

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-24/0281 of 6 December 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	fischer C-Fiber Force Strengthening System
Product family to which the construction product belongs	Kits for the strengthening of concrete elements by externally bonded and near surface mounted CFRP strips
Manufacturer	fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND
Manufacturing plant	
This European Technical Assessment contains	46 pages including 40 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 160086-01-0301

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific part

1 Technical description of the product

Subject matter of regulation of this European Technical Assessment (ETA) is the "fischer C-Fiber Force Strengthening System" for the strengthening of concrete elements by externally bonded (EB) CFRP strips and by near surface mounted (NSM) CFRP strips (in the following referred to as kit). The kit is used for the strengthening of concrete elements by bonded reinforcements to increase the flexural capacity of the elements either to compensate for design deficiencies, execution flaws and aging induced loss of capacity of the existing structure or increase of capacity in case of increased loads or repurposing of the existing structure.

The kit for the strengthening of concrete elements by externally bonded or near surface mounted carbon fiber reinforced polymer strips consists of the following components:

- A Two types of unidirectional carbon fiber reinforced polymer (CFRP) strips for EB:
 - FRS-L-H and FRS-L-S,

One type of unidirectional carbon fiber reinforced polymer (CFRP) strips for NSM:

- FRS-L-S NSM (same type of strips as FRS-L-S for EB)
- B Structural bonding agent acc. to EN 1504-4, EN 1504-3, EN 1504-6 for CFRP strips FRS-CS
- C Repair mortar with polymer binder FRS-PC 11 acc. to EN 1504-3,
- D Bonding agent for the repair mortar FRS-BA acc. to EN 1504-7,
- E Cleaning agent for the CFRP strips FRS-CA.

Furthermore, the manufacturer recommends the coating FRS-SF in case of exposure scenarios with increased UV-exposure as mentioned in the manufacturers product installation manual (MPII) and national regulations which is not part of the kit.

The following information on the kit and its components are given in the annexes to this ETA:

An overview of the kit and its components is given in annex A1 - A3 and its installed condition in annex A4 and A5.

A detailed description of the components of the kit is given in:

- Annex C9 for the CFRP strips (comp. A),
- Annex C1 for the structural bonding agent FRS-CS (comp. B),
- Annex C3 for the repair mortar FRS PC 11 (comp. C),
- Annex C16 for the bonding agent of the repair mortar FRS-BA (comp. D),
- The description of the intended use, design, installation of the kit and curing conditions of the structural bonding agent, repair mortar and bonding agent for the repair mortar is given in annex B1 and B2.
- Instruction of strengthening of concrete structures with externally bonded CFRP strips and near surface mounted CFRP strips is given annex B3 B6.
- The results of the essential characteristics from assessment procedures according to EAD 160086-01-0301 are given in annex C:
 - Annex C10 C15 for the CFRP strips (comp. A),
 - Annex C2, C5 and C6for the structural bonding agent FRS-CS (comp. B),
 - Annex C4, C7 and C8 for the repair mortar FRS PC 11 (comp. C),
- The essential characteristics of the system resulting of from the assessment procedures according to EAD 160086-01-0301 are given in annex C17 C29.

Page 4 of 46 | 6 December 2024

2 Specification of the intended use in accordance with the applicable European Assessment Document

The kit is used for strengthening the tensile area of concrete elements like beams, slabs, walls and columns. It is intended to contribute to the increase of the structural capacity for static and quasi-static loaded concrete elements according to the design rules. The kit covers two different types of strengthening methods, as depicted in annex A4 and A5, in which CFRP strips are either applied externally onto the prepared concrete surface (EB) or in milled slots perpendicular to the concrete surface (NSM) in accordance with the manufacturer's product installation instructions (MPII).

In case the surface conditions required are not fulfilled due to defects and damages of the concrete element the repair mortar (components C and D), normal concrete or shotcrete (both not part of the kit) may be used to improve the concrete surface condition prior to the application of the CFRP strips to the repaired concrete surface in accordance with the MPII and national regulations.

The performances given in section 3 are only valid if the kit is used in compliance with the specifications and conditions given in annex B and the MPII. Irrespective of annex B and the MPII, national regulations need to be respected.

