

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-07/0135 of 20 October 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product fischer drop-in anchor EA II Product family Mechanical fasteners for use in concrete to which the construction product belongs fischerwerke GmbH & Co. KG Manufacturer Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND fischerwerke Manufacturing plant This European Technical Assessment 14 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330232-01-0601, Edition 05/2021 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-07/0135 issued on 9 December 2016

European Technical Assessment ETA-07/0135 English translation prepared by DIBt

Page 2 of 14 | 20 October 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The fischer drop-in anchor EA II is an anchor made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fixture shall be anchored with a fastening screw or threaded rod.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance				
Characteristic resistance to tension load (static and quasi static action) Method A	See Annex B2 and C1				
Characteristic resistance to shear load (static and quasi static action)	See Annex C2				
Displacements and Durability	See Annex C3 and B1				
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed				

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-07/0135 English translation prepared by DIBt

Page 4 of 14 | 20 October 2021

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 20 October 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-07/0135 of 20 October 2021

Page 6 of European Technical Assessment ETA-07/0135 of 20 October 2021

	Expansion sleeve Expans									
Table A2.1: Anchor siz	h _e	f	Marking	ea live odrim	<u>-</u>					
Anchor size EA II [mm]	M6×30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20×80	
h _{ef}	30	30	40	30	40		0	65	80	
∅ d _{nom} ∅ drim	8 9,5		10	12		15	16 17,5	20	25 27,0	
(not applicable for EA II RL)	5		1,5 6,5	13		16,5	0	21,5 13,5	17,5	
	14		3,5	13	, 18		8	25	26	
No groove for: - EA II M6x30 - EA II M8x30 - EA II M10x40 - EA II M12x50 - EA II M16x65 - EA II M20x80 Table A2.2: Marking on	anchor	body		/ 2 grooves - EA II M - EA II M ⁻	/l8x40					
galvanised st					with rim	stainless	steel (R			
EA II M8x30 EA II M8x40 EA II M10x30 EA II M10x40 EA II M10x40 EA II M10x40 EA II M12x50 EA II M12x50 EA II M12x50 EA II M12x50 EA II M16x65 EA II M16x65	> EA II M > EA II M	A8x30 F A8x40 F A10x30 A10x40 A12x50 A12x50 A12x50 A16x65	IL RL RL RL RL RL RL D RL	Image: Constraint of the second se	M8x30 F M8x40 F M10x30 M10x40 M12x50 M12x50 M16x65	R R R R D R R R R R	EA EA EA EA EA EA EA EA	rimless II M6x30 RL II M8x30 RL II M10x30 F II M10x30 F II M10x40 F II M12x50 F II M12x50 F II M16x65 F II M20x80 F	R R IL R IL R IL R IL D R IL R	
								(Fig. not to	scale)	
fischer drop-in anchc	r EA II								,	
Product description Anchor types								Annex	A 2	

Page 7 of European Technical Assessment ETA-07/0135 of 20 October 2021

E	Expansion sleeve	Expansion pin
Table A3.1: Materials	Mate	erial
Designation	galvanised steel (≥ 5 μm)	stainless steel (R)
Expansion sleeve		
Expansion pin	EN 10277:2018 or EN 10084:2008 or EN 10111:2008 or EN 10263:2018 or EN 10087:1999 or ASTM A29/A29M	EN 10088:2014
Fastening screw or threaded rod	steel, property class 4.6, 5.6, 5.8 or 8.8 according to EN ISO 898-1:2013	property class 50, 70 or 80 according to EN ISO 3506:2020
		(Fig. not to scale)
fischer drop-in anchor	EA II	
Product description Material		Annex A 3

