

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0024 of 13 May 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product fischer injection system FIS V Product family Bonded anchor for use in concrete to which the construction product belongs fischerwerke GmbH & Co. KG Manufacturer Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND Manufacturing plant fischerwerke This European Technical Assessment 34 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330499-01-0601 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-02/0024 issued on 2 January 2020

European Technical Assessment ETA-02/0024 English translation prepared by DIBt

Page 2 of 34 | 13 May 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 34 | 13 May 2020

European Technical Assessment ETA-02/0024 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "fischer injection system FIS V" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS V, fischer FIS VW High Speed or fischer FIS VS Low Speed and a steel element according to Annex A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 to B 6, C 1 to C 8			
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4			
Displacements under short-term and long-term loading	See Annex C 9 and C 10			
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 11 to C 14			

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-02/0024

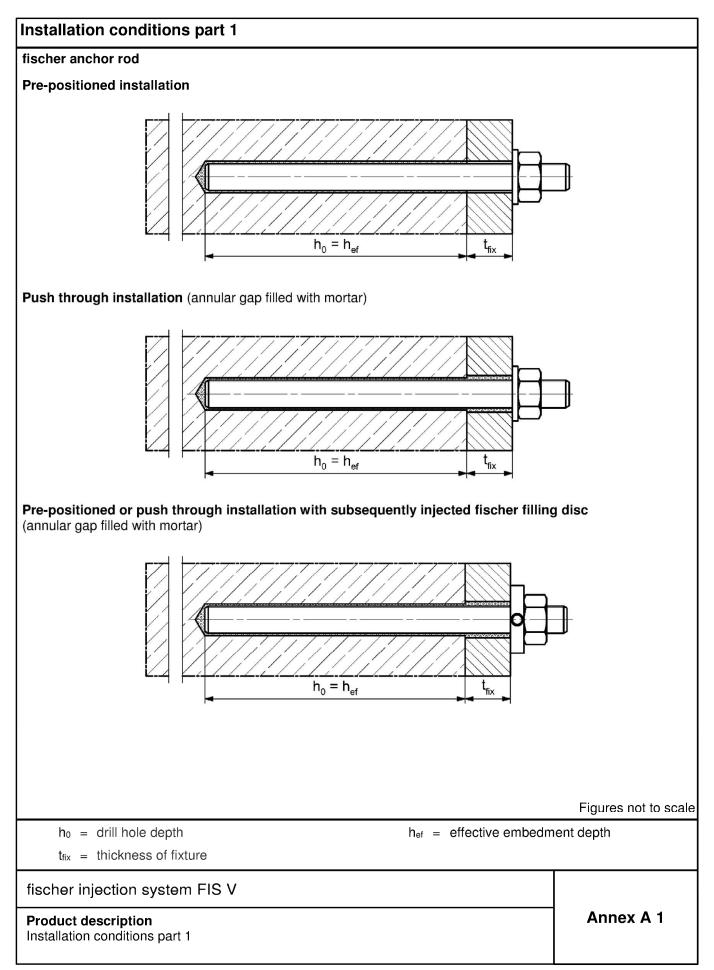
Page 4 of 34 | 13 May 2020

English translation prepared by DIBt

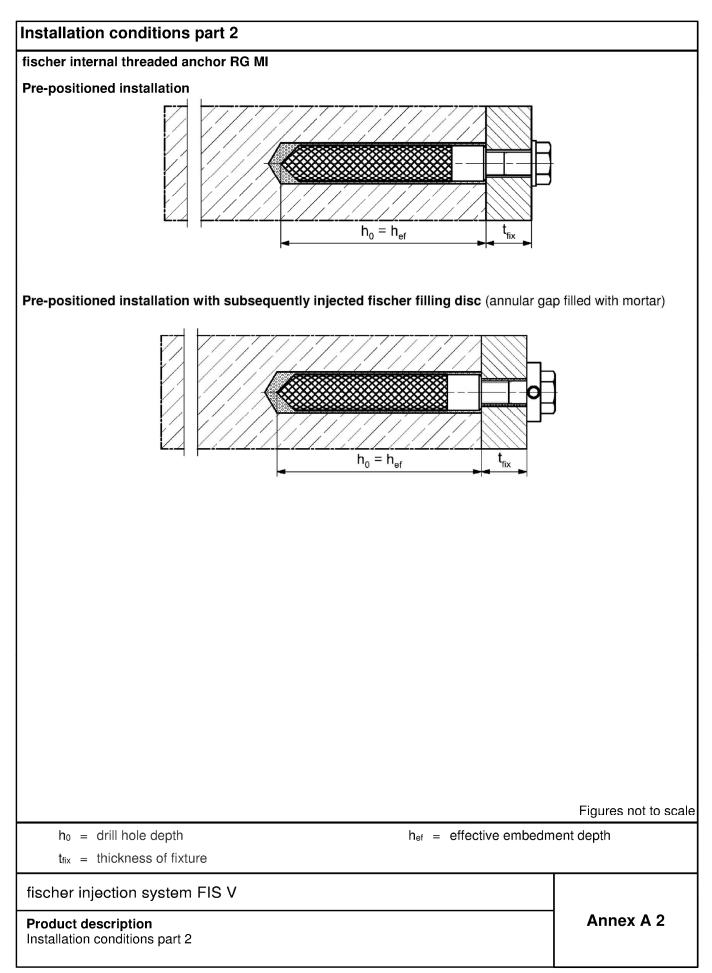
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

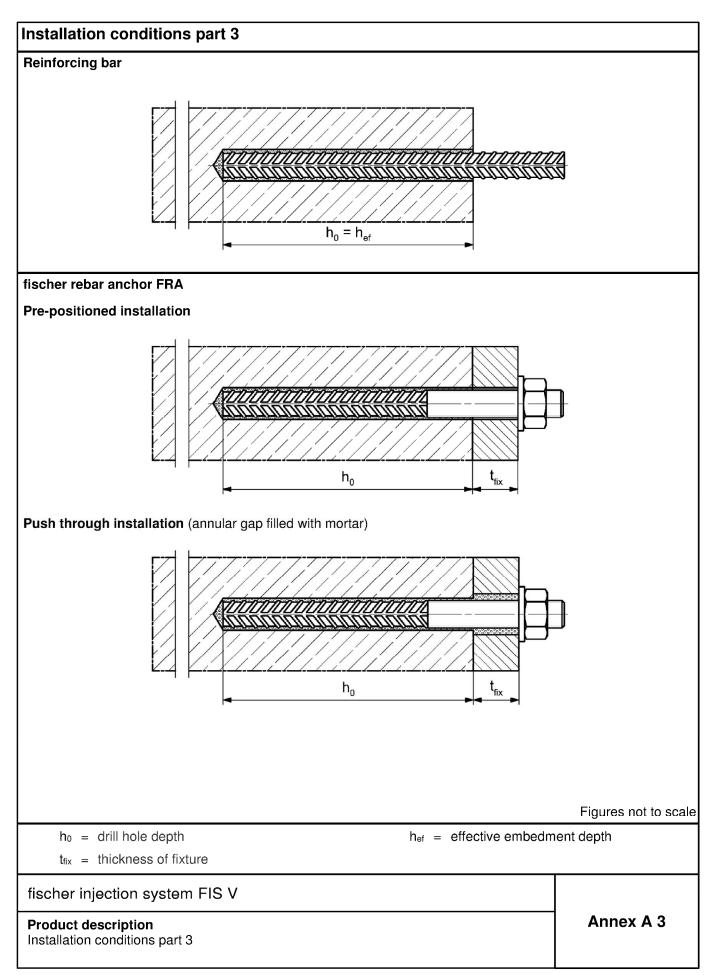
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 13 May 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider



Overview system components part 1	
Injection cartridge (shuttle cartridge) with sealing cap; Sizes: 350 ml, 360 ml, 390 ml 1100 ml, 1500 ml	, 550 ml,
Imprint: fischer FIS V or FIS VW High Speed or FIS VS Low Sp processing notes, shelf-life, piston travel scale (optional), curing processing times (depending on temperature), hazard code, siz	ı times and e, volume
Injection cartridge (coaxial cartridge) with sealing cap; Sizes: 100 ml, 150 ml, 300 ml 410 ml	, 380 ml, 400 ml,
Imprint: fischer FIS V or FIS VW High Speed or FIS VS Low S processing notes, shelf-life, piston travel scale (optional), curing processing times (depending on temperature), hazard code, siz	y times and ze, volume
Static mixer FIS MR Plus or UMR	
>	
Injection adapter and Extension tube for static mixer	∃
Cleaning brush BS	
Blow-out pump AB G or ABP	Pro-
	Figures not to scale
fischer injection system FIS V	
Product description Overview system components part 1; cartridges / static mixer / accessories	Annex A 4

