

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-14/0408 of 19 December 2014

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer injection system FIS GREEN

Bonded anchor with steel element for use in non-cracked concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

28 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-14/0408

Page 2 of 28 | 19 December 2014

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-14/0408

Page 3 of 28 | 19 December 2014

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer injection system FIS GREEN is a bonded anchor consisting of a cartridge with injection mortar fischer FIS GREEN and a steel element. The steel element consist of

- a fischer threaded rod with washer and hexagon nut of sizes M8 to M20 or
- internal threaded anchor RG MI of sizes M8 to M16 or
- a deformed reinforcing bar of sizes ϕ = 8 to 20 mm or
- a fischer rebar anchor FRA of sizes M12 to M20

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029	See Annex C 1 to C 5
Characteristic resistance for design according to CEN/TS 1992-4:2009	See Annex C 6 to C 11
Displacements under tension and shear loads	See Annex C 12 / C 13

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

European Technical Assessment ETA-14/0408

Page 4 of 28 | 19 December 2014

English translation prepared by DIBt

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

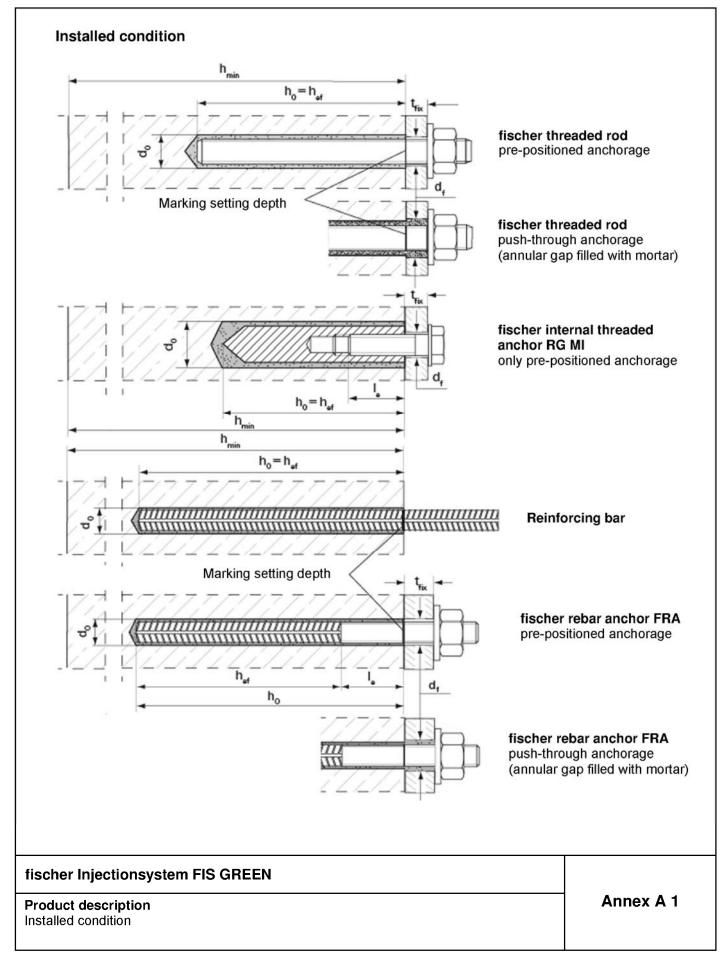
3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

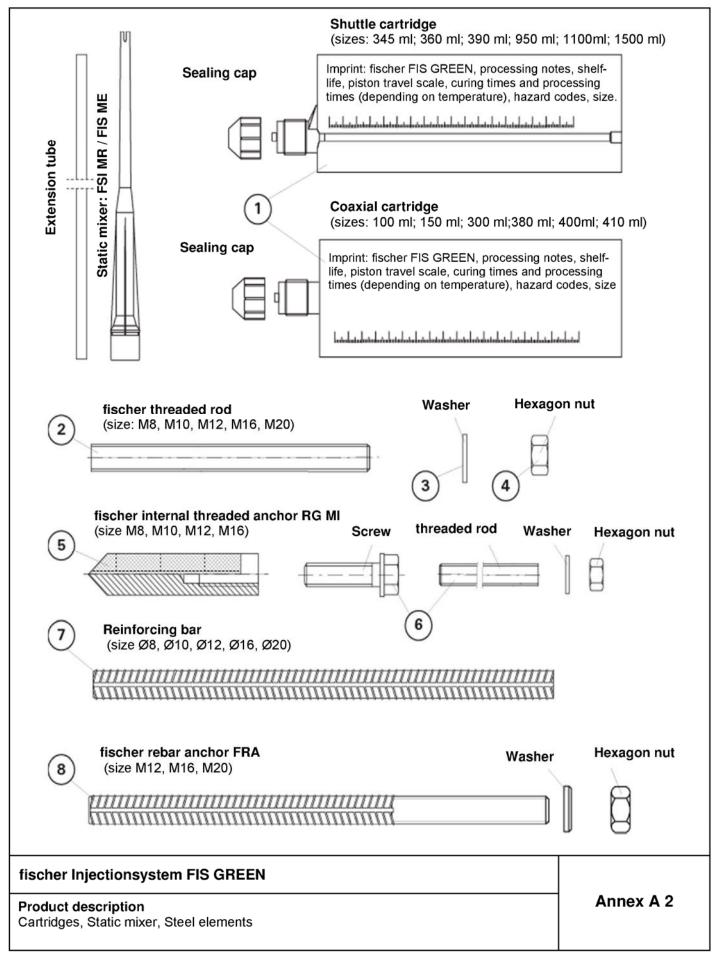
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 19 December 2014 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:AbteilungsleiterLange