Setting tools		Marking]	Descr	iption	Marking on EA II with rim and rimless			
		EHS Plu Mx he	Manual tool wit gua	h hand					
	<u> </u>).	EHS Mx h _{ef}		Manual setting tool basic format					
		EMS Mx he	f	Mac settin with SD	g tool		No marl	king	
Or other usual driller		EBB Ødnom x I		Stop					
Table A4.1: Correspo	nding d	rill bits and	param	eters of	setting	10015			
Fable A4.1: Correspo Manual setting tool		e setting tool		p drill	- For anc	hor size	Ø D1	Ø D2	L
Manual setting tool	Machir	e setting tool	Sto	op drill	For anc EA	hor size	[mm]	[mm]	[mm
	Machir EMS		Sto		For anc EA EA II	hor size	[mm] 4,8	[mm] 9,0	L [mm 17,0 18,0
Manual setting tool EHS (Plus) M6x25/30 EHS (Plus) M8x25/30 EHS (Plus) M8x40	Machir EMS EMS EN	e setting tool M6x25/30 M8x25/30 S M8x40	Sto EBE EBE EBE	op drill 8 8x30 8 10x30 8 10x40	For anc EA EA II EA II EA II	hor size A II M6x30 M8x30 M8x40	[mm]	[mm]	[mm 17,0 18,0 28,0
Manual setting tool EHS (Plus) M6x25/30 EHS (Plus) M8x25/30 EHS (Plus) M8x40 EHS (Plus) M10x25/30	Machir EMS EMS ENS	e setting tool M6x25/30 M8x25/30 S M8x40 M10x25/30	Sto EBE EBE EBE EBE	bp drill 8 8x30 8 10x30 8 10x40 8 12x30	For anc EA EA II EA II EA II EA II	hor size \ II M6x30 M8x30 M8x40 110x30	[mm] 4,8	[mm] 9,0	[mm 17,0 18,0 28,0 18,0
Manual setting tool EHS (Plus) M6x25/30 EHS (Plus) M8x25/30 EHS (Plus) M8x40 EHS (Plus) M10x25/30 EHS (Plus) M10x40	Machir EMS EMS ENS EMS EMS	e setting tool M6x25/30 M8x25/30 S M8x40 M10x25/30 S M10x40	Sto EBE EBE EBE EBE EBE	op drill 8 8x30 8 10x30 8 10x40 8 12x30 8 12x40	For anc EA II EA II EA II EA II M EA II M	hor size \ II M6x30 M8x30 M8x40 110x30 110x40	[mm] 4,8 6,4 7,9	[mm] 9,0 11,0 13,0	[mm 17,0 18,0 28,0 18,0 24,0
Manual setting tool EHS (Plus) M6x25/30 EHS (Plus) M8x25/30 EHS (Plus) M8x40 EHS (Plus) M10x25/30	Machir EMS EMS EMS EMS EMS EMS	e setting tool M6x25/30 M8x25/30 S M8x40 M10x25/30	Sto EBE EBE EBE EBE EBE	bp drill 8 8x30 8 10x30 8 10x40 8 12x30	For anc EA II EA II EA II EA II M EA II M EA II M	hor size \ II M6x30 M8x30 M8x40 110x30	[mm] 4,8 6,4	[mm] 9,0 11,0	[mm 17,0 18,0 28,0 18,0 24,0
Manual setting tool EHS (Plus) M6x25/30 EHS (Plus) M8x25/30 EHS (Plus) M8x40 EHS (Plus) M10x25/30 EHS (Plus) M10x40 EHS (Plus) M12x50 EHS (Plus) M12x50 EHS (Plus) M16x65	Machir EMS EMS EMS EMS EMS EMS EMS EMS EMS	e setting tool M6x25/30 M8x25/30 S M8x40 M10x25/30 S M10x40 S M10x40 S M12x50 S M12x50 S M16x65	Sto EBE EBE EBE EBE EBE EBE EBE	op drill 8 8x30 8 10x30 8 10x40 8 12x30 8 12x40 8 12x40 8 15x50 8 16x50 8 20x65	For anc EA II EA II EA II EA II M EA II M EA II M EA II M	hor size II M6x30 M8x30 M8x40 110x30 110x40 112x50 I2x50 D 116x65	[mm] 4,8 6,4 7,9 10,2 13,5	[mm] 9,0 11,0 13,0 16,5 22	[mm 17,0 18,0 28,0 18,0 24,0 30,0 36,0
Manual setting tool EHS (Plus) M6x25/30 EHS (Plus) M8x25/30 EHS (Plus) M8x40 EHS (Plus) M10x25/30 EHS (Plus) M10x40 EHS (Plus) M12x50 EHS (Plus) M12x50	Machir EMS EMS EMS EMS EMS EMS EMS EMS EMS	e setting tool M6x25/30 M8x25/30 S M8x40 M10x25/30 S M10x40 S M10x40 S M12x50 S M12x50	Sto EBE EBE EBE EBE EBE EBE EBE	bp drill 8 8x30 8 10x30 8 10x40 8 12x30 8 12x40 8 12x40 8 15x50 8 16x50	For anc EA II EA II EA II EA II M EA II M EA II M EA II M	hor size \ II M6x30 M8x30 M8x40 110x30 110x40 112x50 I2x50 D	[mm] 4,8 6,4 7,9 10,2	[mm] 9,0 11,0 13,0 16,5	[mm 17,0 18,0 28,0 18,0 24,0 30,0
Manual setting tool EHS (Plus) M6x25/30 EHS (Plus) M8x25/30 EHS (Plus) M8x40 EHS (Plus) M10x25/30 EHS (Plus) M10x40 EHS (Plus) M12x50 EHS (Plus) M12x50 EHS (Plus) M16x65	Machir EMS EMS EMS EMS EMS EMS EMS EMS EMS	e setting tool M6x25/30 M8x25/30 S M8x40 M10x25/30 S M10x40 S M10x40 S M12x50 S M12x50 S M12x50 S M16x65 S M20x80	Sto EBE EBE EBE EBE EBE EBE EBE	op drill 8 8x30 8 10x30 8 10x40 8 12x30 8 12x40 8 12x40 8 15x50 8 16x50 8 20x65	For anc EA II EA II EA II EA II M EA II M EA II M EA II M	hor size II M6x30 M8x30 M8x40 110x30 110x40 112x50 I2x50 D 116x65	[mm] 4,8 6,4 7,9 10,2 13,5 16,4	[mm] 9,0 11,0 13,0 16,5 22	[mm 17,(18,(28,(18,(24,(30,(36,(50,(