Overview system components part 2	
fischer anchor rod	
Size: M6, M8, M10, M12, M16, M20, M24, M27, M30	
Final an internal three deal and an BO MI	
fischer internal threaded anchor RG MI	
Size: M8, M10, M12, M16, M20	
Screw / threaded rod / washer / hexagon nut	
fischer filling disc with injection adapter	
Reinforcing bar	
Nominal diameter: \$\$,\$\$10,\$\$12,\$\$14,\$\$16,\$\$20,\$\$25,\$\$28	
fischer rebar anchor FRA	
Size: M12, M16, M20, M24	
	Figures not to scale
fischer injection system FIS V	
Product description Overview system components part 2; steel components	Annex A 5

Page 10 of European Technical Assessment ETA-02/0024 of 13 May 2020

Part	Designation		Material	
1	Injection cartridge		Mortar, hardener, filler	
		Steel	Stainless steel R	High corrosion resistant steel HCR
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2015	acc. to EN 10088-1:2014 Corrosion resistance clas CRC V acc. to EN 1993-1-4:2015
2	Anchor rod		Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\%$ fracture elongation $A_5 > 8 \%$, for applications with	
			eismic performance category	
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, ISO 4042:2018/Zn5/An(A2K) A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % fracture elongation
7	fischer filling disc similar to DIN 6319-G	zinc plated ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362;	1.4565;1.4529; EN 10088-1:2014
8	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class f_{yk} and k according to NDP or $f_{uk} = f_{tk} = k \cdot f_{yk}$	B or C with NCL of according to EN 1992-	1-1/NA
9	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods class and k according to NDP or NC 1992-1-1:2004+AC:2010 $f_{uk} = f_{lk} = k \cdot f_{yk}$	Property class 70 or 80 :2009 ., 1.4571, 1.4578, 1.4439, e acc. to EN 10088-1:2014 stance class CRC III 93-1-4:2015 e acc. to EN 10088-1:2014 stance class CRC V 93-1-4:2015	
fisc	her injection system	FIS V		
	duct description			Annex A 6

Specifications			•							
	Overview us	e and pe	rforman	ce catego						
Anchorages subjec	t to	Anch	or rod	fischer threadeo RG	internal		cing bar	fischer anc FF	hor {A	
Hammer drilling with standard drill bit	######################################				all s	izes		1		
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilt "TE-CD, TE-YD"), DreBo D-Plus, DreBo D-Max	Ī		Nominal drill bit diameter (d₀) 12 mm to 35 mm							
Static and quasi static load, in	uncracked concrete	all sizes	Tables: C1.1 C4.1	all sizes	Tables: C2.1 C4.1	all sizes	Tables: C3.1 C4.1	all sizes	Tables: C3.2 C4.1	
	cracked concrete	M8 to M30	C5.1 C9.1	_2)	C6.1 C9.2	φ 10 to φ 28	C7.1 C10.1		C8.1 C10.2	
Seismic performance category (only	C1 ¹⁾	M10 to M30	Tables: C11.1 C12.1 C13.1		2)		2)	_2)		
hammer drilling with standard / hollow drill bits)	n C2 ¹⁾	M12 M16 M20 M24	Tables: C11.1 C12.1 C14.1	-	,	-	,	-	,	
l' Use	1 dry or wet concrete				all s	izes				
category	2 water filled hole	M 12 t	o M 30	all s	izes	_:	2)	_2)		
Installation direction	ı	D3 (d	ownward	and horizo	ontal and u	ipwards (e	.g. overhe	ad) install	ation)	
Installation temperature				Ti,min =	= -10 °C to	Ti,max = +	40 °C			
In-service	Temperature range I	-40	°C to +80) °C	•	ort term ter g term ter				
temperature	Temperature range II	-40	°C to +12	0 °C		ort term ter g term terr				
¹⁾ Not for FIS VW ²⁾ No performand		nd FIS VS	Low Spee	ed						
fischer injectior Intended use Specifications (pa	-	V						Annex	B 1	
Specifications (pa	rt 1)									

Specifications of intended use (part 2)

Base materials:

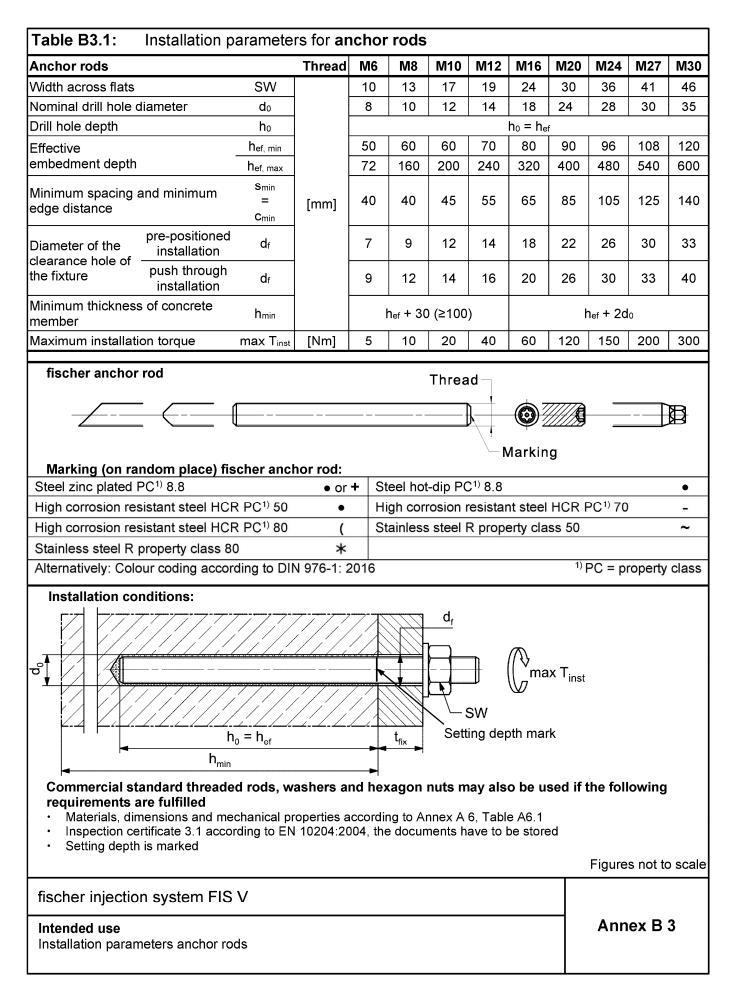
Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 6 table A6.1.

Design:

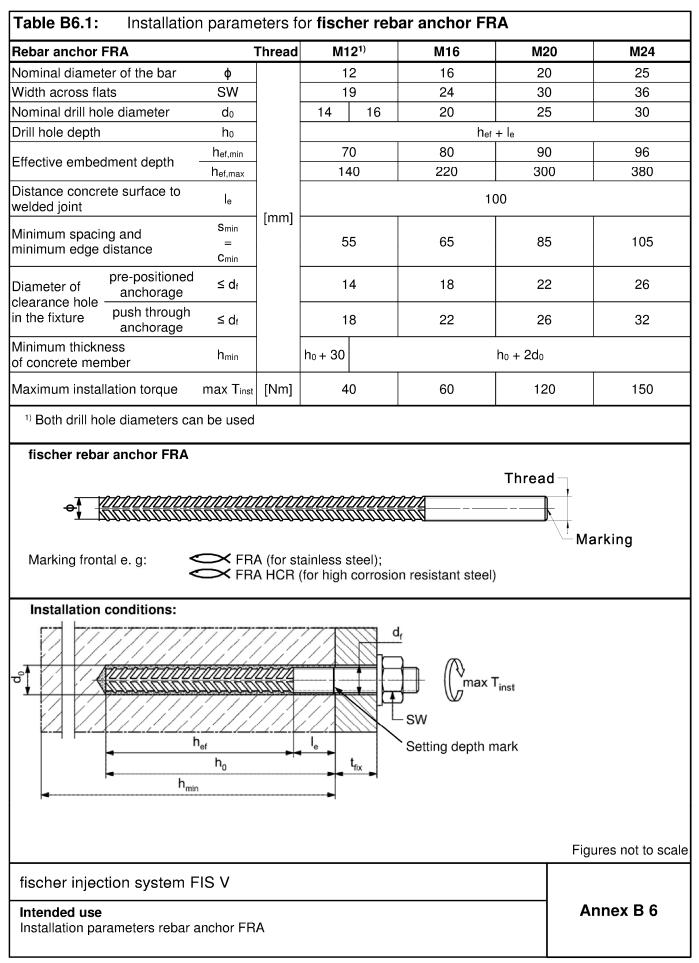
- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.


Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

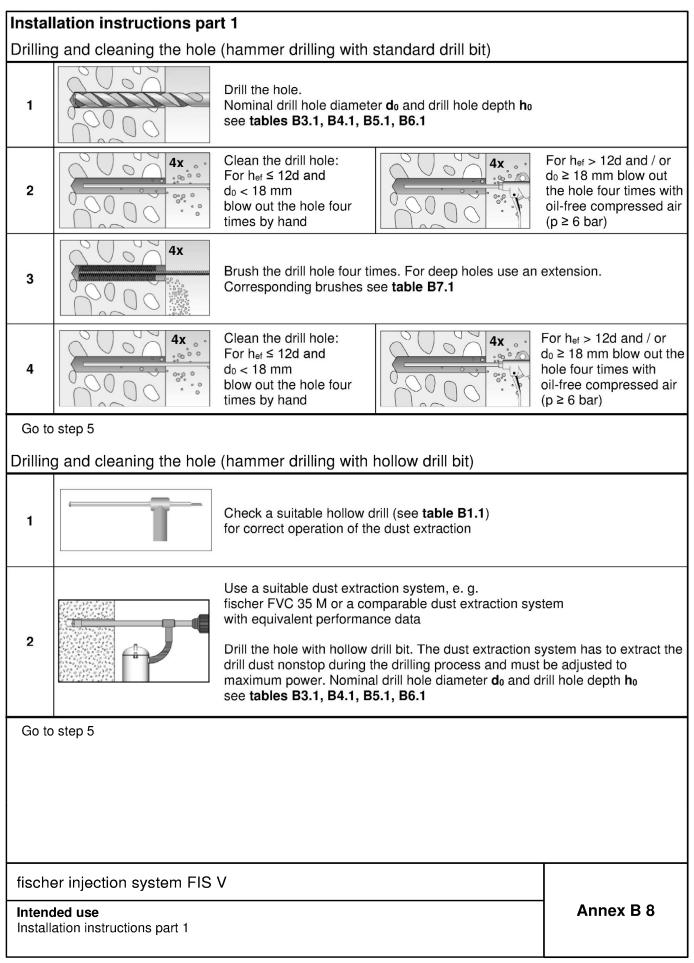
fischer injection system FIS V

Intended use Specifications (part 2) Annex B 2

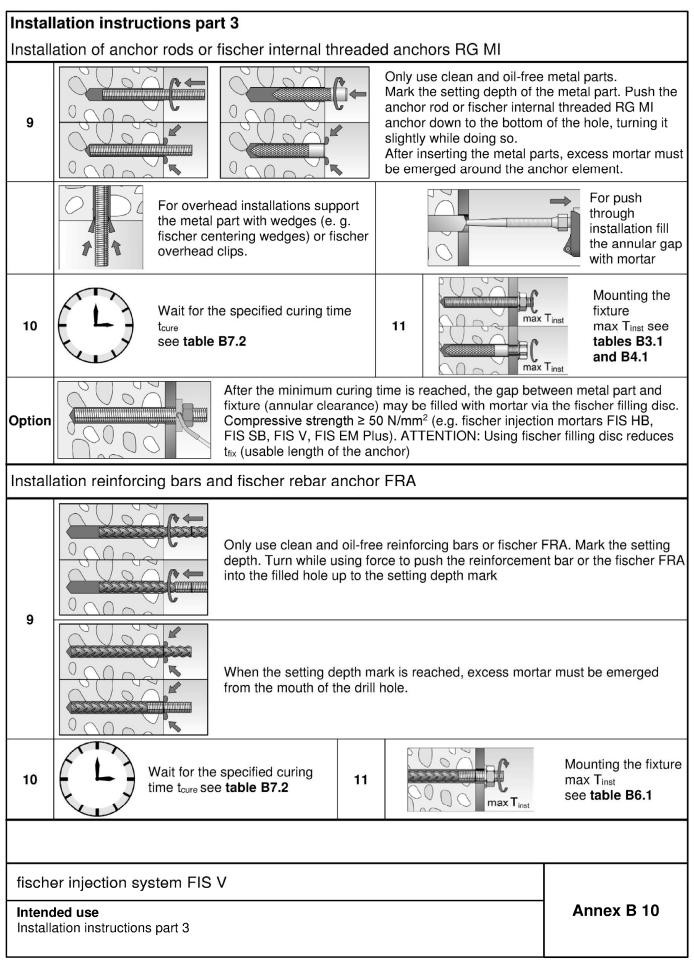


nternal threaded anchors R	G MI	Thread	M8	M10	M12	M16	M20
Diameter of anchor	$d_{\text{nom}} = d_{\text{H}}$		12	16	18	22	28
Nominal drill hole diameter	d_0		14	18	20	24	32
Drill hole depth	h₀				$h_0 = h_{\text{ef}} = L_{\text{H}}$	1	
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	65	75	95	125
Diameter of clearance hole in he fixture	df		9	12	14	18	22
Minimum thickness of concrete member	\mathbf{h}_{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120
Marking: Anchor size Stainless ste	L _H e. g.: M10 eel → additio	Ma	⊻ g.: M10 R	CR ; e.g.: M10	HCR		read
Marking: Anchor size Stainless ste	L _H e. g.: M10 eel → addition for resistant rods (includ G, Table A6.	Ma Ma Total R; e. Steel → a ing nut ar	g.: M10 R additional H nd washer)	must comply $\frac{d_{f}}{d_{f}}$			
Marking: Anchor size Stainless ste High corrosid Retaining bolt or threaded strength class of Annex A 6 Installation conditions:	E. g.: M10 e. g.: M10 el \rightarrow addition resistant rods (includ	Ma Ma Total R; e. Steel → a ing nut ar	g.: M10 R additional H	must comply $\frac{d_{f}}{d_{f}}$	with the appro	opriate materi	

Nominal diameter of the bar	φ	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	25	28	
Nominal drill hole diameter	do		10 12	12 14	14 16	18	20	25	30	35
Drill hole depth	h ₀					h0 =	= h _{ef}			
Effective	h _{ef,min}		60	60	70	75	80	90	100	112
embedment depth	h _{ef,max}		160	200	240	280	320	400	500	560
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	40	45	55	60	65	85	110	130
Minimum thickness of concrete member	h_{min}			_{ef} + 30 ≥ 100)			he	of + 2d ₀		
 Reinforcing bar The minimum value of re The rib height must be w 	lated rib a	area f _{R,r}	nin must f	fulfil the i	requirem			-1-1:200	2 4+AC:20	10
(φ = Nominal diameter of Installation conditions:	the bar, l	h _{rib} = rib	height)				~			
		h _o	$= h_{ef}$				ng depth	mark		
								Fig	ures not	to sca
fischer injection system F	IS V									
Intended use								- L	nnex B	5



lominal drill hole iameter	d₀		8	10	12	14	16	18	20	24	25	28	30	35
Steel brush iameter	db	[mm]	9	11	14	16	2	0	25	26	27	30	40	
ວິ Table B7.2		imum	-	essin	g time	e of the	e mor	tar aı	nd min			-		1
Temperature	belo		listed	minin imum į		emper	ature)		ncrete t		num cur	ring tim		I
anchoring bas [°C]		-	S VW Speed		FIS V		FIS VS		FIS VW d High Speed			V	FIS Low S	
-10 to	-5 ²⁾	_	-		-		-		12 h		-		-	-
> -5 to	0 2)	5	min		-		-		3 h		24		-	
> 0 to	5 ²⁾	5	min	1	3 min		-		3 h		3 h		6	
	10		min		9 min		20 min		50 mir		90 m		3	
	20	1	min		5 min		10 min		30 mir	<u>ו</u>	60 m		2	
	30		-	-	4 min		6 min		-		45 m		60 r	
> 30 to 4	40		-		2 min		4 min		-		35 m	nin	30 r	nın
²⁾ Minimal cartric	-													



Instal	lation instructions part 2	
Prepa	ring the cartridge	
5	Remove the sealing cap Screw on the static mixer (the spiral in the static mixer must be clearly visible)	
6	Place the cartridge into the	dispenser
7	Extrude approximately 10 the resin is evenly grey in mortar that is not uniformly	colour. Do not use
Go to	step 8	
Injecti	on of the mortar	
8	hole with mortar. Always begin For drill hole depth \geq 150 mm holes (h ₀	the ead installation, deep > 250 mm) or drill hole ($d_0 \ge 40$ mm) use an adapter
Go to	step 9	
fische	er injection system FIS V	
	led use ation instructions part 2	Annex B 9

