[mm]	8	3	100 h _{ef} h _{ef}	140	
Spacing (splitting failure)	Scr,sp		140	1,5	200	260	
Edge distance (splitting failure)	Ccr,sp		70	80	100	130	
Characteristic resistance to splitting	N ⁰ R	(,sp [kN]		min {N	⁰ Rk,c; NRk,p} ⁴⁾		

fischer Bolt Anchor FBZ, FBZ R

Performances

Characteristic values of resistance under tension loads

Annex C 2

Deutsches Institut für Bautechnik

<u>Si-a</u>						FBZ, FBZ R	}	
Size				M8	M10	M12	M16	M20
Steel failure without lever a			d reduce	ed anchora	age depth	-	-	-
Characteristic resistance -	FBZ	V ⁰ Rk,s	[kN]	12,0	21,4	30,6	55,0	70,0
	FBZ R	$V^0_{Rk,s}$	[,,,,]	16,1	26,5	37,4	57,2	10,0
Partial factor for steel failure		γMs ¹⁾	[-]			1,25		
Factor for ductility		k 7			<u>.</u>	1,0		
		Stand	ard anc	horage de	pth			
Steel failure with lever arm			1		1		[
Characteristic bending	FBZ	M ⁰ Rk,s	[Nm]	26	52	92	233	513
resistance	FBZ R	M ⁰ Rk,s	[]	29	59	100	256	519
Partial factor for steel failure		γ_Ms ¹⁾	[-]			1,25		
Factor for ductility		k7				1,0		
Concrete pryout failure		· · ·						
Factor for pryout failure		k ₈	[-]	2,8		3,2	3,0	2,6
Concrete edge failure					1	1		1
Effective embedment		lf		45	60	70	85	100
depth for calculation			[mm]					
Outside diameter of a fastene	er	d _{nom}		8	10	12	16	20
		Reduc	ced anc	horage de	pth			
Steel failure with lever arm					1			-
Characteristic bending	FBZ	M ⁰ Rk,s	[Nm]	20	44	92	184	-
resistance	FBZ R	M ⁰ Rk,s	[]	21	45	100	193	-
Partial factor for steel failure		γMs ¹⁾	[-]			1,25		
Factor for ductility		k 7				1,0		
Concrete pryout failure					1			1
Factor for pryout failure		k ₈	[-]	2,5	2,6	3,1	3,2	-
Concrete edge failure			I		1		F	
Effective embedment		lf		35	40	50	65	-
depth for calculation			[mm]					
Outside diameter of a fasten	or	d _{nom}		8	10	12	16	

Performances

Characteristic values of resistance under shear loads

Annex C 3

0:							FBZ, FBZ R			
Size					M8	M10	M12	M16	M20	
			h _{ef} ≥	[mm]	35 / 45	40 / 60	50 / 70	65 / 85	100	
01			R30		1,4	2,8	5,0	9,4	14,7	
	cteristic stance	NI	R60		1,2	2,3	4,1	7,7	12,0	
	failure	N _{Rk,s,fi}	R90		0,9	1,9	3,2	6,0	9,4	
31001	landic		R120		0,8	1,6	2,8	5,2	8,1	
Characteristic resistance N _{Rk,c,fi}		R30 - R90	[kN]	7,7 · h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 200 / 1000						
Concrete	cone failur	e	R120			7,7 · h _{ef} ^{1,5} · ((20) ^{0,5} · h _{ef} / 20	<u>0 / 1000 · 0,8</u>	3	
Chara	cteristic		R30		0,9 / 2,0					
	stance	N _{Rk,p,fi}	R60	-	0,8 / 2,0	2,2 / 3,3	3,0 / 5,0	4,5 / 6,8	8,6	
	t failure	, titt,p,ii	R90		0,5 / 2,0					
			R120		0,3 / 1,6	1,7 / 2,6	2,4 / 4,0	3,6 / 5,4	6,9	
	Size BZ, FBZ R		Values of She V _{Rk,s,fi,30} [kN]		R30 M ⁰ _{Rk,s,fi,30} [Nm]		V _{Rk,s,fi,60} [kN]	R60	R60 M ⁰ Rk,s.fi,60 [Nm	
M8		35		1,8	1,4		1,6		1,2	
M10		40		,,0	3,6		2,9		3,0	
M12		50	6,3		7,8	3	4,9		6,4	
M16		65		1,7	19,		9,1		16,3	
M20		100		8,2	39,0		14,2		31,8	
	0.			,			,	R120		
FE	Size 3Z, FBZ R		VBKst	ï,90 [kN]	R90 M ⁰ _{Rk,s,fi,S}	n [Nm]	V _{Rk,s,fi,120} [kN		_{k,s,fi,120} [Nm	
M8	,	35		1,3	1,0		1,2		0,8	
M10		40		2,2	2,4		1,9		2,1	
M12	h _{ef} ≥	50		3,5	5,0		2,8		4,3	
M16		65		5,6	12,		5,3		11,0	
M20	7 -	100	1	0,3	24,	6	8,3		21,4	
			cings ar	nd min		distances o	of anchors u	nder fire e	xposure	
Size							, FBZ R			
				M8	M	10	M12	M16	M20	
Spacing			, m1				nex B3			
Edge distance c _{min} [mm]									nm	
SpacingSminEdge distanceCmin			ım]	$c_{min} = 2 \cdot h_{ef},$ for fire exposure from more than one side $c_{min} \ge 300$ mm						

<u>-</u>			FBZ, FBZ R				
Size			M8	M10	M12	M16	M20
Displacement ·	 factor for tensile load¹⁾ 						
δN0 - factor	in cracked concrete		0,22	0,12	0,09	0,08	0,07
δN∞ - factor		[mm/kN]	0,78	0,40	0,19	0,	09
δN0 - factor			0,07	0,05	0,		0,05
N∞ - factor			0,29	0,21	0,14	0,10	0,06
Table C5.2:	Displacements under static	and quasi sta	atic she	ar loads			
Size		-			FBZ	I	
			M8	M10	M12	M16	M20
•	 factor for shear load²⁾ 			_	_		
δ V0 – factor			0,35	0,37	0,27	0,10	0,09
δv∞ - factor	in cracked and		0,52	0,55	0,40	0,14	0,1
2	uncracked concrete	[mm/kN]	0.00	0.40	FBZ R	0.40	
δ∨0 - factor δ∨∞ - factor		ŀ	0,23 0,27	0,19 0,22	0,18 0,16	0,10 0,11	0,1 ⁻ 0,05
$\delta_{N0} = \delta_{N0} - facto$	effective displacement:		$= \delta_{V0} - factor$		displaceme	nt:	
(N _{ED} : Design	or · N _{ED} value of the applied tension force		= δv∞ - fact b: Design		e applied sł	near force)	
(N _{ED} : Design					e applied sł	near force)	

Electronic copy of the ETA by DIBt: ETA-17/0624