Table A1: Materials

Part	Designation	Material						
1	Mortar cartridge	Bio based mortar, hardener; fillers						
		Steel, zinc plated Stainless stee		High corrosion- resistant steel C				
2	Threaded rod	Property class 5.8 or 8.8; ISO 898-1: 2013 zinc plated \geq 5 μ m, ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8\%$	Property class 50, 70 or 80 ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 EN 10088-1:2014 $f_{tuk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$	Property class 50 or 80 ISO 3506:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$				
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014				
4	Hexagon nut	Property class 5 or 8; ISO 898-2:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004	Property class 50, 70 or 80 ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 o 80 ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014				
5	Internal threaded anchor RG MI	Property class 5.8 or 8.8; EN 10277-1:2008-06 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
6	Screw or threaded rod for internal threaded anchor	Property class 5.8 or 8.8; ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
7	Rebar EN 1992-1-1:2004 + AC:2010, Annex C	Bars and decoiled rods class f_{yk} and k according to NDP of $f_{uk} = f_{tk} = k \cdot f_{yk}$	r NCL of EN 1992-1-1/N					
8	Rebar anchor FRA	Bars and decoiled rods class with f _{yk} and k according to N of EN 1992-1-1/NA:2013 f _{uk}	s B or C P DP or NCL = f _{tk} = k•f _{yk}	Threaded part: roperty class 70 ISO 3506:2009 1.4565; 1.4529 N 10088-1:2014				

fischer Injectionsystem FIS GREEN	
Product description Materials	Annex A 3

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete.

Temperature ranges:

	Max. long term temperature	Max. short term temperature
Temperature range I -40°C to +40°C	+24°C	+40°C
Temperature range II -40°C to +80°C	+50°C	+80°C

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions (high corrosion resistant steel)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of
 seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution
 (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings have to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions have to be designed in accordance with TR 029 "Design of bonded anchors", Edition September 2010 or CEN/TS 1992-4:2009

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · Dry or wet concrete.
- Hole drilling by hammer mode.
- In case of aborted hole: The hole shall be filled with mortar
- Marking and keeping the effective anchorage depth
- Cleaning the drill hole and installation in accordance with Annexes B 7 to B 8
- During curing of the mortar the temperature of the concrete must not fall below 0°C
- The curing time until the anchor may be loaded as given in Annex B 6 Table B6

fischer Injectionsystem FIS GREEN	
Intended use	Annex B 1
Specifications	

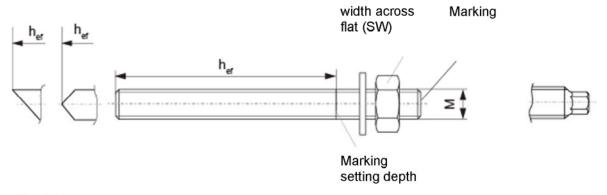


Table B1: Installation parameters threaded rods

Anchor size		M8	M10	M12	M16	M20		
Nominal drill hole diame	eter	d ₀	[mm]	10	12	14	18	24
Width across flat		SW	[mm]	13	17	19	24	30
Drill hole depth		h _o	[mm]			$h_0 = h_{ef}$		
Effective anchorage do	ath	h _{ef,min}	[mm]	60	60	70	80	90
Effective anchorage depth		h _{ef,max}	[mm]	160	200	240	320	400
Maximum torque mome	ent	T _{inst,max} [Nm] 10 20 40 60		120				
Minimum spacing	Minimum spacing		[mm]	40	45	55	65	85
Minimum edge distance	9	C _{min}	[mm]	40	45	55	65	85
Diameter of clearance	Pre-positioned anchorage	d _f	[mm]	Ø	12	14	18	22
hole in the fixture ¹⁾	Push-through anchorage	d _f	[mm]	11	14	16	20	26
Minimum thickness of o	concrete member	h _{min}	[mm]	h _{ef} ·	+ 30 (≥ 1	00)	h _{ef} +	· 2d ₀

¹⁾ For bigger clearance holes in fixture see TR 029, chapter 1.1 or CEN/TS 1992-4-1, chapter 1.2.3

fischer threaded rod FIS A and RGM

Marking:

Property class 8.8 or high corrosion-resistant steel C, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel C, property class 50: ••

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents should be stored
- Marking of embedment depth

fischer Injectionsystem FIS GREEN	
Intended use Installation parameters threaded rods	Annex B 2

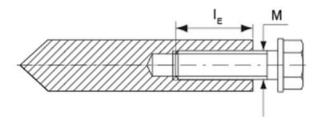
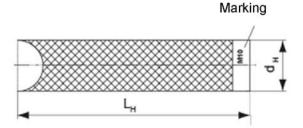


Table B2: Installation parameters internal threaded anchors RG MI

Nominal size			M8	M10	M12	M16
Anchor size	d _H	[mm]	12	16	18	22
Nominal drill hole diameter	d ₀	[mm]	14	18	20	24
Drill hole depth	h _o	[mm]		h ₀ =	= h _{ef}	
Effective anchorage depth	h _{ef}	[mm]	90	90	125	160
Maximum torque moment	T _{inst,max}	[Nm]	10	20	40	80
Minimum spacing	S _{min}	[mm]	55	65	75	95
Minimum edge distance	C _{min}	[mm]	55	65	75	95
Diameter of clearance hole in the fixture ¹⁾	d _f	[mm]	9	12	14	18
Minimum thickness of concrete member	h _{min}	[mm]	120	126	165	208
Maximum screw-in depth	I _{E,max}	[mm]	18	23	26	35
Minimum screw-in depth	I _{E,min}	[mm]	8	10	12	16