The verifications and assessment methods on which this ETA is based lead to the assumption of a working life of the kit of at least 25 years when installed, provided that the kit is subject to appropriate installation and use. These provisions are based upon the current state of the art and the available knowledge and experience. The indications given as to the working life of the construction product cannot be interpreted as a guarantee neither given by the product manufacturer nor by the Technical Assessment Body issuing this ETA but are regarded only as a means for expressing the expected economically reasonable working life of the construction product.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

No.	Essential characteristic	Assessment method according to EAD 160086-01-0301	Performance
1	Glass transition temperature of the structural bonding agent	2.2.1	See Annex C2
2	Glass transition temperature of the repair mortar	2.2.1	See Annex C4
3	Flexural and compressive strength of the structural bonding agent	2.2.2	See Annex C5 and C6
4	Flexural and compressive strength of the repair mortar	2.2.2	See Annex C7 and C8
5	Flexural and compressive strength of the structural bonding agent cured at minimum temperature of installation in depending on the curing time	2.2.3	See Annex C5 and C6
6	Flexural and compressive strength of the repair mortar cured at minimum temperature of installation in depending on the curing time	2.2.3	See Annex C7 and C8
7	Modulus of elasticity, tensile strength and strain at failure of CFRP strips	2.2.4	See Annex C10 and C11
8	Resistance of CFRP strips after storage in alkaline environment at maximum temperature according to the intended use	2.2.5	See Annex C12 to C15
9	Resistance of CFRP strips in alkaline environment under long-term load at maximum temperature according to the intended use	2.2.6	No performance assessed
10	Bond strength of specimens cured at standard environmental conditions	2.2.7	See Annex C17
11	Bond strength after low-cycle fatigue action	2.2.8	see Annex C18
12	Bond strength after long-term loading under harsh climatic conditions	2.2.9	No performance assessed
13	Bond strength of specimens cured at minimum temperature of installation depending on the curing time	2.2.10	See Annex C19
Furt	her essential characteristics only of externa	lly bonded (EB) CFRP str	ips
14	Shear resistance of the anchorage of CFRP strips externally bonded to concrete	2.2.11	See Annex C20 to C28
15	Fatigue behaviour of the anchorage of CFRP strips externally bonded to concrete	2.2.12	No performance assessed

No. Essential characteristic		Assessment method according to EAD 160086-01-0301	Performance				
Furth	Further essential characteristics only of near surface mounted (NSM) CFRP strips						
16	Ultimate anchorage load of near surface mounted CFRP strips	2.2.13	See Annex C29				
17	Long-term ultimate anchorage load	2.2.14	No performance assessed				

3.2 Safety in case of fire (BWR 2)

No.	Essential characteristic	Assessment method according to EAD 160086-01-0301	Performance
18	Reaction to fire	2.2.15	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 160086-01-0301 the applicable European legal act is: 2000/606/EC. The system to be applied is: 1+

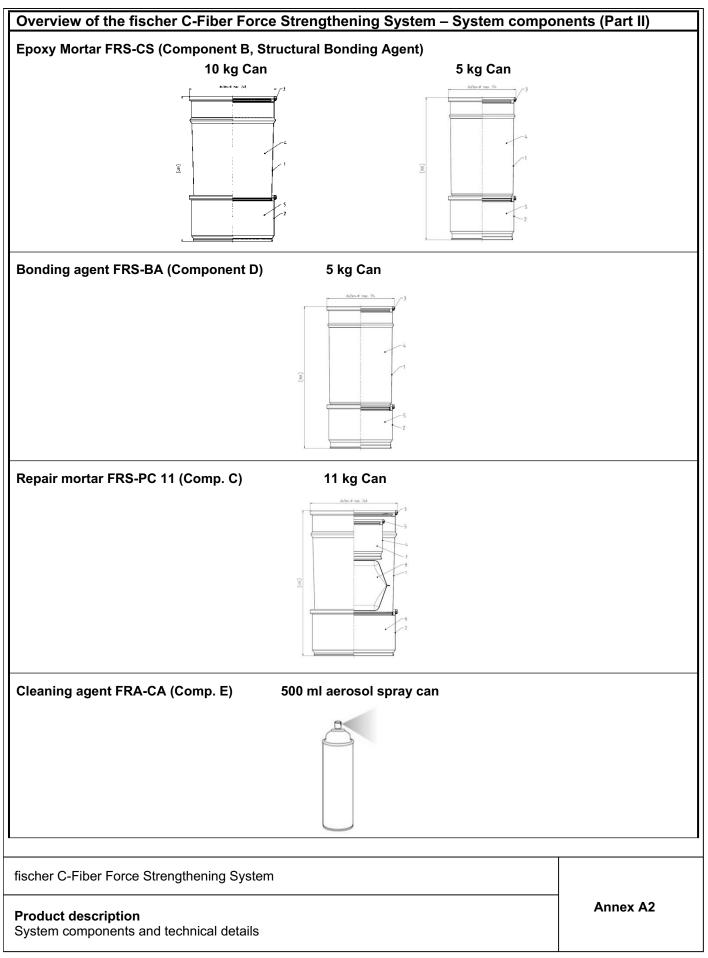
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