Page 21 of European Technical Assessment ETA-02/0024 of 13 May 2020

Anchor rod / standard threa	ded rod			M6	M8	M10	M12	M16	M20	M24	M27	M30
Bearing capacity under tens	sion load	d, ste	el fai	ure ³⁾	-		-	4	-	<u></u>	<u></u>	<u></u>
ω		4.8		8	15(13)	23(21)	33	63	98	141	184	224
Steel zinc plated		5.8	1	10	19(17)		43	79	123	177	230	281
ce h	erty	8.8		16	29(27)		68	126	196	282	368	449
Characteristic Characteristic Steel zinc plated Stainless steel R and high corrosion	Property class	8.8 50		10	19	29	43	79	123	177	230	281
high corrosion	_ <u> </u>	70		14	26	41	59	110	172	247	322	393
resistant steel HCR		80		16	30	47	68	126	196	282	368	449
Partial factors ¹⁾			•					•				•
		4.8						1,50				
Steel zinc plated Steel zinc plated Stainless steel R and high corrosion	2	5.8						1,50				
ial ta ^w I and Stainless steel B and	Property class	8.8	[-]					1,50				
$\stackrel{\mathbf{re}}{=} \stackrel{\overset{\mathbf{re}}{\succ}}{\overset{}{\leftarrow}}$ Stainless steel R and		50						2,86				
		70					1,	50 ²⁾ / 1,	87			
resistant steel HCR		80						1,60				
Bearing capacity under she	ar load,	stee	l failu	r e ³⁾								
without lever arm	1				0(0)	4440			50	0.5		405
Steel zinc plated		4.8	-	4	9(8)	14(13)	20	38	59	85	110	135
Steel zinc plated	Ę.	5.8		6		17(16)	25	47	74	106	138	168
Steel zinc plated 2 Steel zinc plated 3 Stainless steel R and 3 Nigh corrosion 3 Nigh corrosion 3 Nigh corrosion	Property class	<u>8.8</u> 50		8		23(21)	34	63	98	141	184	225
	Pro 0.0	-		5	9	15	21	39	61	89	115	141
e resistant steel HCR		70 80	-	7 8	13 15	20 23	30 34	55 63	86 98	124 141	161 184	197 225
Ductility factor		60 k7	[-]	0	15	23	34	1,0	90	141	104	225
with lever arm		N /	-					1,0				
		4.8		6	15(13)	30(27)	52	133	259	448	665	899
Steel zinc plated		5.8		7		37(33)	65	166	324	560	833	1123
	Property class	8.8		. 12	30(26)	, ,	105	266	519	896	1333	1797
	ope class	50		7	19	37	65	166	324	560	833	1123
	ā -	70	1	10	26	52	92	232	454	784	1167	1573
e resistant steel HCR		80	-	12	30	60	105	266	519	896	1333	1797
Partial factors ¹⁾	1							1				
<u> </u>		4.8						1.25				
Steel zinc plated Steel zinc plated Stainless steel R and high corrosion	_ ≩ "	5.8						1.25				
$\underline{a}_{\underline{a}} \xrightarrow{s} \underline{a}_{\underline{a}}$	Property class	8.8	[-]					1.25				
$rac{ge}{r} \lesssim Stainless steel R and high corrosion$		50						2.38	50			
resistant steel HCR		<u>70</u> 80	-				i,	<u>25²⁾ / 1.</u> 1.33	50			
 In absence of other nation Only admissible for high or rods) Values in brackets are vastandard threaded rods a 	corrosion	ations resis dersi	st. stee zed th	readed	d rods w	ith sma	ller stre	A ₅ > 12				
fischer injection system												
Performances										An	nex C	1

Table C2.1:					or steel fai d anchors	lure under s RG MI	tension / sł	near load o	f
fischer internal	threade	ed anchors	RG MI		M8	M10	M12	M16	M20
Bearing capacit	y unde	r tension lo	oad, ste	el fail	ure	-	-	-	-
		Property	5.8		19	29	43	79	123
Charact.	NI	class	8.8	TL-N 17	29	47	68	108	179
resistance with screw	$N_{Rk,s}$	Property	R	[kN]	26	41	59	110	172
		class 70	HCR		26	41	59	110	172
Partial factors ¹⁾									
		Property	5.8				1,50		
Partial factors	0/64 51	class	8.8	[-]			1,50		
Farliar laciors	γMs,N	Property	R	[-]			1,87		
		class 70	HCR				1,87		
Bearing capacit	y unde	r shear loa	d, steel	failur	re 🛛				
Without lever ar	m								
	V ⁰ Rk.s	Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0
Charact. resistance with			8.8		14,6	23,2	33,7	54,0	90,0
screw	¥ ⊓K,S		R		12,8	20,3	29,5	54,8	86,0
			HCR		12,8	20,3	29,5	54,8	86,0
Ductility factor			k 7	[-]			1,0		
With lever arm						1	[[1
Observest		Property	5.8		20	39	68	173	337
Charact. resistance with	M⁰ _{Rk,s}	class	8.8	[Nm]	30	60	105	266	519
screw	111 111,5	Property	R	[]	26	52	92	232	454
		class 70	HCR		26	52	92	232	454
Partial factors ¹⁾									
		Property	5.8				1,25		
Partial factors	γMs,V	class	8.8	[-]			1,25		
	11015, V	Property	Property R				1,56		
		class 70	HCR				1,56		

¹⁾ In absence of other national regulations

fischer injection system FIS V

Performances

Characteristic values for steel failure under tension / shear load of fischer internal threaded anchor RG MI

Table C3.1:	Characteris reinforcing		ues fo	or stee	el failu	r e unde	er tensio	on / she	ar load	d of	
Nominal diameter	of the bar		φ	8	10	12	14	16	20	25	28
Bearing capacity	under tension	load, st	eel fai	lure	-	÷	-				
Characteristic resis	tance	N _{Rk,s}	[kN]				As ·	f uk ¹⁾			
Bearing capacity	under shear lo	oad, stee	l failu	re							
Without lever arm											
Characteristic resis	tance	$V^0_{Rk,s}$	[kN]				0,5 · A	$s \cdot f_{uk}^{1)}$			
Ductility factor		k 7	[-]				1,	,0			
With lever arm											
Characteristic resis	tance	M ⁰ Rk,s	[Nm]				1,2 · W	$I_{el} \cdot \mathbf{f}_{uk^{1)}}$			
Table C3.2:	Characteris fischer reba			RA						d of	
fischer rebar anch	_				112	M	16	M	20	M	24
Bearing capacity			1 1								
Characteristic resis	tance	N _{Rk,s}	[kN]	(63	1	11	17	'3	27	70
Partial factor ¹⁾											
Partial factor		γMs,N	[-]				1,	,4			
Bearing capacity		oad, stee	l failu	re							
Without lever arm Characteristic resis		V ⁰ Rk,s	[LN]		20	6	F	0	6	10	24
Ductility factor	lance	k ₇	[kN] [-]	``	30	5	5 1.	8	0	12	24
With lever arm		n /	[-]				1	,0			
Characteristic resis	tance	M ⁰ Rk,s	[Nm]	(92	2	33	45	54	78	35
Partial factor ¹⁾	lance	101 110,5	[[, , , ,]		52		50		/-1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Partial factor		γMs,V	[-]				1,	56			
¹⁾ In absence of o	other national re	•									
fischer injectior Performances									A	nnex C	3
Characteristic valu fischer rebar anch		ilure unde	er tens	sion / sh	ear load	of reinfo	rcing bar	rs and			

