

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0338 of 30 March 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Zykon Anchor FZA-Q

Undercut Anchor for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke GmbH & Co. KG

16 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601

ETA-16/0338 issued on 17 August 2016

European Technical Assessment ETA-16/0338

Page 2 of 16 | 30 March 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z87015.19 8.06.01-132/19

European Technical Assessment ETA-16/0338

Page 3 of 16 | 30 March 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer Zykon Anchor FZA-Q is an anchor made of hot-dipped galvanized steel which is placed into a drilled hole and anchored by torque controlled expansion and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1
Displacements (static and quasi-static loading)	See Annex C 5
Durability	See Annex B 1
Characteristic resistance and displacements for seismic performance category C1 and C2	See Annex C 4 and C 5

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

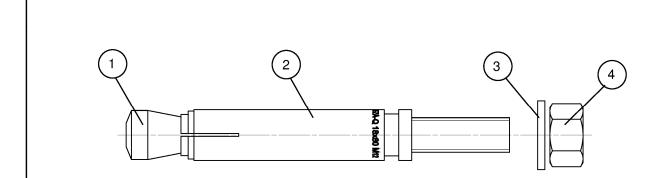
Z87015.19 8.06.01-132/19

European Technical Assessment ETA-16/0338

Page 4 of 16 | 30 March 2020

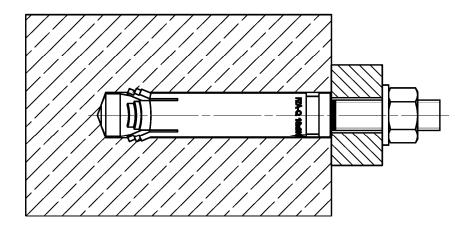
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 30 March 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Ziegler


Z87015.19 8.06.01-132/19

- ① Cone bolt
- ② Expansion sleeve
- 3 Washer
- 4 Hexagon nut

Installed condition

(Fig. not to scale)

fischer Zykon Anchor FZA-Q

Product description
Installed condition

Annex A 1

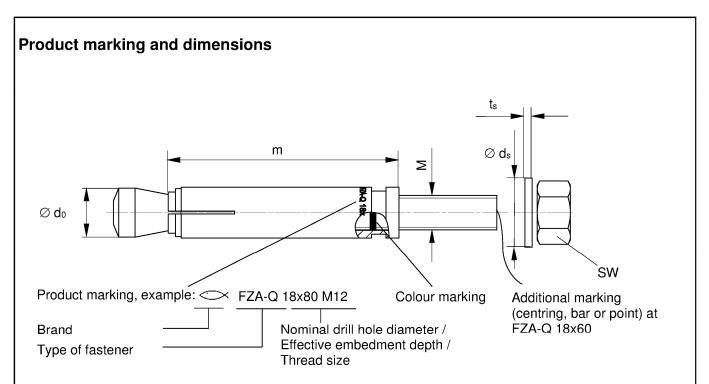


Table A2.1: Dimensions [mm]

0:			FZA-Q	
Size		14 x 50 M10	18 x 60 M12	18 x 80 M12
M = d		10	12	
Ø d₀		13,5	17	
m	=	50	60	80
SW		17	19	
ts		1,8	2,3	3
Ø ds	2	19	23	

Table A2.2: Materials (hot-dip galvanised $\geq 50\mu m$, EN ISO 10684:2011¹⁾)

Part	Designation	Material
1	Cone bolt ²⁾	Cold form steel or free cutting steel class 8.8 acc. to EN ISO 898-1:2013 Nominal steel tensile strength f _{uk} ≤ 1000 N/mm²
2	Expansion sleeve ²⁾	Steel
3	Washer	Cold strip, EN 10139:2016
4	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012

 $^{^{1)}}$ Alternative method: sherardised $\geq 50 \mu m$, EN 13811:2003

(Fig. not to scale)

fischer Zykon Anchor FZA-Q	
Product description Product marking, dimensions and materials	Annex A 2

²⁾ Optional: clear paint

Tools

Tools Drill bit FZBB Standard drill bit **Setting tool FZE** Machine setting tool FZA-Q Optional fischer filling disc FFD for e.g. seismic applications fischer Zykon Anchor FZA-Q Annex A 3 **Intended Use**