	S	pecification	ns of in	tended ı	Jse			
Anchorages subject to:		•						
fischer drop-in anchor EA I	l (all versions)		M6	M8	M10	M12	M16	M20
Hammer drilling with standard drill bit	<u>decess</u>							
Hammer drilling with hollow drill bit with automatic cleaning					All	types		
Material	Steel Stainless	Zinc plated				\$ \$		
Static and quasi-static load						1		
Uncracked concrete						1		
 Base materials: Reinforced or unreinfor EN 206:2013+A1:2010 		concrete withou	ut fibres c	of strength	classes C	20/25 to (C50/60 acco	ording to
Use conditions (Enviror	nmental conc	litions):						
 Structures subject to c 	dry internal co	nditions:			EA	II, EA II	R	
 For all other conditions 	s according to	EN 1993-1-4:	2006 + A	1:2015 co	rrespondin	g		
to corrosion resistance Anchor types M6x30 F			only for dr	v internal.		II R		
Anchor types moxou i	1, 100000 11 al			y internar	exposure			
Design:								
 Anchorages are to be concrete work 	designed und	er the respons	sibility of a	an enginee	er experien	ced in ar	ichorages a	nd
 Verifiable calculation r position of the anchor reinforcement or to su 	is indicated o							red. The
 Design of fastenings a 	according to E	N 1992-4:2018	3 and Tec	hnical Re	oort TR 05	5, Editior	February 2	2018
 Anchor sizes M6x30, case of failure, the log 					structural	compone	ents only, w	hen in
Installation:								
 Anchor installation car responsible for technic 			alified per	rsonnel an	d under th	e supervi	sion of the	person
Create drill hole with h	nammer drill o	r with hollow d	rill and va	icuum clea	aner			
The anchor may only	be used once							
 In case of aborted hold 						•		
hole or closer, if the he only if the he			-			FIS SB o	r FIS V Plus	s) and
 Anchor expansion by of the setting tool read visible mark on the sleep 	hes the expan	nsion sleeve. T	The manu	al setting t				
fischer drop-in anch	nor EA II							
Intended Use							Anne	xB1
Specifications								