Size Tension load Installation factor Factors for the compress Increasing factor for τ_{Rk}	sive stren C25/30 C30/37 C35/45 C40/50	γinst Igth of	[-] f concr					All size				
Installation factor Factors for the compress	C25/30 C30/37 C35/45				_							
Factors for the compress	C25/30 C30/37 C35/45				S	See ann	ex C 5	to C 8 a	and C 1	3 to C1	4	
Increasing	C25/30 C30/37 C35/45	<u></u>		ete > c							-	
	C30/37 C35/45							1,05				
	C35/45							1,10				
								1,15				
		$\Psi_{\texttt{C}}$	[-]					1,19				
	C45/55							1,22				
	C50/60							1,26				
Splitting failure			11					,				
h /	' h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance $2,0 > h/$	h _{e f} > 1,3	Ccr,sp					4,6	h _{ef} - 1,	8 h			
h /	′ h _{ef} ≤ 1,3		[mm]					2,26 h _e	f			
Spacing		Scr,sp						2 C _{cr,sp}				
Concrete cone failure												
Uncracked concrete		k _{ucr,N}	- [-]					11,0				
Cracked concrete		k cr,N	[-]					7,7				
Edge distance		Ccr,N	[mm]					1,5 h _{ef}				
Spacing		Scr,N	[]					$2 c_{\text{cr,N}}$				
Factors for sustained ter	nsion load	b										
Temperature range			[-]		50 °C	C / 80 °	0		7	2 °C / 1	20 °C	
Factor		$\Psi^{\rm 0}_{\rm sus}$	[-]			0,74				0,87	7	
Shear load												
Installation factor		γinst	[-]					1,0				
Concrete pry-out failure												
Factor for pry-out failure		k ₈	[-]					2,0				
Concrete edge failure												
Effective length of fastene shear loading	r in	lf	[mm]		for d _{nom} for d _{nom}					0 mm)		
Calculation diameters												
Size				M6	M8	M10	M12	M16	M20	M24	M27	M30
fischer anchor rods and standard threaded rods		d _{nom}		6	8	10	12	16	20	24	27	30
fischer internal threaded anchors	RG MI	d _{nom}	[mm]	_1)	12	16	18	22	28	_1)	_1)	_1)
fischer rebar anchor FRA		dnom		_1)	_1)	_1)	12	16	20	25	_1)	_1)
Size (nominal diameter of	the bar)		¢	8	10	12	1,	4	6	20	25	28
Reinforcing bar		dnom	[mm]	8	10	12	14	4 -	6	20	25	28
¹⁾ Anchor type not part o	of the asse	essme	nt									
fischer injection syste	əm FIS \	/										

Table C	:5.1:	Characte anchor re uncracke	ods an	d stand a	ard th	reade	•						ner
Anchor r	od / s	tandard thread			M6	M8	M10	M12	M16	M20	M24	M27	M30
		lout and concr		e failure	INIO	WIG	INTO		INITO	IVIZO	1112-1	WIZ /	Wibb
Calculatio	-		d	[mm]	6	8	10	12	16	20	24	27	30
Uncracke	ed co	ncrete											
Characte	ristic	bond resistan	ce in un	cracked	concre	te C20/	25						
Hammer-	drilling	g with standard	drill bit o	r hollow d	<u>rill bit (</u>	dry or w	et conc	<u>rete)</u>					
Tem-	1: -	50 °C / 80 °C		[N] /	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature range	II:	72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-	drilling	g with standard	drill bit o	r hollow d	rill bit (\	water fil	led hole	e) ¹⁾	1				
Tem-	1:	50 °C / 80 °C			_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
perature range	II:	72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
Installatio	on fac	ctors											
Dry or we	t cond	crete							1,0				
Water fille	ed hol	e	γinst	[-]	_2)	_2)	_2)			1,2	2 ¹⁾		
Cracked	conc	rete											
		bond resistan											
	drilling	g with standard	drill bit o	<u>or hollow d</u>	<u>rill bit (</u>	<u>dry or w</u>	<u>et conc</u>	<u>rete)</u>					
Tem- perature	1:	50 °C / 80 °C	-	[N/mm²]	_2)	5,5	6,0	6,0	6,0	5,5	4,5	4,0	4,0
range	II:	72 °C / 120 °C	$ au_{Rk,cr}$		_2)	4,5	5,0	6,0	6,0	5,0	4,0	3,5	3,5
Hammer-	drilling	g with standard	drill bit o	r hollow d	rill bit (\	water fil	led hole	e) ¹⁾					
Tem-	1: -:	50 °C / 80 °C		[N] //may and 2]	_2)	_2)	_2)	5,0	5,0	4,5	4,0	3,5	3,5
perature range	II:	72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	_2)	_2)	4,0	4,0	4,0	3,5	3,0	3,0
Installatio	on fac	ctors											
Dry or wet	t conc	rete		ſ_1					1,0				
Water fille	d hole	•	γinst	[-]	_2)	_2)	_2)			1,5	2 ¹⁾		
		coaxial cartridge nance assessed		ıl, 400 ml,	410 ml								

fischer injection system FIS $\ensuremath{\mathsf{V}}$

Performances

Characteristic values for combined pull-out and concrete failure for fischer anchor rod and standard threaded rods

Table C6.1:Characteristic values for combined pull-out and concrete failure for fischer
internal threaded anchors RG MI in hammer drilled holes; uncracked
concrete

Combined pullo Calculation diam	out and concr			M8	M10	M12	M16	M20
Calculation diam		ete con	e failure					-
	eter	d	[mm]	12	16	18	22	28
Uncracked con	crete							
Characteristic b	ond resistan	ce in un	cracked c	concrete C20)/25			
Hammer-drilling	with standard	<u>drill bit o</u>	r hollow di	rill bit (dry or	wet concrete)			
Tem- I: 50 perature	0 °C / 80 °C	_	[N/mm²] -	10,5	10,0	9,5	9,0	8,5
range II: 72	2 °C / 120 °C	$ au_{Rk,ucr}$		9,0	8,0	8,0	7,5	7,0
Hammer-drilling	with standard	<u>drill bit o</u>	r hollow di	rill bit (water f	filled hole) ¹⁾			
	0 °C / 80 °C	_	[N1/mm2]	10,0	9,0	9,0	8,5	8,0
oerature —— range II: 72	2 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm²] -	7,5	6,5	6,5	6,0	6,0
nstallation fact	ors							
Dry or wet concr	ete		r 1			1,0		
Water filled hole		γinst	[-]			1,2 ¹⁾		

fischer injection system FIS V

Performances

Charactersitic values for combined pull-out and concrete failure for fischer internal threaded anchors RG MI

	reinforci		values fo s in ham								ete
Nominal diame	ter of the bar		ф	8	10	12	14	16	20	25	28
Combined pullo	out and concr	ete con	e failure						-		
Calculation diam	ieter	d	[mm]	8	10	12	14	16	20	25	28
Uncracked con	crete		-								
Characteristic I	oond resistan	ce in ur	cracked of	concret	e C20/25	5					
Hammer-drilling	with standard	drill bit c	or hollow d	rill bit (d	ry or wet	t concret	<u>e)</u>				
	0 °C / 80 °C		[N]/ma.ma.2]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
perature —— ange II: 7	2 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
nstallation fact	or		1								
Dry or wet concr	ete	γinst	[-]				1,	,0			
Cracked concre	ete										
Characteristic I		ce in cr	acked cor	ncrete C	20/25						
Hammer-drilling	with standard	drill bit c	or hollow d	rill bit (d	ry or wet	t concret	e)				
Tem- I: 5	0 °C / 80 °C			_1)	3,0	5,0	5,0	5,0	4,5	4,0	4,0
perature range II: 7	2 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_1)	3,0	4,5	4,5	4,5	4,0	3,5	3,5
nstallation fact	ior										
Ory or wet concr	ete	γinst	[-]				1,	,0			
¹⁾ No pe	rformance ass	essed									

fischer injection system FIS $\ensuremath{\mathsf{V}}$

Performances

Characteristic values for combined pull-out and concrete failure for reinforcing bars

			or combined p nammer drilled			ilure for fischer cracked
fischer rebar anchor FRA			M12	M16	M20	M24
Combined pullout and concre	ete con	e failure				
Calculation diameter	d	[mm]	12	16	20	25
Uncracked concrete						
Characteristic bond resistand	e in un	cracked	concrete C20/25	5		
Hammer-drilling with standard of	drill bit c	or hollow d	Irill bit (dry or wet	<u>concrete)</u>		
Tem- I: 50 °C / 80 °C			11,0	10,0	9,5	9,5
perature II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	9,0	8,5	8,0	7,5
Installation factors			-,-	-,-	-,-	
Dry or wet concrete	γinst	[-]		1	,0	
Cracked concrete						
Characteristic bond resistand	ce in cra	acked co	ncrete C20/25			
Hammer-drilling with standard of				<u>concrete)</u>		
Tem- I: 50 °C / 80 °C			5,0	5,0	4,5	4,0
perature	$\tau_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,0	3,5
range II: 72 °C / 120 °C			4,5	4,5	4,0	5,5
Dry or wet concrete	γinst	[-]		1	,0	
fischer injection system F Performances						Annex C 8
Characteristic values for comb anchors FRA	bined pl	ill-out and	concrete failure	tor tischer rebar		