¹⁾ For bigger clearance holes in fixture see TR 029, chapter 1.1 or CEN/TS 1992-4-1, chapter 1.2.3

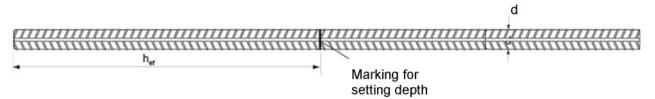

fischer internal threaded anchor RG MI

Marking: anchor size e.g.: M10

Stainless steel in addition A4 e.g.: M10 A4High corrosion-resistant steel in addition C

e.g.: M10 C

Fastening screw or threaded rods including washer and nuts must comply with the appropriate material and strength class of table A1


fischer Injectionsystem FIS GREEN	
Intended use Installation parameters internal threaded anchors RG MI	Annex B 3

Rebar diameter			8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20
Nominal drill hole diameter	d ₀	[mm]	(10)12	(12)14	(14) 16	18	20	25
Drill hole depth	h _o	[mm]	$h_0 = h_{ef}$					
Effective anchorage depth	h _{ef,min}	[mm]	60	60	70	75	80	90
	h _{ef,max}	[mm]	160	200	240	280	320	400
Minimum spacing	S _{min}	[mm]	40	45	55	60	65	85
Minimum edge distance	C _{min}	[mm]	40	45	55	60	65	85
Minimum thickness of concrete member	h _{min}	[mm]	$h_{ef} + 30 \ge 100$ $h_{ef} + 2d_0$					

1) Both drill bit diameters can be used.

Reinforcing bar

Properties of reinforcement: refer to EN 1992-1-1 Annex C, Table C.1 and C.2N

Product form	Non-zink-plated bars and decoiled rod				
Class			В	С	
Characteristic yield strength fvk or	f _{0,2k} [MPa]		400 t	o 600	
Minimum value of $k = (f_t/f_y)_k$			≥ 1,08	≥ 1,15 < 1,35	
Characteristic strain at maximum	force ε _{uk} [%]		≥ 5,0	≥ 7,5	
Bentability property			Bend / Rebendtest		
Maximum deviation from nominal mass Nominal bar		≤ 8	± 6,0		
(individual bar) [%]	size [mm] > 8		± 4,5		
Bond: Minimum relative rib area, f _{R,min}	Nominal bar	8 to 12	0,040		
(determination acc. to EN 15630)	size [mm]	> 12	0,0)56	

Rib height h:

The rib hight h must be: $0.05 * d \le h \le 0.07 * d$ d = nominal bar size

fischer Injectionsystem FIS GREEN	
Intended use Installation parameters reinforcing bars	Annex B 4

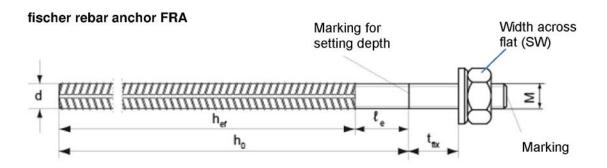
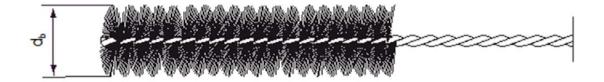


Table B4: Installation parameters rebar anchor FRA

Threaded diameter				M12	1)	M16	M20
Nominal bar size		d	[mm]	12		16	20
Width across flat		SW	[mm]	19		24	30
Nominal drill hole diame	ter	d₀	[mm]	(14)	16	20	25
Drill hole depth		h₀	[mm]			h_{ef} + ℓ_{e}	
Distance concrete surface	ce to welded join	ℓ e	[mm]			100	
Effective anchorage dep	th	h _{ef,min}	[mm]	70		80	90
Effective affortionage dep	/UT	h _{ef,max}		140		220	300
Maximum torque momei	nt	T _{inst,max}		40		60	120
Minimum spacing		S _{min}	[mm]	55		65	85
Minimum edge distance		C _{min}	[mm]	55		65	85
Diameter of clearance	Pre-positioned anchorage	d _f	[mm]	14		18	22
hole in the fixture ²⁾	Push-through anchorage	d _f	[mm]	18		22	26
Minimum thickness of co	ncrete member	h _{min}	[mm]	h ₀ + 30	$h_0 + 2d_0$		

¹⁾ Both drill bit diameters can be used

²⁾ For bigger clearance holes in fixture see TR 029, chapter 1.1 or CEN/TS 1992-4-1, chapter 1.2.3


Marking: FRA (for stainless steel)
FRA C (for high corrosion-resistant steel)

fischer Injectionsystem FIS GREEN	
Intended use Installation parameters rebar anchor FRA	Annex B 5

Table B5: Parameters of steel brush FIS BS

Drill bit diameter	[mm]	10	12	14	16	18	20	24	25
Steel brush diameter d _b	[mm]	11	14	16	20	20	25	26	27

Cleaning nozzle

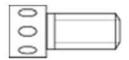
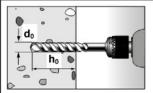


Table B6: Maximum processing time of the mortar and minimum curing time

(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature).

Temperature at			Minimum curing time ¹⁾
ancl	horing	base	t _{cure}
[°C]			[minutes]
±0	to	+5	6 hours
>+5	>+5 to +10		4 hours
>+10	to	+20	90
>+20	to	+30	60
>+30	to	+40	30

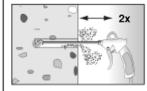
System	Maximum processing
temperature (mortar)	time t _{work}
[°C]	[minutes]
+5	13
+10	9
+20	5
+30	4
+40	2


¹⁾ For wet concrete the curing time must be doubled.

fischer Injectionsystem FIS GREEN	
Intended Use	Annex B 6
Cleaning tools	
Processing times and curing times	

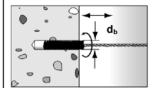
Installation instructions part 1 Drilling and cleaning the hole


1

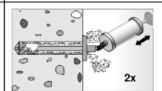

Drill the hole.