Г

Table B2.1: Installation p	arameter	<u>rs for c</u>	concre	ete C2	20/25	to C5	50/60				
Anchor size (all versions)			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Nominal drill hole diameter	d ₀		8	1	0	1	2	15	16	20	25
Cutting diameter of drill bit	d _{cut}	[mm]	8,45	10	,45	12	,50	15,50	16,50	20,55	25,55
Effective anchorage depth	h _{ef}		30	30	40	30	40	5	0	65	80
Maximum installation torque	Tinst,max	[Nm]	4	6	3	1	5	3	5	60	120
Minimum drill hole depth	h1		32	33	43	33	43		4	70	85
Minimum screw-in depth	l _{s,min}	[mm]	6	8	3		0		2	16	20
Maximum screw-in depth	I _{s,max}	[[imu]	14		4	15	17	22		28	34
Clearance of hole diameter	Ø d _f ≤		7	9)	1	2	14		18	22
h _{min} = 80 mm											
Minimum spacing	Smin	[mm]	70	110	200	20	00			_1)	
Minimum edge distance	Cmin	[mm]	150	15	50	150				,	
h _{min} = 100 mm											
Minimum spacing	Smin	[mm]	65	7	0	90	150	20	00		_1)
Minimum edge distance	Cmin	[mm]	115	1.	15	160	180	20	0		- · /
h _{min} = 120 mm											
Minimum spacing	Smin	[mm]	65	7	0	85	95	14	15		_1)
Minimum edge distance	Cmin	[mm]	115	1.	15	140	150	20	00] .	- ')
h _{min} = 160 mm											
Minimum spacing	Smin	[mm]	65	7	0	85	95	14	15	180	_1)
Minimum edge distance	Cmin	[mm]	115	1.	15	140	150	20	00	240	- ')
h _{min} = 200 mm											
Minimum spacing	Smin	[mm]	65	7	0	85	95	14	45	180	190
Minimum edge distance	Cmin	[mm]	115	1	15	140	150	20	00	240	280
¹⁾ No performance assessed					h _{mir}	ii					

Fastening screw or threaded rod:

- Minimum property class and materials according to table A3.1
- The length of the fastening screw or threaded rod shall be determined depending on thickness of fixture t_{fix}, admissible tolerances and maximum screw-in depth l_{s,max} as well as minimum screw-in depth l_{s,min}

(Fig. not to scale)