Deutsches Institut für Bautechnik

Anchor	rod	M6	M8	M10	M12	M16	M20	M24	M27	M30
Displace	ment-Factors	for tensio	on load ¹⁾	I	1	I	I	l	1	1
Uncrack	ed concrete; T	emperatu	ire range	I, II						
δ N0-Factor		0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
δN∞-Factor	[mm/(N/mm²)]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Cracked	concrete; Tem	nperature	range I, I	I		·	·		·	
δ N0-Factor	[mm/(N/mm ²)]-	_3)	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,15
δ N0-Factor	[[[[[[[[[]]]]]]]]]]	_3)	0,25	0,27	0,30	0,30	0,30	0,35	0,35	0,40
Displace	ment-Factors	for shear	load ²⁾							
Uncrack	ed or cracked	concrete	; Tempera	ture rang	e I, II					
δ V0-Factor	[mm/k]]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
δv∞-Factor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09
¹⁾ Calcu	lation of effectiv	ve displac	ement:		²⁾ Calo	culation of	effective of	lisplaceme	ent:	
δN0 =	$\delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$				δνο	$= \delta$ V0-Factor	· V _{Ed}			

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

³⁾ No performance assessed

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-}\mathsf{Factor}} \, \cdot \, V_{\mathsf{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C9.2: Displacements for fischer internal threaded anchors RG MI

anchor F	threaded RG MI	M8	M10	M12	M16	M20
Displace	ment-Factors	for tension load ¹)			
Uncrack	ed concrete; T	emperature rang	e I, II			
δ_{N0} -Factor	[mm/(N/mm²)]-	0,10	0,11	0,12	0,13	0,14
SN∞-Factor	[[[[[[[[(]([([([([([([([([([([([([([([(0,13	0,14	0,15	0,16	0,18
Displace	ment-Factors	for shear load ²⁾	-			
Uncrack	ed concrete; T	emperature rang	e I, II			
δ V0-Factor	[mm/kN]	0,12	0,12	0,12	0,12	0,12
δv∞-Factor		0,14	0,14	0,14	0,14	0,14
δ _{N0} =	Ilation of effectiΝ δΝ0-Factor · τεd δΝ∞-Factor · τεd	ve displacement:		²⁾ Calculation of e $\delta_{V0} = \delta_{V0}$ -Factor · · · · · · · · · · · · · · · · · · ·	√ _{Ed}	ient:
(τ _{Εσ} : Ι	Design value of	the applied tensile	e stress)	(V _{Ed} : Design va	lue of the applied	shear force)
	r injection sys	stem FIS V				Annex C 9