Drill hole diameter d_0 and drill hole depth h_0 see Tables **B1**, **B2**, **B3**, **B4**.

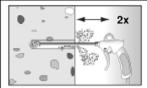
2



 $h_{ef} \le 10d$ and $d_0 < 18$ mm: Blow out the drill hole two times by hand.

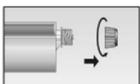

 h_{ef} > 10d and/or $d_0 \ge$ 18 mm: Blow out the drill hole two times, using oil-free pressure air (p > 6 bar) with a cleaning nozzle.

3

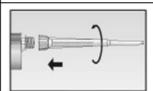


Brush the drill hole two times using an adequate steel brush (see Table **B5**).

4


 $h_{ef} \le 10d$ and $d_0 < 18$ mm: Blow out the drill hole two times by hand.

 $h_{ef} > 10d$ and/or $d_0 \ge$ 18 mm: Blow out the drill hole two times, using oil-free pressure air (p > 6 bar) with a cleaning nozzle.


Preparing the cartridge

5

Twist off the sealing cap.

6

Twist on the static mixer. The spiral in the static mixer must be clearly visible.

7

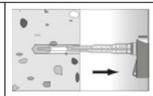
Place the cartridge into the dispenser.

8

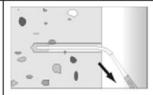
Press out approx. 10cm of mortar until the resin is permanent grey in colour. Mortar which is not grey in colour will not cure and must be disposed of.

fischer Injectionsystem FIS GREEN

Intended Use

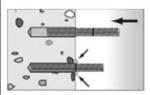

Installation instructions part 1

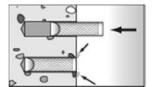
Annex B 7



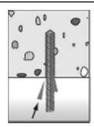
Installation instructions part 2 Injection of the mortar

9

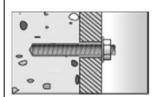

Fill approx.. 2/3 of the drill hole with mortar. Always begin from the bottom of the hole to eliminate voids.



For drill hole depth ≥ 150 mm use an extension tube.

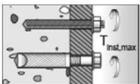

Installation fischer anchor rods or internal threaded anchors RG MI

10



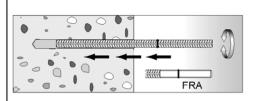
Only use clean and oil-free anchor elements. Press the anchor rod or internal threaded anchor RG MI down to the bottom of the hole, turning it slightly while doing so. After inserting the anchor element, excess mortar must emerge around the anchor element.

For overhead installation support the anchor element with wedges.


For push-through installation fill the annular gap also with mortar.

11

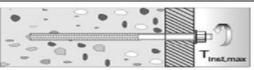
Wait for the specified curing time t_{cure} see Table **B6**.


12

Mounting the fixture T_{inst,max} see Tables **B1** or **B6**

Installing reinforcing bars and fischer rebar anchors FRA

10


Only use clean and oil-free rebars. Mark the reinforcing bar for setting depth. Using a turning movement, push the reinforcing bar or FRA vigorously into the filled hole up to the insertion depth marking. When reaching the setting depth marking surplus mortar must emerge around the anchor.

11

Wait for the specified curing time t_{cure} see Table **B6**.

12

Mounting the fixture T_{inst,max} see Table **B4**

fischer Injectionsystem FIS GREEN

Intended Use

Installation instructions part 2

Annex B 8

Table C1: Characteristic values of resistance for threaded rods under tension loads in noncracked concrete (Design according to TR 029)

Anchor size			M8	M10	M12	M16	M20	
Installation safety factor	γ2	[-]	1,2					
Combined pullout and concrete cone failure								
Diameter for calculation	d	[mm]	8	10	12	16	20	
Characteristic bond resistance in non-	cracked concret	e C20/25						
Temperature range I ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	10,5	10,0	9,5	8,5	7,5	
Temperature range II ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,0	8,5	7,5	6,5	
	C25/30	[-]	1,02					
	C30/37	[-]	1,04					
 Increasing factor Ψ _c	C35/45	[-]	1,07					
	C40/50	[-]	1,08					
	C45/55	[-]		1,09				
	C50/60	[-]	1,10					
Splitting failure								
	h/h _{ef} ≥2,0	[mm]	1,0 h _{ef}					
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]	4,6 h _{ef} - 1,8 h					
	h/h _{ef} ≤1,3	[mm]	2,26 h _{ef}					
Spacing	S _{cr,sp}	[mm]			2 c _{cr,sp}			

¹⁾ See Annex B1

fischer Injectionsystem FIS GREEN	
Performances Characteristic values of resistance for threaded rods under tension load in non-cracked concrete. Design according to TR 029	Annex C 1

Table C2: Characteristic values of resistance for internal threaded anchors RG MI under tension loads in non-cracked concrete (Design according to TR 029)