Specifications of intended use			
Cino		FZA-Q	
Size	14 x 50 M10	18 x 60 M12	18 x 80 M12
Hot-dip galvanised			
Static and quasi-static loads			
Cracked and uncracked concrete		/	
Seismic action for performance category C1		•	
Fire exposure			

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibers (cracked and uncracked) of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

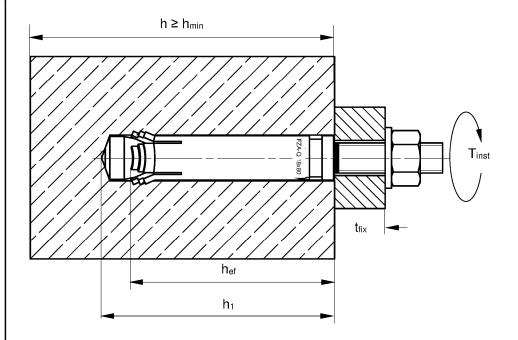
Use conditions (Environmental conditions):

Structures subject to dry internal conditions

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018

fischer Zykon Anchor FZA-Q	
Intended Use Specifications	Annex B 1



Installation parameters

 Table B2.1:
 Installation parameters

Size			FZA-Q			
Size				14 x 50 M10	18 x 60 M12	18 x 80 M12
Nominal drill hole diameter	d ₀			14	18	3
Depth of drill hole in concrete	h ₁	=	[mm]	58	74	94
Cutting diameter of drill bit dcut			— [mm]	14,50	18,	50
Diameter of clearance hole in the fixture	df	\leq		12	14	1
Maximum installation torque1)	Tinst		[Nm]	20	45	5

¹⁾ Minimum installation torque = hand - tightening

 h_{ef} = Effective embedment depth t_{fix} = Thickness of the fixture

h₁ = Depth of drill hole to deepest point h = Thickness of the concrete member

 h_{min} = Minimum thickness of concrete member

 $T_{inst} \leq Maximum installation torque$

fischer Zykon Anchor FZA-Q	
Intended Use Installation parameters	Annex B 2

Installation instructions

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Checking before placing the fastener to ensure that the strength class of the concrete in which the fastener is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- · Check of concrete being well compacted, e.g. without significant voids
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load is not in the direction of load application

fischer Zykon Anchor FZA-Q

Intended Use
Installation instructions

Annex B 3

Table C1.1:	Characteristic ten s	sion resis	stance und	ler static and o	quasi-static act	ion
Size				14 x 50 M10	FZA-Q 18 x 60 M12	18 x 80 M12
Steel failure				14 X 00 W10	10 X 00 W12	10 % 00 11112
Characteristic	resistance	N _{Rk,s}	[kN]	40,7	60),1
Partial factor fo	or steel failure	γMs	[-]	•	1,5	
Modulus of ela	sticity	Es	[N/mm²]		210.000	
Pullout failure	<u>.</u>					
Characteristic	cracked concrete		51.8.17	10,0	16,0	22,2
resistance in C20/25	uncracked concrete	─ N _{Rk,p}	[kN]	17,4	22,9	35,2
Increasing fact	or for N _{Rk,p}	Ψc	[-]	(f _{ck} / 20) ^{0,5}		
Installation safe	ety factor	γinst	[-]	1,0		
Concrete con	e and splitting failure	·				
Effective embe	dment depth	h _{ef}	[mm]	50	60	80
Factor for crac	ked concrete	k _{cr,N}	r 1		7,7	
Factor for uncr	acked concrete	k _{ucr,N}	— [-] 	11,0		
Characteristic	spacing	S _{cr,N}		3 h _{ef}		
Characteristic edge distance c _{cr,1}		C _{cr,N}		1,5 h _{ef}		
Characteristic	spacing	Scr,sp	— [mm] —	n] 3,5 h _{ef}		
Characteristic	edge distance	C _{cr,sp}		1,75 h _{ef}		
Characteristic	resistance to splitting	N ⁰ Rk,sp	[kN]	min {N ⁰ _{Rk,c} ; N _{Rk,p} } ¹⁾		