Displacements for anchor rods and fischer internal threaded anchors RG MI

Nominal diameter of the bar	φ	8	10	12	14	16	20	25	28
Displacement-Fac	tors	for tensior	n load ¹⁾	•				•	
Jncracked concre	ete; To	emperatur	e range I, I	I					
N0-Factor	21	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11
N∞-Factor [mm/(N/n	1m²)]-	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13
Cracked concrete	; Tem	perature r	ange I, II		1	1	1		
N0-Factor	2\1	_3)	0,12	0,13	0,13	0,13	0,13	0,13	0,14
Imm/(N/m	1m-)]-	_3)	0,27	0,30	0,30	0,30	0,30	0,35	0,37
Displacement-Fac	tors	for shear l	oad ²⁾	•	-	-		•	
Jncracked or cra	cked (concrete;	Temperatu	ire range I,	II				
V0-Factor		0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08
W∞-Factor [mm/kl		0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09
¹⁾ Calculation of e	ffectiv	ve displace	ment:		²⁾ Calculatio	on of effecti	ve displace	ment:	
$\delta_{N0} = \delta_{N0-Factor}$.						Factor · VEd			
$\delta_{N\infty} = \delta_{N\infty}$ -Factor ·					$\delta v_{\infty} = \delta v_{\infty}$	-Factor · VEd			
(τ _{Ed} : Design va		the applied	tensile str	ess)			f the applie	d shear forc	e)
	201					s FRA		1	
ischer rebar anch FRA	nor	M	12	м	16	M	20	M	24
RA				М			20	M	24
	tors f	for tensior	ı load ¹⁾				20	M	24
FRA Displacement-Fac Jncracked concre	tors f	for tensior	n load ¹⁾ e range I, I			M	20		24
RA Displacement-Fac Jncracked concre	tors f	for tensior emperatur	i load 1) e range I, I 10	I 0,	16	М		0,	
FRA Displacement-Fac Jncracked concre No-Factor No-Factor [mm/(N/m	ete; Tete; T	for tensior emperatur 0, 0,	i load 1) e range I, I 10 12	I 0,	16	М	10	0,	10
FRA Displacement-Fac Jncracked concre JNO-Factor [mm/(N/m Cracked concrete	tors 1 ete; Te 1m ²)] ; Tem	for tensior emperatur 0, 0,	i load¹⁾ e range I, I 10 12 r ange I, II	I 0, 0,	16	M 0, 0,	10	0,	10
FRA Displacement-Fac Jncracked concre iNo-Factor [mm/(N/m Cracked concrete iNo-Factor [mm/(N/m	tors 1 ete; Te 1m ²)] ; Tem	for tensior emperatur 0, 0, operature r	1 load¹⁾ e range I, I 10 12 r ange I, II 12	0, 0, 0,	16 10 12	M 0, 0,	10 12	0, 0,	10 13
FRA Displacement-Fac Jncracked concre i№-Factor [mm/(N/m Cracked concrete i№-Factor [mm/(N/m i№-Factor]	etors 1 ete; Te 1m ²)]- ; Tem 1m ²)]-	for tensior emperatur 0, 0, 0 , 0 , 0 , 0,	i load ¹⁾ e range I, I 10 12 range I, II 12 30	0, 0, 0,	16 10 12 13	M 0, 0,	10 12 13	0, 0,	10 13 13
FRA Displacement-Fac Jncracked concre SNO-Factor N∞-Factor Cracked concrete	etors f ete; Te nm ²)] - ; Tem nm ²)] -	for tensior emperatur 0, 0, perature r 0, 0, for shear l	n load ¹⁾ e range I, I 10 12 range I, II 12 30 oad ²⁾	I 0, 0, 0,	16 10 12 13 30	M 0, 0,	10 12 13	0, 0,	10 13 13
FRA Displacement-Fac Jncracked concre SNO-Factor [mm/(N/m Cracked concrete SNO-Factor [mm/(N/m Displacement-Fac Jncracked or crac	ctors f ete; Te nm²)] - ; Tem nm²)] - ctors f cked c	for tensior emperatur 0, 0, perature r 0, 0, for shear l	n load ¹⁾ e range I, I 10 12 ange I, II 12 30 oad ²⁾ Temperatu	I 0, 0, 0, 0,	16 10 12 13 30	M 0, 0, 0, 0,	10 12 13	0, 0, 0,	10 13 13
FRA Displacement-Fac Jncracked concre JNO-Factor Imm/(N/m Cracked concrete DNO-Factor Imm/(N/m Displacement-Fac Imm/(N/m Displacement-Fac Jncracked or cracked or crack	ctors f ete; Te nm²)] - ; Tem nm²)] - ctors f cked c	for tension emperatur 0, 0, 0, 0, 0, for shear le concrete;	n load ¹⁾ e range I, I 10 12 range I, II 12 30 oad ²⁾ Temperatu 10	I 0, 0, 0, 0,	16 10 12 13 30 II 10	M 0, 0, 0, 0, 0,	10 12 13 30	0, 0, 0, 0,	10 13 13 35
FRA Displacement-Fac Jncracked concre JNO-Factor Imm/(N/m Cracked concrete INO-Factor Imm/(N/m Displacement-Fac JNo-Factor Imm/(N/m Displacement-Fac Jncracked or crac Imm/(N-Factor Imm/(N/m Displacement-Fac Jncracked or crac Imm/vo-Factor Imm/kl	etors f ete; Te nm ²)] - ; Tem nm ²)] - etors f etors f cked o	for tension emperatur 0, 0, operature r 0, 0, for shear l concrete; 0, 0,	n load ¹⁾ e range I, I 10 12 range I, II 12 30 oad ²⁾ Temperatu 10 11	II 0, 0, 0, 0, 0, re range I, 0,	16 10 12 13 30 II 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10	M 0, 0, 0, 0, 0, 0,	10 12 13 30 09 10	0, 0, 0, 0, 0, 0,	10 13 13 35 09
Image: Provide state stat	ctors 1 ete; Te 1m²)] - ; Tem 1m²)] - ctors 1 ctors 1 cked 0 N] - effective	for tension emperatur 0, 0, operature r 0, 0, for shear l concrete; 0, 0,	n load ¹⁾ e range I, I 10 12 range I, II 12 30 oad ²⁾ Temperatu 10 11	II 0, 0, 0, 0, 0, re range I, 0,	16 10 12 13 30 II 10 11 ²⁾ Calcu	M 0, 0, 0, 0, 0,	10 12 13 30 09 10 ective displ	0, 0, 0, 0, 0, 0,	10 13 13 35 09
FRA Displacement-Fac Jncracked concre JNO-Factor Imm/(N/m Cracked concrete JNO-Factor JNO-Factor Imm/(N/m Displacement-Fac JNO-Factor Imm/(N/m Displacement-Fac Jncracked or cracked or cra	tors f ete; To m ²)] - ; Tem nm ²)] - ctors f cked o N] - effectiv τ _{Ed}	for tension emperatur 0, 0, operature r 0, 0, for shear l concrete; 0, 0,	n load ¹⁾ e range I, I 10 12 range I, II 12 30 oad ²⁾ Temperatu 10 11	II 0, 0, 0, 0, 0, re range I, 0,	16 10 12 13 30 II 10 11 ²⁾ Calcu δvo =	M 0, 0, 0, 0, 0, 1ation of effe	10 12 13 30 09 10 ective displ	0, 0, 0, 0, 0, 0,	10 13 13 35 09
FRA Displacement-Fac Jncracked concre JNO-Factor Imm/(N/m Cracked concrete JNO-Factor JNO-Factor Imm/(N/m Displacement-Fac JNO-Factor Imm/(N/m Displacement-Fac Jncracked or cracked JNO-Factor Imm/(N/m Displacement-Fac JNO = SNO = SNO-Factor	ctors f ete; Te nm²)] - ; Tem nm²)] - ctors f cked c N] - effectiv τEd τEd	for tensior emperatur 0, 0, operature r 0, 0, for shear le concrete; 0, 0, ve displace	n load ¹⁾ e range I, I 10 12 range I, II 12 30 oad ²⁾ Temperatu 10 11 ment:	II 0, 0, 0, 0, 0, 0, 0, 0,	16 10 12 13 30 II 10 11 ²⁾ Calcu $\delta_{V0} = \delta_{V\infty} = \delta_{V\infty} = \delta_{V\infty}$	Μ 0,	10 12 13 30 09 10 ective displ	0, 0, 0, 0, 0, 0,	10 13 13 35 09 10
FRA Displacement-Fac Jncracked concre δ_{N0} -Factor [mm/(N/m Cracked concrete δ_{N0} -Factor [mm/(N/m Displacement-Fac Jncracked or crac δ_{V0} -Factor [mm/kl δ_{V0} -Factor [mm/kl $\delta_{N0} = \delta_{N0}$ -Factor $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\delta_{N\infty}$	ctors f ete; Te nm²)] - ; Tem nm²)] - ctors f cked c N] - effectiv τEd τEd	for tensior emperatur 0, 0, operature r 0, 0, for shear le concrete; 0, 0, ve displace	n load ¹⁾ e range I, I 10 12 range I, II 12 30 oad ²⁾ Temperatu 10 11 ment:	II 0, 0, 0, 0, 0, 0, 0, 0,	16 10 12 13 30 II 10 11 ²⁾ Calcu $\delta_{V0} = \delta_{V\infty} = \delta_{V\infty} = \delta_{V\infty}$	Μ 0,	10 12 13 30 09 10 ective displ	0, 0, 0, 0, 0, 0, acement:	10 13 13 35 09 10
FRA Displacement-Fac Jncracked concre δ_{N0} -Factor [mm/(N/m Cracked concrete δ_{N0} -Factor [mm/(N/m Displacement-Fac Jncracked or crac δ_{V0} -Factor [mm/kl δ_{V0} -Factor [mm/kl $\delta_{N0} = \delta_{N0}$ -Factor $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\delta_{N\infty}$	ctors f ete; Te nm²)] - ; Tem nm²)] - ctors f cked c N] - effectiv τEd τEd	for tensior emperatur 0, 0, operature r 0, 0, for shear le concrete; 0, 0, ve displace	n load ¹⁾ e range I, I 10 12 range I, II 12 30 oad ²⁾ Temperatu 10 11 ment:	II 0, 0, 0, 0, 0, 0, 0, 0,	16 10 12 13 30 II 10 11 ²⁾ Calcu $\delta_{V0} = \delta_{V\infty} = \delta_{V\infty} = \delta_{V\infty}$	Μ 0,	10 12 13 30 09 10 ective displ	0, 0, 0, 0, 0, 0, acement:	10 13 13 35 09 10
FRA Displacement-Fac Jncracked concre δ_{N0} -Factor [mm/(N/m Cracked concrete δ_{N0} -Factor [mm/(N/m Displacement-Fac Jncracked or crac δ_{V0} -Factor [mm/kl δ_{V0} -Factor [mm/kl $\delta_{N0} = \delta_{N0}$ -Factor $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\delta_{N\infty}$	ctors f ete; Te nm²)] - ; Tem nm²)] - ctors f cked c N] - effectiv τEd τEd	for tensior emperatur 0, 0, operature r 0, 0, for shear le concrete; 0, 0, ve displace	n load ¹⁾ e range I, I 10 12 range I, II 12 30 oad ²⁾ Temperatu 10 11 ment:	II 0, 0, 0, 0, 0, 0, 0, 0,	16 10 12 13 30 II 10 11 ²⁾ Calcu $\delta_{V0} = \delta_{V\infty} = \delta_{V\infty} = \delta_{V\infty}$	Μ 0,	10 12 13 30 09 10 ective displ	0, 0, 0, 0, 0, 0, acement:	10 13 13 35 09 10
FRA Displacement-Fac Jncracked concrete NO-Factor Imm/(N/m Cracked concrete NO-Factor Imm/(N/m Displacement-Fac Jncracked or cracked or cracked Jncracked or cracked VO-Factor Imm/(N/m Displacement-Fac Jncracked or cracked VO-Factor Imm/kl NO-Factor Incracked or cracked NO-Factor Imm/kl NNO = $\delta_{NO-Factor} \cdot$ $\delta_{NO} = \delta_{NO-Factor} \cdot$ $\delta_{NO} = \delta_{NO-Factor} \cdot$ (TEd: Design value)	ctors f ete; Te im²)] - ; Tem im²)] - ctors f cked c N] cffectiv τEd tEd iue of	for tension emperature 0, 0, operature r 0, 0, for shear lo concrete; 0, 0, ve displace	n load ¹⁾ e range I, I 10 12 range I, II 12 30 oad ²⁾ Temperatu 10 11 ment:	II 0, 0, 0, 0, 0, 0, 0, 0,	16 10 12 13 30 II 10 11 ²⁾ Calcu $\delta_{V0} = \delta_{V\infty} = \delta_{V\infty} = \delta_{V\infty}$	Μ 0,	10 12 13 30 09 10 ective displ	0, 0, 0, 0, 0, 0, acement:	10 13 13 35 09 10
FRA Displacement-Fac Jncracked concre δ_{N0} -Factor [mm/(N/m Cracked concrete δ_{N0} -Factor [mm/(N/m Displacement-Fac Jncracked or crac δ_{V0} -Factor [mm/kl δ_{V0} -Factor [mm/kl $\delta_{N0} = \delta_{N0}$ -Factor $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\delta_{N\infty}$	ctors f ete; Te im²)] - ; Tem im²)] - ctors f cked c N] cffectiv τEd tEd iue of	for tension emperature 0, 0, operature r 0, 0, for shear lo concrete; 0, 0, ve displace	n load ¹⁾ e range I, I 10 12 range I, II 12 30 oad ²⁾ Temperatu 10 11 ment:	II 0, 0, 0, 0, 0, 0, 0, 0,	16 10 12 13 30 II 10 11 ²⁾ Calcu $\delta_{V0} = \delta_{V\infty} = \delta_{V\infty} = \delta_{V\infty}$	Μ 0,	10 12 13 30 09 10 ective displ	0, 0, 0, 0, 0, 0, acement:	10 13 13 35 09 10