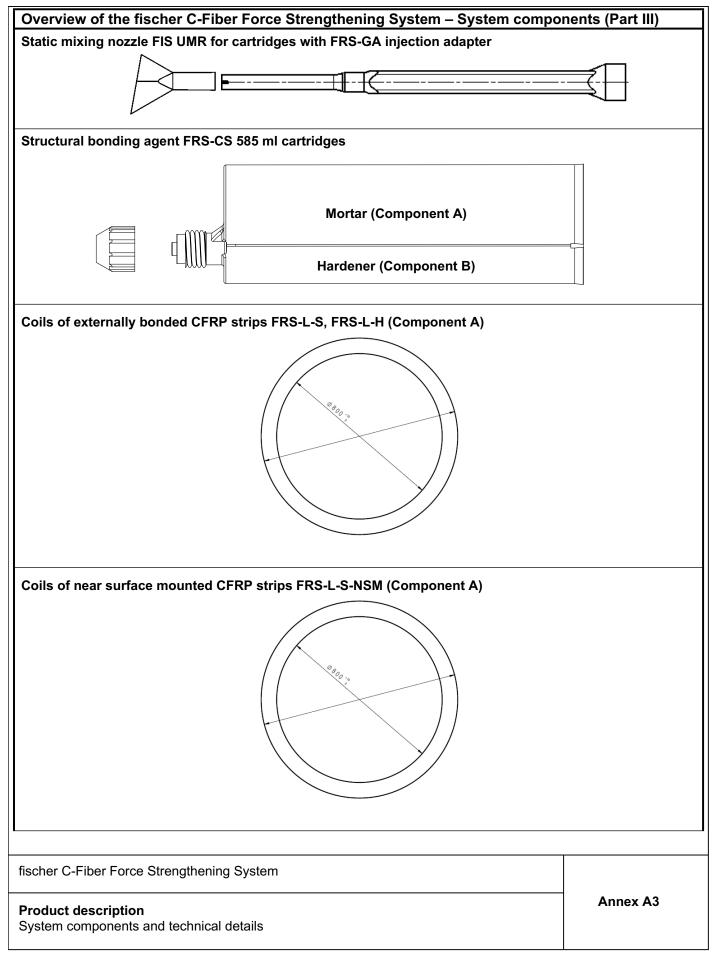
Issued in Berlin on 6. December 2024 by Deutsches Institut für Bautechnik