fischer drop-in anchor EA II
Intended Use
Installation parameters
Annex B 2

γinst [-] N _{Rk,s} [KN] γ _{Ms} ⁴⁾ [-] N _{Rk,s} [KN] γ _{Ms} ⁴⁾ [-] N _{Rk} [KN]	A4-50 A4-70	10,1	18			1,0				
N _{Rk,s} [kN] γ _{Ms} ⁴) [-] N _{Rk,s} [kN] γ _{Ms} ⁴) [-]		10,1	18			10				
γ _{Ms} ⁴⁾ [-] N _{Rk,s} [kN] γ _{Ms} ⁴⁾ [-]		10,1	18			1,0				
N _{Rk,s} [kN] γ _{Ms} ⁴⁾ [-]	A4-70		10	,3	29	-	42	2,1	78,3	122,4
γms ⁴⁾ [-]	A4-70					2,86				
		14,1	19	9,6	24	,9	45,1	59,0	73,8	
		1,87			1,5			1,87		,5
N _{Rk,s} [kN]	A4-80	16,1	19	9,6	24		45,1	59,0	73,8	117,
γms ⁴⁾ [-]		1,6		•			,5	_		07.0
	steel 4.6	8,0	14	-,6	23		33	5,7	62,7	97,9
				•						400
	steel 5.6	10,1	18	,3	29		42	.,1	78,3	122,
					01		00.0	10.1	047	100
	steel 5.8	10,1	17	,2	21		39,6	42,1	64,7	102,
• • •	ata al 0.0	10 5	4 7	0	01	-	00.0	50.0		100
	steel 8.8	13,5	17	,2	21		39,6	53,3	64,7	102,
γMs ⁴ , [-]						1,5				
N1	FLA 17	0.4		10.5		10.5	4-		05.0	
INRk,p		8,1		12,5	8,1	-	17	,4	25,8	35,2
-						-				
-										
		1,32								
Ψ° -	C40/50	1,41			1,41					
_	C45/55	1,50								
_	C50/60	1,58								
γinst	[-]					1,0				
h _{ef}	[mm]	30)	40	30	40	5	0	65	80
k _{ucr,N}	[-]					11,02)				
k _{cr,N}	[-]			No	perforr	nance	asses	ssed		
S cr,N	[mm]	90)	120	90	120	15	50	195	240
Ccr,N	[mm]	45	5	60	45	60	7	5	97	120
S cr,sp	[mm]	210	0	280	210	320	35	50	455	560
C cr,sp	[mm]	10	5	140	105	160	17	75	227	280
$N^{0}_{Rk,sp}$	[kN]				min {N	J ⁰ Rk,c, I	N _{Rk,p} } ³⁾			
al compone er strength ns	ents which a	are stati	ically	indete	erminat	e				
	h _{ef} K _{ucr,N} K _{cr,N} S _{cr,N} C _{cr,Sp} C _{cr,Sp} C _{cr,sp} N ⁰ _{Rk,sp} ral compone er strength	γMs ⁴) [-] NRk,s [kN] steel 5.6 γMs ⁴) [-] NRk,s [kN] steel 5.8 γMs ⁴) [-] NRk,s [kN] steel 8.8 γMs ⁴) [-] NRk,s [kN] steel 8.8 γMs ⁴) [-] NRk,s [kN] Steel 8.8 γMs ⁴) [-] NRk,p [kN] C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 C45/55 V/c [-] hef [mm] Kucr,N [-] Kucr,N [-] Kucr,N [-] Scr,N [mm] Ccr,N [mm] Ccr,N [mm] N ⁰ Rk,sp [kN] al components which a er strength	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Performances