Anchor size				M8	M10	M12	M16	
Installation safety factor		γ ₂	[-]		1	,2		
Steel failure		,=,		'				
	Property	5.8	[kN]	19	29	43	79	
Characteristic resistance	class	8.8	[kN]	29	47	68	108	
with screw N _{Rk,s}	Property	A4	[kN]	26	41	59	110	
	class 70	С	[kN]	26	41	59	110	
	Property	5.8	[-]		1,	50	•	
Partial safety factor	class	8.8	[-]		1,	50		
1)	Property	A4	[-]		1,	87		
	class 70	С	[-]		1,	87		
Combined pullout and co	ncrete con	e failure						
Characteristic bond resista	nce in non-		C20/25					
Temperature range I ²⁾		$N^0_{Rk,p}$	[kN]	32	38	56	76	
Temperature range II ²⁾		$N_{Rk,p}^0$	[kN]	30	35	51	70	
		C25/30	[-]		1,	02		
		C30/37	[-]		1,	04		
Increasing factor III		C35/45	[-]		1,07			
Increasing factor Ψ _c		C40/50	[-]		1,08			
		C45/55	[-]		1,	,09		
		C50/60	[-]	1,10				
Splitting failure								
		h/h _{ef} ≥2,0	[mm]		1,0) h _{ef}		
Edge distance c _{cr,sp}		2,0>h/h _{ef} >1,3	[mm]		4,6 h _{ef} – 1,8 h			
3,,55		h/h _{ef} ≤1,3	[mm]		2,26 h _{ef}			
Spacing		S _{cr,sp}	[mm]		2 (cr,sp		

¹⁾ In absence of other national regulations ²⁾ See Annex B1

fischer Injectionsystem FIS GREEN	
Performances Characteristic values of resistance for internal threaded rods under tension load in non-cracked concrete. (Design according to TR 029)	Annex C 2

Table C3: Characteristic values of resistance for reinforcing bars under tension loads in noncracked concrete (Design according to TR 029)

Size	Ø	[mm]	8	10	12	14	16	20		
Installation safety factor	γ2	[-]	1,2							
Combined pullout and concrete cone failure										
Diameter of calculation	d	[mm]	8	10	12	14	16	20		
Characteristic bond resistar	nce in non-crad	cked conc	rete C20/	25						
Temperature range I ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,5	7,5	7,5		
Temperature range II ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5	6,5	6,5	6,5		
	C25/30	[-]			1,	02				
	C30/37	[-]			1,	04				
Increasing factor III	C35/45	[-]			1,	07				
Increasing factor Ψ _c	C40/50	[-]			1,	80				
	C45/55	[-]			1,	09				
	C50/60	[-]			1,	10				
Splitting failure										
	h/h _{ef} ≥2,	0 [mm]			1,0	h _{ef}				
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	3 [mm]			4,6 h _{ef}	– 1,8 h		·		
, .	h/h _{ef} ≤1,	3 [mm]			2,20	3 h _{ef}		·		
Spacing	S _{cr,s}	p [mm]			2 c	cr,sp				

¹⁾ In absence of other national regulations

Table C4: Characteristic values of resistance for rebar anchors FRA under tension loads in non-cracked concrete (Design according to TR 029)

Size			M12	M16	M20			
Installation safety factor	γ2	[-]	1,2					
Steel failure								
Characteristic resistance	$N_{Rk,s}$	[kN]	63	111	173			
Partial safety factor	γ _{Ms,N} 1)	[-]		1,40				
Combined pullout and co	ncrete cone fa	ailure						
Diameter of calculation	d	[mm]	12	16	20			
Characteristic bond resistar	nce in non-crad	cked conc	rete C20/25					
Temperature range I ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5			
Temperature range II ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5			
	C25/30	[-]	1,02					
	C30/37	[-]		1,04				
Increasing factor III	C35/45	[-]		1,07				
Increasing factor Ψ _c	C40/50	[-]		1,08				
	C45/55	[-]		1,09				
	C50/60	[-]		1,10				
Splitting failure								
	h/h _{ef} ≥2,	0 [mm]		1,0 h _{ef}				
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	3 [mm]		4,6 h _{ef} – 1,8 h				
7.	h/h _{ef} ≤1,	3 [mm]		2,26 h _{ef}				
Spacing	S _{cr,s}	p [mm]		2 c _{cr,sp}				

¹⁾ In absence of other national regulations

²⁾ See Annex B1

fischer Injectionsystem FIS GREEN	
Performances Characteristic values of resistance for reinforcing bars and rebar anchors FRA under tension load in non-cracked concrete. (Design according to TR 029)	Annex C 3

²⁾ See Annex B1

Table C5: Characteristic values of resistance for threaded rods under shear loads in noncracked concrete (Design according to TR 029)

Size			M8	M10	M12	M16	M20
Concrete pryout failure							
Factor k in equation (5.7) of Technical Report TR 029, Section 5.2.3.3	k	[-]			2,0		

Table C6: Characteristic values of resistance for internal threaded rods RG MI under shear loads in non-cracked concrete (Design according to TR 029)

Size				M8	M10	M12	M16			
Steel failure without lever arm										
Characteristic	Property	5.8	[kN]	9,2	14,5	21,1	39,2			
Characteristic	class	8.8	[kN]	14,6	23,2	33,7	62,7			
resistance V _{Rk,s}	Property	A4	[kN]	12,8	20,3	29,5	54,8			
	class 70	O	[kN]	12,8	20,3	29,5	54,8			
Steel failure with lever arm							•			
Characteristic	Property	5.8	[Nm]	20	39	68	173			
Characteristic resistance	class	8.8	[Nm]	30	60	105	266			
M ⁰ _{Rk,s}	Property	A4	[Nm]	26	52	92	232			
IVI Rk,s	class 70	O	[Nm]	26	52	92	232			
Concrete pryout failure										
Factor k in equation (5.7) of Technical		k	[-]		2	,0				
Report TR 029, Section 5.2.3.3		- -								

fischer Injectionsystem FIS GREEN	
Performances	Annex C 4
Characteristic values of resistance for threaded rods and internal threaded anchors	
RG MI under shear loads in non-cracked concrete (Design according to TR 029)	