¹⁾ N⁰Rk,c according to EN 1992-4:2018

Table C1.2: Characteristic shear resistance under static and quasi-static action

Size			FZA-Q			
			14 x 50 M10	18 x 60 M12	18 x 80 M12	
Steel failure without lever arm					-	
Characteristic resistance	$V^0_{Rk,s}$	[kN]	20,4	33	3,7	
Partial factor for steel failure	γMs	r 1		1,25		
Factor for ductility	k ₇	- [-]		1,0		
Steel failure with lever arm and cor	ncrete pryout	failure				
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	60,0	10	5,0	
Partial factor for steel failure	γMs			1,25		
Factor for ductility	k ₇	[-]		1,0		
Factor for pryout failure	k ₈	_	1,0 2,0			
Concrete edge failure						
Effective length in concrete	lf	[mm]	50	60	80	
Effective diameter of fastener	d _{nom}	[,,,,,,,]	14 18			

fischer Zykon Anchor FZA-Q	
Performances Characteristic tension resistance under static and quasi-static action Characteristic shear resistance under static and quasi-static action	Annex C 1

Table C2.1:	Minimum thickness of concrete members, minimum spacings and edge
	distances

					FZA-Q	I
Size				14 x 50 M10	14 x 50 M10 18 x 60 M12	14 x 50 M10 18 x 60 M12 18 x 80 M12
Minimum tl member	hickness of concrete	h _{min}	[mm]	100	120	160
Cracked c	oncrete					
Minimum	spacing	Smin	[mm]	120	120	75
Willimum	edge distance	C _{min}	funni	100	100	75
Uncracked	d concrete					
Minimum	nacina	Smin	[mm]	120	100	75
Minimum s	spacing	for c≥	[mm]	120	120	90
Minimum	odao distance	C _{min}	[mm]	100	100	90
iviiiiiiiiiiiiiiiiiiiii	edge distance	for s≥	[mm]	180	160	75

Intermediate values for $s_{\mbox{\scriptsize min}}$ and $c_{\mbox{\scriptsize min}}$ by linear interpolation

fischer Zykon Anchor FZA-Q	
Performances Minimum thickness of concrete member, minimum spacings and edge distances	Annex C 2

	Characteristic ter	ISION resi	istance u	naer tire ex p	osure			
FZA-Q			R30	1		R60		
		N _{Rk,s,fi}	N _{Rk,p,fi}	N _{Rk,c,fi}	N _{Rk,s,fi}	$N_{Rk,p,fi}$	N _{Rk,c,}	
14 x 50 M10	-	2,6	2,7	3,0	1,4	2,7	3,0	
18 x 60 M12	_ [kN]	8,4	4,0	4,8	4,2	4,0	4,8	
18 x 80 M12		,	5,5	9,9	4,2	5,5	9,9	
			DOO	1	D100			
ZA-Q		$N_{Rk,s,fi}$	R90 N _{Rk,p,fi}	N _{Rk,c,fi}	N _{Rk,s,fi}	R120 N _{Rk,p,fi}	N _{Rk,c} ,	
14 x 50 M10		1,0	2,7	3,0	0,8	2,1	2,4	
18 x 60 M12	- [kN]		4,0	4,8	0,0	3,2	3,8	
18 x 80 M12	. [[]	2,5	5,5	9,9	1,7	4,4	7,9	
ZA-Q		$V_{Rk,s,fi}$	R30 [kN]	M ⁰ Rk,s,fi [Nm]	V _{Rk,s,fi} [R60 kN] M ⁰ _{Rk,s,fi} [Nm]		
Table C3.2:	Characteristic sh	ear resist	tance und	der fire expo	sure			
=ZA-Q		$V_{Rk,s,fi}$	1	M ⁰ Rk,s,fi [Nm]	V _{Rk,s,fi} [1	M ⁰ Rk,s,fi [Nr	
14 x 50 M10		2,6	6	3,4	1,4		1,8	
18 x 60 M12		8,4	4	13,1	4,2		6,5	
18 x 80 M12		,		,-				
			R90			R120		
		$V_{Rk.s.fi}$	1	M ⁰ _{Rk,s,fi} [Nm]	V _{Rk s fi} [$V_{Rk,s,fi}$ [kN] $M^0_{Rk,s,fi}$ [Nr		
FZA-Q				0,8				
FZA-Q 14 x 50 M10		1,0		1,3			1,0	
		1,0	0	·	0,8		1,0	
14 x 50 M10 18 x 60 M12			0	1,3 3,9				
14 x 50 M10	Minimum spacion exposure for ter	1,0 2,5 ngs and r	minimum I shear lo	3,9 edge distar ad	0,8 1,7 nces unde	r fire	1,0 2,6	
14 x 50 M10 18 x 60 M12 18 x 80 M12 Table C3.3:	exposure for ter	1,0 2,5 ngs and r	o 5 minimum	3,9 edge distar ad	0,8 1,7 nces unde FZA-Q x 60 M12	r fire	1,0	
14 x 50 M10 18 x 60 M12 18 x 80 M12 Table C3.3:	-	1,0 2,5 ngs and r	minimum I shear lo	3,9 edge distar ad M10 18	0,8 1,7 nces unde	r fire	1,0 2,6	