Characteristic resistance to tension loads under static and quasi-static action

Table C2.1: Characteristi	c values for sh	lear loads ι	under	^r stat	ic ar	nd qua	asi-st	atic a	ction	_	
EA II	of th scre	perty class ne fastening ew or eaded rod	M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x50 D	M16x65	M20x80
Factor for ductility	k7 [-]						1,0)			
Installation factor	γinst [−]						1,0)			
Steel failure without lever arm	1		-								
Characteristic resistance	V ⁰ _{Rk,s} [kN]	A4-50	5,0	9,	,2	14	1,5	21	∣,1	39,2	61,2
Partial factor	γмs ²⁾ [-]						2,38				
Characteristic resistance	V ⁰ _{Rk,s} [kN]	A4-70	7,0	9,	,8	12	<u>2,</u> 4	22,6	29,5	37	59
Partial factor	γMs ²⁾ [-]		1,56			1,25			1,56	1,	25
Characteristic resistance	V ⁰ _{Rk,s} [kN]	A4-80	8,0	9	,8	12	<u>2,4</u>	22,6	30,4	36,9	58,6
Partial factor	γ _{Ms} ²⁾ [-]		1,33				1,	25			
Characteristic resistance	V ⁰ Rk,s [kN]	steel 4.6	4,0	4,0 7,3		11,6		16	6,9	31	49
Partial factor	γ _{Ms} ²⁾ [-]						1,67			•	
Characteristic resistance	V ⁰ Rk,s [kN]	steel 5.6	5,0	9	,2	14	1,5	21	∣,1	39	61
Partial factor	γ _{Ms} ²⁾ [-]						1,67			1	
Characteristic resistance	V ⁰ _{Rk,s} [kN]	steel 5.8	5,0	8,6		10,9		19,8 21,1		32	51
Partial factor	γ _{Ms²⁾ [-]}				, -	1,25					
Characteristic resistance	V ⁰ Rk,s [kN]	steel 8.8	6,8	8.	.6	10),9	19,8	27	32	51
Partial factor	γ _{Ms²} [-]		- , -		, -		1,25				
Steel failure with lever arm	7						- ,				
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	A4-50	8	1	9	3	7	6	6	166	324
Partial factor	γ _{Ms} ²⁾ [-]	711.00			<u> </u>		2,38		•		02.
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	A4-70	11	2	6	5	2	g	2	232	454
Partial factor	γ _{Ms²⁾ [-]}				-		 1,56		-		
Characteristic resistance	 M ⁰ _{Rk,s} [Nm]	A4-80	12	3	0	6	0	1)5	266	519
Partial factor	γ _{Ms²⁾ [-]}	71100		0	•		1,33	1 1		200	0.0
Characteristic resistance		steel 4.6	6,1	1	5	3	0	5	2	133	259
Partial factor	γ _{Ms} ²⁾ [-]	01001 1.0	0,1		0		1,67			1.00	200
Characteristic resistance		steel 5.6	7,6	1	a	2	7	6	6	166	324
Partial factor	γms ²⁾ [-]	31001 0.0	7,0		<u> </u>		1,67			100	024
Characteristic resistance		steel 5.8	7,6	1	a	3	7	6	6	166	324
Partial factor	γ _{Ms} ²⁾ [-]	31001 0.0	7,0		5		1,25		0	100	024
Characteristic resistance	<u>י™s [-]</u> M⁰ _{Rk,s} [Nm]	steel 8.8	12	3	0	6	i) i0	1/	05	266	517
Partial factor		51661 0.0	12	0	0		1,25		55	200	517
	γms ²⁾ [-]						1,25				
Concrete pryout failure Factor for pryout failure	k ₈ [-]		1,	7/	1,9	1,74	1,9			2,0	
Concrete edge failure	K8 [-]		1,	/ 4	1,3	1,74	1,9			2,0	
	k [mm]		3	0	40	30	40		0	65	80
Effective length of anchor Effective diameter of anchor	l _f [mm]		8	0 1			 2	15	16	20	25
	d _{nom} [mm]							10	סו	20	20
¹⁾ Use restricted to anchoring o ²⁾ In absence of other national		onents which	are st	tatical	lly ind	etermi	nate				
fischer drop-in anchor	EAII										

Performances

Characteristic resistance to shear loads under static and quasi-static action

Annex C 2

EA II			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Tension load in C20/25 to C50/60	N	[kN	1]	4,0	6,1	4,0) 6,1		8,5	12,6	17,
Displacement	δνο δν∞	[mm] [mm	-				0,1 0,2				
Shear load in C20/25 to C50/60	V	[kN	- I] 3,9	4,9	9	6,2	2	11,	3 15,2	2 18,5	29,
Displacement	δνο δν∞	[mm [mm	-	_	1,00 1,50	_	1,05 1,60	_	1,10 1,70	1,40 2,10	
EA II R			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Tension load in C20/25 to C50/60	N	[kN]	≥ 4,		∑ 6,1	Е 4,0	ية 6,1		,5	⊵ 12,6	Ë 17,2
Displacement	$\frac{\delta_{No}}{\delta_{N^{\infty}}}$	[mm] [mm]					0,1 0,2				
Shear load in C20/25 to C50/60	V	[kN]	3,2	5,6		7,1		12,9	13,5	21,1	33,5
Displacement	δνο	[mm]	0,95	1,0		1,(1,10		1,40	1,80
	δν∞	[mm]	1,40	1,	50	1,6	50	Ι,	70	2,10	2,70

fischer drop-in anchor EA II

Performances Displacements Annex C 3