Table C7: Characteristic values of resistance for reinforcing bars under shear loads in noncracked concrete (Design according to TR 029)

Size	Ø	[mm]	8	10	12	14	16	20
Concrete pryout failure								
Factor k in equation (5.7) of Technical Report TR 029, Section 5.2.3.3	k	[-]	2,0					

Table C8: Characteristic values of resistance rebar anchors FRA under shear loads in noncracked concrete (Design according to TR 029)

Size			M12	M16	M20
Steel failure without lever arm					
Characteristic resistance	$V_{Rk,s}$	[kN]	30	55	86
Steel failure with lever arm	•				
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	92	233	454
Partial safety factor	γ _{Ms,V} 1)	[-]		1,56	
Concrete pryout failure					
Factor k in equation (5.7) of Technical Report TR 029, Section 5.2.3.3	k	[-]		2,0	

¹⁾ In absence of other national regulations

fischer Injectionsystem FIS GREEN	
Performances	Annex C 5
Characteristic values of resistance for reinforcing bars and rebar anchors FRA under shear loads in non-cracked concrete (Design according to TR 029)	

Table C9: Characteristic values of resistance for threaded rods under tension loads in noncracked concrete (Design according to CEN/TS 1992-4)

Anchor size			M8	M10	M12	M16	M20	
Installation safety factor	γinst	[-]		'	1,2	•		
Steel failure								
Characteristic resistance	N _{Rk,s}	[kN]	$A_s \times f_{uk}$					
Combined pullout and concrete co	ne failure							
Diameter for calculation	d	[mm]	8	10	12	16	20	
Characteristic bond resistance in non	-cracked concrete	C20/25						
Temperature range I ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	10,5	10,0	9,5	8,5	7,5	
Temperature range II ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,0	8,5	7,5	6,5	
	C25/30	[-]	1,02					
	C30/37	[-]	1,04					
Increasing factor Ψ _c	C35/45	[-]	1,07					
moreasing factor Ψ_c	C40/50	[-]			1,08			
	C45/55	[-]			1,09			
	C50/60	[-]			1,10			
Factor acc. CEN/TS-1992-4 Section 6.2.2.3	k ₈	[-]			10,1			
Splitting failure								
Factor acc. CEN/TS-1992-4 Section 6.2.3.1	k _{ucr}	[-]			10,1			
	h/h _{ef} ≥2,0	[mm]			1,0 h _{ef}			
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]		4,	6 h _{ef} – 1,8	3 h		
· ·	h/h _{ef} ≤1,3	[mm]	2,26 h _{ef}					
Spacing	S _{cr,sp}	[mm]			2 c _{cr,sp}			

¹⁾ See Annex B1

fischer Injectionsystem FIS GREEN	
Performances Characteristic values of resistance for threaded rods under tension load in non-cracked concrete. Design according to CEN/TS-1992-4	Annex C 6

Table C10: Characteristic values of resistance for internal threaded anchors RG MI under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Anchor size			M8	M10	M12	M16		
Installation safety factor	γinst	[-]		1	,2			
Steel failure				•				
	Property	5.8	[kN]	19	29	43	79	
Characteristic resistance	class	8.8	[kN]	29	47	68	108	
with screw N _{Rk,s}	Property	A4	[kN]	26	41	59	110	
·	class 70	С	[kN]	26	41	59	110	
Double Lockety	Property	5.8	[-]		1,	50		
Partial safety	class	8.8	[-]		1,	50		
factor	Property	A4	[-]		1,	87		
γ _{Ms,N} ¹⁾	class 70	С	[-]		1,	87		
Combined pullout and cor	ncrete cone	failure		•				
Characteristic bond resistan	ce in non-cra	acked concrete	C20/25					
Temperature range I ²⁾		$N^0_{Rk,p}$	[kN]	32	38	56	76	
Temperature range II ²⁾		$N_{Rk,p}^0$	[kN]	30	35	51	70	
		C25/30	[-]	1,02				
		C30/37	[-]	1,04				
Inorganina factor III		C35/45	[-]		1,07			
Increasing factor Ψ _c		C40/50	[-]		1,	.08		
		C45/55	[-]		1,	09		
		C50/60	[-]		1,	10		
Factor acc. CEN/TS-1992-4	-5:2009	l _e	F 1	10,1				
Section 6.2.2.3		k ₈	[-]		11	J, I		
Splitting failure								
Factor acc. CEN/TS-1992-4	-5:2009	l _k	F 1		47	<u> </u>		
Section 6.2.3.1		k _{ucr}	[-]		11	0,1		
		h/h _{ef} ≥2,0	[mm]		1,0) h _{ef}		
Edge distance c _{cr,sp}		2,0>h/h _{ef} >1,3	[mm]	4,6 h _{ef} – 1,8 h				
- -		h/h _{ef} ≤1,3	[mm]	2,26 h _{ef}				
Spacing		S _{cr,sp}	[mm]		2 (cr,sp		

¹⁾ In absence of other national regulations ²⁾ See Annex B1

fischer Injectionsystem FIS GREEN	
Performances Characteristic values of resistance for internal threaded rods RG MI under tension load in	Annex C 7

Table C11: Characteristic values of resistance for reinforcing bars under tension loads in noncracked concrete (Design according to CEN/TS 1992-4)