Displacements for reinforcing bars and fischer rebar anchors FRA

i abie (C11.1: Character anchor ro performan	ds an	nd st	anda	ard thre						scner
Anchor	rod / standard threade	ed rod			M10	M12	M16	M20	M24	M27	M30
Bearing	capacity under tension	on load	I, ste	el fai	lure ¹⁾				-		
ischer a	anchor rods and stand	lard th	read	ed ro	ds, perfo	rmance o	category	C1 ²⁾			
<u>.</u>	Steel zinc plated		5.8		29(27)	43	79	123	177	230	281
Characteristic resistance N _{Rk,s,C1}		° بر	8.8		47(43)	68	126	196	282	368	449
acteris istano ^I Rk,s,C1	Stainless steel R and	Property class	50	[kN]	29	43	79	123	177	230	281
har resi	high corrosion	д Д	70		41	59	110	172	247	322	393
0	resistant steel HCR		80		47	68	126	196	282	368	449
ischer a	anchor rods and stand	lard th	read	ed ro	ds, perfo	rmance of	category	C2 ²⁾			•
υ	Steel =ine plated		5.8		_4)	39	72	108	_4)	_4)	_4)
Characteristic reistance N _{Rk,s,C2}	Steel zinc plated	° ₹	8.8		_4)	61	116	173	_4)	_4)	_4)
laracterist reistance N _{Rk,s,c2}	Stainless steel R and	Property class	50	[kN]	_4)	39	72	108	_4)	_4)	_4)
hara reis	high corrosion	д 0 0 0	70		_4)	53	101	152	_4)	_4)	_4)
5	resistant steel HCR		80		_4)	61	116	173	_4)	_4)	_4)
Bearing	capacity under shear	load.	steel	failu	re withou	t lever a	rm ¹⁾				<u>I</u>
	anchor rods, performa										
			5.8	,	17(16)	25	47	74	106	138	168
istic ce	Steel zinc plated	. ∡	8.8		23(21)	34	63	98	141	184	225
acteri; sistanc _{Rk,s, C1}		Property class	50	[kN]	15	21	39	61	89	115	141
Characteristic resistance V _{Rk,s, C1}	Stainless steel R and high corrosion	5 <u>0</u>	70	[]	20	30	55	86	124	161	197
5 -	resistant steel HCR		80		23	34	63	98	141	184	225
Standar	d threaded rods, perfo	ormano		itegoi						101	
			5.8		12(11)	17	33	52	74	97	118
eristi nce c1	Steel zinc plated	~ ⊊	8.8		16(14)	24	44	69	99	129	158
laracterist esistance V _{Rk,s, C1}	Stainless steel R and	Property class	50	[kN]	11	15	27	43	62	81	99
Characteristic resistance V _{Rk,s, C1}	high corrosion	<u>Б</u> 2	70		14	21	39	60	87	113	138
ວ	resistant steel HCR		80		16	24	44	69	99	129	158
ischer a	anchor rods and stand	lard th	read	ed ro	ds, perfo	rmance of	category	C2			
ці.	Steel zinc plated		5.8		_4)	14	27	43	_4)	_4)	_4)
eris ince		erty ss	8.8		_4)	22	44	69	_4)	_4)	_4)
laracterist esistance V _{Rk,s, C2}	Stainless steel R and	Property class	50	[kN]	_4)	14	27	43	_4)	_4)	_4)
Characteristic resistance V _{Rk,s, C2}	high corrosion resistant steel HCR	ت م	70		_4)	20	39	60	_4)	_4)	_4)
			80		_4)	22	44	69	_4)	_4)	_4)
		$lpha_{ ext{gap}}$		[-]				0,5 (1,0) ³)		
for fis ²⁾ Value threa ³⁾ Value nece	al factors for performance scher anchor rods FIS A / es in brackets are valid for ded rods according to EN es in brackets are valid for ssary to use the fischer fill afformance assessed	RGM th unders ISO 10 filled a	ie fac ized t 684:2 nnula	tor for hreade 2004+/ r gaps	steel ductil ed rods wit AC:2009. between t	ity is 1,0 h smaller s he anchor					
fische	erformance assessed r injection system F	IS V									
Charac	mances teristic values for steel indard threaded rods ur									Annex (C 11

Page 32 of European Technical Assessment ETA-02/0024 of 13 May 2020

English translation prepared by DIBt

Anch	or rod / standard threa	ded rod	l		M10	M12	M16	M20	M24	M27	M30
Гens	ion load, steel failure ¹⁾								-	-	
	Ctool tine ploted	0	5.8					1,50			
Partial factor	Steel zinc plated	class	8.8					1,50			
ial fa ‱ ∾	Stainless steel R and	Property class	50	[-]				2,86			
Parti	high corrosion	70				1	,50 ²⁾ / 1,8	7			
	resistant steel HCR		80					1,60			
Shea	r load, steel failure ¹⁾										
	Steel - ine plated	6	5.8					1,25			
Partial factor	Steel zinc plated	class	8.8					1,25			
ial fa ₩vv	Stainless steel R and	h i	50	[-]				2,38			
_arti	high corrosion	Property class	70				1	,25 ²⁾ / 1,5	6		
	resistant steel HCR	_ <u> </u>	80					1,33			

fischer injection system FIS V

Performances

Partial factors under seismic action (performance category C1 and C2) for fischer anchor rods and standard threaded rods

Table C13.1:Characteristic values for combined pull-out and concrete failure for fischer
anchor rods and standard threaded rods in hammer drilled holes under
seismic action performance category C1

						- <u>j</u> -, -					
Anchor r	od /	standard thread	led rod		M10	M12	M16	M20	M24	M27	M30
Characte	risti	c bond resistan	ce, com	bined pu	llout and	concrete	e cone fai	lure		-	
Hammer	drill	ing with standa	rd drill b	oit or holl	ow drill b	oit (dry or	wet con	crete)			
Tem-	I:	50 °C / 80 °C	_	[] [] [] [] [] [] [] [] [] [] [] [] [] [4,5	5,5	5,5	5,5	4,5	4,0	4,0
perature range	11:	72 °C / 120 °C	$ au_{Rk,C1}$	[N/mm ²]	4,0	4,5	4,5	4,5	4,0	3,5	3,5
Hammer	drill	ing with standa	rd drill b	oit or holl	ow drill b	oit (water	filled hol	e ¹⁾)			
Tem-	I:	50 °C / 80 °C		[] [] [] [] [] [] [] [] [] [] [] [] [] [_2)	5,0	5,0	4,5	4,0	3,5	3,5
perature range	11:	72 °C / 120 °C	$ au_{Rk,C1}$	[N/mm ²]	_2)	4,0	4,0	4,0	3,5	3,0	3,0
Installati	on fa	actors									
Dry or wet	t con	crete		r 1				1,0			
Water fille	d ho	le	γinst	[-]	_2)			1,2	2 ¹⁾		

¹⁾ Only with coaxial cartridges: 380ml, 400 ml, 410 ml

²⁾ No performance assessed

fischer injection system FIS V

Performances

Characteristic values for combined pull-out and concrete failure under seismic action (performance category C1) for fischer anchor rods and standard threaded rods

Table C14.1: Characteristic values for combined pull-out and concrete failure for fischer anchor rods and standard threaded rods in hammer drilled holes under seismic action performance category C2

Anchor rod / standard threaded rod				M12	M16	M20
Characte	ristic bond resistan	ce, com	bined pu	llout and concrete co	one failure	
Hammer-	drilling with standar	d drill k	oit or holl	ow drill bit (dry or we	et concrete)	
Tem- perature range	l: 50 °C / 80 °C	$ au_{Rk,C2}$	[N/mm ²]	1,5	1,3	2,1
	II: 72 °C / 120 °C			1,3	1,2	1,9
Hammer-	drilling with standar	d drill b	oit or holl	ow drill bit (water fille	ed hole ³⁾)	
Tem-	l: 50 °C / 80 °C	$ au_{\mathrm{Rk},\mathrm{C2}}$	[N/mm ²] -	1,3	1,1	1,8
perature range	II: 72 °C / 120 °C			1,1	1,0	1,6
Installatio	on factors					
Dry or wet concrete		γinst	[-]	1,0		
Water filled hole				_4)	1,2 ³⁾	
Displace	ment-Factors for ten	sion lo	ad ¹⁾			
δN,C2 (DLS)-Factor				0,20	0,13	0,21
δ N,C2 (ULS)-Factor				0,38	0,18	0,24
Displace	ment-Factors for she	ear load	2)			
δ V,C2 (DLS)-Factor		[mm/kN]		0,18	0,10	0,07
δ V,C2 (ULS)-Factor				0,25	0,14	0,11
¹⁾ Calcul	ation of effective disp	lacemei	nt:	²⁾ Calcula	ation of effective displa	cement:

 $\delta_{\text{N,C2}(\text{DLS})} = \delta_{\text{N,C2}(\text{DLS})\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N,C2}(\text{ULS})} = \delta_{\text{N,C2}(\text{ULS})\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{V,C2 (DLS)} = \delta_{V,C2 (DLS)-Factor} \cdot V_{Ed}$

 $\delta v_{\text{,C2 (ULS)}} = \delta v_{\text{,C2 (ULS)-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

³⁾ Only with coaxial cartridges: 380ml, 400 ml, 410 ml ⁴⁾ No performance assessed

fischer injection system FIS V

Performances

Characteristic values for combined pull-out and concrete failure under seismic action (performance category C2) for fischer anchor rods and standard threaded rods