			FZA-G	\			
		14 x 50 M10	18 x 60		18 x 80 M1		
	<u>'</u>		•	<u> </u>			
Characteristic resistance tension NRk,s,C1 [kl					1		
s,C1	[-]	[-] 1,5					
łk,p,C1	[kN]	10,0	16,0	0	22,0		
C1	[-]		1,0				
	,						
k,s,C1	[kN]	15,9		30,3	3		
s,C1	[-]		1,25				
Table C4.2: Characteristic values of tension and shear resistance under seismic performance category C2 FZA-Q							
		14 x 50 M10	18 x 60	M12	18 x 80 M1		
√Rk,s,C2	[kN]	40,7 60,1					
Ms,C2	[-]		1,5				
√Rk,p,C2	[kN]	4,0	4,7 6,5		6,5		
'2,C2	[-]		1,0				
Steel failure without lever arm Characteristic resistance shear load C2 V _{Rk,s,C2} [kN]					11,8 23,3		
, . ,							
/ Ms,C2	[-]		1,25				
′ Ms,C2		ce categorie		C2			
′ Ms,C2		ce categorie		C2			
'Ms,C2		ce categorie		C2	≥ 1,50		
		Rk,p,C1 [kN] C1 [-] Rk,s,C1 [kN] s,C1 [-] S of tension and ory C2 NRk,s,C2 [kN] VMs,C2 [-]	10,0 C1 [-] Rk,p,C1 [kN] 10,0 C1 [-] Rk,s,C1 [kN] 15,9 s,C1 [-] Cof tension and shear resist ory C2 14 x 50 M10 NRk,s,C2 [kN] 40,7 Ms,C2 [-] NRk,p,C2 [kN] 4,0	Rk,p,C1 [kN] 10,0 16,0 C1 [-] 1,0 Rk,s,C1 [kN] 15,9 s,C1 [-] 1,25 C of tension and shear resistance under the cory C2 FZA-C 14 x 50 M10 18 x 60 NRk,s,C2 [kN] 40,7 MRk,C2 [-] 1,5 NRk,p,C2 [kN] 4,0 4,7	10,0 16,0 1,0 16,0 1,0 16,0 1,0 1,0 1,0 1,0 1,0 1,25		

Table C5.1: Displacements under static and quasi-static tension loads								
Cina	FZA-Q							
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12			
Tension load in cracked concrete C20/25	N	[kN]	5,1	10	,5			
Diaglacamenta	δηο	[]	0,4 0,8		8			
Displacements	δ _{N∞}	- [mm]	0,9	1,	7			
Tension load in uncracked concrete C20/25	N	[kN]	12,2	16,2				
		[0,9	1,	0			
Displacements	SNee	- [mm]	1.5	1 7				

Table C5.2: Displacements under static and quasi-static shear loads

Size		FZA-Q			
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12
Shear load in cracked and uncracked concrete C20/25	٧	[kN]	9,5	19,	3
Diaplacements	δνο	[mm]	0,9	2,	1
Displacements	δν∞	· [mm]	1,6	3,	1

Table C5.3: Displacements under tension loads for seismic performance category C2

Size			FZA-Q			
Size				14 x 50 M10	18 x 60 M12	18 x 80 M12
Dioplesement	DLS	δn,c2	[mana]	3,2	4,0	
Displacement	ULS	δn,c2	[mm]	13,3	12,9	

Table C5.4: Displacements under shear loads for seismic performance category C2

Size			FZA-Q		
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12
Dianlessment	DLS	δv,c2	3,6	4,6	4,6
Displacement	ULS	$\frac{\delta_{\text{V,C2}}}{\delta_{\text{V,C2}}}$ [mm]	6,8	6,8	6,6

fischer Zykon Anchor FZA-Q	
Performances Displacement under tension and shear loads	Annex C 5