Size	Ø	[mm]	8	10	12	14	16	20		
Installation safety factor	γ_{inst}	[-]	1,2							
Steel failure										
Characteristic resistance	$N_{Rk,s}$	[kN]	$A_s \times f_{uk}$							
Combined pullout and concr	ete cone fa	ailure								
Diameter of calculation	d	[mm]	80	10	12	14	16	20		
Characteristic bond resistance in non-cracked concrete C20/25										
Temperature range I 1)	$ au_{Rk,ucr}$	$[N/mm^2]$	7,5	7,5	7,5	7,5	7,5	7,5		
Temperature range II 1)	$ au_{Rk,ucr}$	$[N/mm^2]$	6,5	6,5	6,5	6,5	6,5	6,5		
	C25/30	[-]			1,	02				
Increasing factor Ψ_c	C30/37	[-]			1,	04				
	C35/45	[-]	1,07							
	C40/50	[-]	1,08							
	C45/55	[-]	1,09							
	C50/60	[-]	1,10							
Factor acc. CEN/TS-1992-4-										
5:2009	k ₈	[-]			10),1				
Section 6.2.2.3										
Splitting failure										
Factor acc. CEN/TS-1992-4-										
5:2009	k _{ucr}	[-]			10),1				
Section 6.2.3.1										
		2,0 [mm]	mm] 1,0 h _{ef}							
Edge distance c _{cr,sp}	2,0>h/h _{ef} >	1,3 [mm]				– 1,8 h				
	h/h _{ef} ≤	1,3 [mm]			2,26	3 h _{ef}				
Spacing	S	_{cr,sp} [mm]			2 c	cr,sp				

¹⁾ See Annex B1

fischer Injectionsystem FIS GREEN	
Performances	Annex C 8
Characteristic values of resistance for reinforcing bars under tension load in non-cracked concrete. Design according to CEN/TS-1992-4	

Table C12: Characteristic values of resistance for rebar anchors FRA under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Size			M12	M16	M20			
Installation safety factor	γinst	[-]	1,2					
Steel failure								
Characteristic resistance	$N_{Rk,s}$	[kN]	63	111	173			
Partial safety factor	γ _{Ms,N}	[-]		1,40				
Combined pullout and con	crete cone fa	ailure						
Diameter of calculation	d	[mm]	12	16	20			
Characteristic bond resistance in non-cracked concrete C20/25								
Temperature range I ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5			
Temperature range II ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5			
-	C25/30	[-]	1,02					
	C30/37	[-]	1,04					
Inoropoina footor III	C35/45	[-]	1,07					
Increasing factor Ψ _c	C40/50	[-]	1,08					
	C45/55	[-]		1,09				
	C50/60	[-]		1,10				
Factor acc. CEN/TS-1992-4-5:2009 Section 6.2.2.3	. k ₈	[-]		10,1				
Splitting failure								
Factor acc. CEN/TS-								
1992-4-5:2009	k_{ucr}	[-]		10,1				
Section 6.2.3.1								
	h/h _{ef} ≥2,0	[mm]	1,0 h _{ef}					
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	3 [mm]	·	4,6 h _{ef} – 1,8 h				
	h/h _{ef} ≤1,:	3 [mm]	2,26 h _{ef}					
Spacing	S _{cr,s}	p [mm]		2 c _{cr,sp}				

¹⁾ In absence of other national regulations ²⁾ See Annex B1

fischer Injectionsystem FIS GREEN	
Performances Characteristic values of resistance for rebar anchors FRA under tension load in non-cracked concrete. Design according to CEN/TS-1992-4	Annex C 9

Table C13: Characteristic values of resistance for threaded rods under shear loads in noncracked concrete (Design according to CEN/TS 1992-4)

Size			M8	M10	M12	M16	M20	
Installation safety factor	γinst	[-]	1,0					
Steel failure without lever arm								
Characteristic resistance	$V_{Rk,s}$	[kN]		1	$0.5 A_s \times f_u$	k		
Ductility factor acc. to CEN/TS 1992-4-5, Section 6.3.2.1	k ₂	[-]	0,8					
Steel failure with lever arm								
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	1,2 x W _{el} x f _{uk}					
Concrete pryout failure								
Factor in equation of CEN/TS 1992-4-5, Section 6.3.3	k ₃	[-]	2,0					
Concrete edge failure								
Effective length of anchor	I _f	[mm]	$I_f = min (h_{ef}; 8 d_{nom})$					
Outside diameter of anchor	d _{nom}	[mm]	8 10 12 16 20					

Table C14: Characteristic values of resistance for internal threaded rods RG MI under shear loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Size				M8	M10	M12	M16
Installation safety factor	Installation safety factor γ_{inst} [-]			1,0			
Steel failure without lever ar	Steel failure without lever arm						
Characteristic	Property	5.8	[kN]	9,2	14,5	21,1	39,2
resistance	class	8.8	[kN]	14,6	23,2	33,7	62,7
V _{Rk,s}	Property	A4	[kN]	12,8	20,3	29,5	54,8
V Rk,s	class 70	С	[kN]	12,8	20,3	29,5	54,8
Ductility factor acc. to CEN/TS Section 6.3.2.1	k ₂	[-]	0,8				
Steel failure with lever arm							
Characteristic	Property	5.8	[Nm]	20	39	68	173
Characteristic resistance	class	8.8	[Nm]	30	60	105	266
M ⁰ _{Rk,s}	Property	A4	[Nm]	26	52	92	232
IVI Rk,s	class 70	С	[Nm]	26	52	92	232
Concrete pryout failure							
Factor in equation of CEN/TS Section 6.3.3	1992-4-5,	k ₃	[-]	2,0			
Concrete edge failure							
Effective length of anchor		I _f	[mm]	90	90	125	160
Outside diameter of anchor		d _{nom}	[mm]	12	16	18	22

fischer Injectionsystem FIS GREEN	
Performances Characteristic values of resistance for threaded rods and internal threaded anchors RG MI under shear loads in non-cracked concrete (Design according to CEN/TS	Annex C 10

Table C15: Characteristic values of resistance for reinforcing bars under shear loads in noncracked concrete (Design according to CEN/TS 1992-4)

Size	Ød	[mm]	8	10	12	14	16	20
Installation safety factor	γinst	[-]	1,0					•
Steel failure without lever arm								
Characteristic resistance	$V_{Rk,s}$	[kN]			0,5 A	s x f _{uk}		
Ductility factor acc. to CEN/TS 1992-4-5, Section 6.3.2.1	k ₂	[-]	0,8					
Steel failure with lever arm								
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]			1,2 x \	$N_{\rm el} \times f_{\rm uk}$		
Concrete pryout failure								
Factor in equation of CEN/TS 1992-4-5, Section 6.3.3	k ₃	[-]	2,0					
Concrete edge failure								
Effective length of anchor	I _f	[mm]	$I_f = min (h_{ef}; 8d_{nom})$					
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20

Table C16: Characteristic values of resistance rebar anchors FRA under shear loads in noncracked concrete (Design according to CEN/TS 1992-4)

Size			M12	M16	M20		
Installation safety factor	γinst	[-]	1,0				
Steel failure without lever arm							
Characteristic resistance	$V_{Rk,s}$	[kN]	30	55	86		
Ductility factor acc. to CEN/TS 1992-4-5, Section 6.3.2.1	k ₂	[-]		0,8			
Steel failure with lever arm							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	92	233	454		
Partial safety factor	γ _{Ms,V} 1)	[-]		1,56			
Concrete pryout failure							
Factor in equation of CEN/TS 1992-4-5, Section 6.3.3	k ₃	[-]	2,0				
Concrete edge failure							
Effective length of anchor	l _f	[mm]					
Outside diameter of anchor	d _{nom}	[mm]	12	16	20		

¹⁾ In absence of other national regulations

fischer Injectionsystem FIS GREEN	
Performances Characteristic values of resistance for reinforcing bars and rebar anchors FRA under shear loads in non-cracked concrete (Design according to CEN/TS 1992-4)	Annex C 11

Table C17: Displacements under tension load 1) for threaded rods

Size		M8	M10	M12	M16	M20
Temperature range I and II						
δ_{No} -Factor	[mm/(N/mm²)]	0,09	0,09	0,10	0,11	0,11
δ _{N∞} -Factor	[mm/(N/mm²)]	0,14	0,14	0,15	0,17	0,17

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-Factor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\cdot \tau$

Table C18: Displacements under shear load¹⁾ for threaded rods

Size		M8	M10	M12	M16	M20
Temperature range I and II						
δ_{V0} -Factor	[mm/kN]	0,18	0,15	0,12	0,09	0,07
δ _{V∞} -Factor	[mm]	0,27	0,22	0,18	0,14	0,11

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-Factor} \cdot V$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor · V

Table C19: Displacements under tension load¹⁾ for internal threaded anchors RG MI

Size		M8	M10	M12	M16
Temperature range I and II					
$\delta_{N0} ext{-}Factor$	[mm/(N/mm²)]	0,10	0,11	0,12	0,12
$\delta_{N_{\infty}}$ -Factor	[mm/(N/mm²)]	0,15	0,17	0,18	0,18

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Factor $\cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\cdot \tau$

Table C20: Displacements under shear load¹⁾ for internal threaded anchors RG MI

Size		M8	M10	M12	M16
Temperature range I and II					
δ_{Vo} -Factor	[mm/kN]	0,18	0,15	0,12	0,09
δ _{V∞} -Factor	[mm/kN]	0,27	0,22	0,18	0,14

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-Factor} \cdot V$ $\delta_{N\infty} = \delta_{N\infty}\text{-Factor} \cdot V$

fischer Injectionsystem FIS GREEN	
Performances Displacements threaded rods and internal threaded anchor	Annex C 12

8.06.01-282/14 Z656.15

Table C21: Displacements under tension load¹⁾ for reinforcing bars

Size	Ø	[mm]	8	10	12	14	16	20
Temperature range I and II								
δ_{N0} -Factor		[mm/(N/mm²)]	0,09	0,09	0,10	0,11	0,12	0,13
δ _{N∞} -Factor		[mm/(N/mm²)]	0,13	0,14	0,16	0,16	0,18	0,20

¹⁾ Calculation of the displacement

 $\delta_{\mathsf{N0}} = \delta_{\mathsf{N0}}\text{-}\mathsf{Factor}\cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\cdot \tau$

Table C22: Displacements under shear load 1) for reinforcing bars

Size	Ø	[mm]	8	10	12	14	16	20
Temperature range I (-40°C / +40°C) and temperature range II (-40°C / +80°C)								
δ_{V0} -Factor		[mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07
δ _{V∞} -Factor		[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Factor} \cdot \text{V}$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor · V

Table C23: Displacements under tension load¹⁾ for rebar anchor FRA

Size	Ø	[mm]	M10	M12	M16
Temperature range I a	and II				
δ_{N0} -Factor		[mm/(N/mm²)]	0,09	0,10	0,12
δ _{N∞} -Factor		[mm/(N/mm²)]	0,14	0,16	0,18

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Factor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\cdot \tau$

Table C24: Displacements under shear load¹⁾ for rebar anchor FRA

Size	Ø	[mm]	M10	M12	M16
Temperature range I an	ıd II				
δ_{V0} -Factor		[mm/kN]	0,15	0,12	0,09
δ _{V∞} -Factor		[mm/kN]	0,22	0,18	0,14

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Factor} \cdot \text{V}$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor · V

fischer Injectionsystem FIS GREEN	
Performances Displacements reinforcing bars and rebar anchor FRA	Annex C 13