LBD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Alex

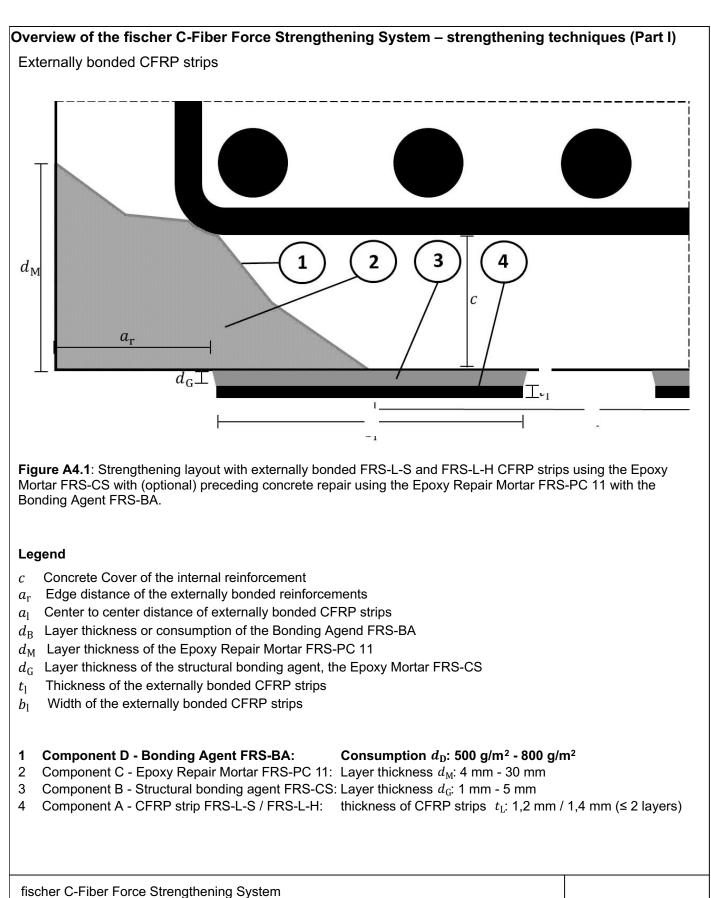
1	Comp A		Comp. B	Comp. C	omponents (P Comp. D	Comp. E
	Comp. A	I	Сотр. в	Comp. C	Comp. D	Comp. E
CFRP CFRP strip FRS- L-H	CFRP CFRP strip FRS- L-S	CFRP CFRP strip FRS- L-S NSM	Epoxy mortar FRS-CS	Epoxy repair mortar FRS-PC 11	Bonding Agent FRS-BA	Cleaning Agent FRS-CA
Unidirectional carbon fiber reinforced polymer (CFRP) strips			Structural bonding agent for CFRP strips	Repair mortar with polymer binder	Bonding agent for the repair mortar	Cleaning agent for the CFRP strips
Precured composite from carbon fibers embedded in an epoxy matrix		Cold curing epoxy with mineral fillers	Cold curing epoxy with mineral fillers	Cold curing epoxy with mineral fillers	Solvent / Mixture of solvents	
EB	EB	NSM	EB & NSM	EB & NSM	EB & NSM	EB & NSM
ackaging 100 m coil or		5 kg can	11 kg can	5 kg can	500 ml	
150 m coil**	k		10 kg can			spray can
			585 ml injection cartridge			
Infinite (if st	ored UV-prot	ected)	36 months	36 months	36 months	36 months
	•	ent and	5 to 40 °C	5 to 40 °C	5 to 40 °C	5 to 40 °C
10 to 40 °C		10 to 40 °C	10 to 40 °C	10 to 40 °C	10 to 40 °C	
- 25 to 40 °C		- 25 to 40 °C	- 25 to 40 °C	- 25 to 40 °C	Not applicable	
	CFRP strip FRS- L-H Unidirection reinforced p Precured co fibers ember EB 100 m coil o 150 m coil** Infinite (if st 5 to 50 °C, o UV-protecte 10 to 40 °C	CFRP strip FRS- L-HCFRP strip FRS- L-SUnidirectional carbon fib reinforced polymer (CFRPrecured composite from fibers embedded in an eEBEB100 m coil or 150 m coil**Infinite (if stored UV-protectet)5 to 50 °C, dry environm UV-protectet10 to 40 °C	CFRP CFRP strip FRS- L-HCFRP CFRP strip FRS- L-SCFRP CFRP strip FRS- L-S NSMUnidirectio-larbon fiber reinforced polymer (CFRP) stripsImage: Composite from carbon fibers embedded in an epoxy matrixPrecured composite from carbon fibers embedded in an epoxy matrixEBEBEBNSM100 m coil or 150 m coil**Sto 50 °C, dry environment and UV-protectetInfinite (if stored UV-protected)5 to 50 °C, dry environment and UV-protectet10 to 40 °CImage: Composite from carbon strip from composite from carbon strip from carbon	CFRP CFRP strip FRS- L-HCFRP CFRP strip FRS- L-SCFRP CFRP strip FRS- L-S NSMEpoxy mortar FRS-CSUnidirectional carbon fiber reinforced polymer (CFRP) stripsStructural bonding agent for CFRP stripsPrecured composite from carbon fibers embedded in an epoxy matrixCold curing epoxy with mineral fillersEBEBNSMEB & NSM100 m coil or 150 m coil**5 kg can 10 kg can 585 ml injection cartridgeInfinite (if stored UV-protected)36 months5 to 50 °C, dry environment and UV-protectet5 to 40 °C10 to 40 °C10 to 40 °C	CFRP CFRP strip FRS- L-HCFRP CFRP strip FRS- L-SCFRP CFRP strip FRS- L-S NSMEpoxy mortar FRS-CSEpoxy repair mortar FRS-CSUnidirectional carbon fiber reinforced polymer (CFRP) stripsStructural bonding agent for CFRP stripsRepair mortar with polymer binderPrecured composite from carbon fibers embedded in an epoxy matrixCold curing epoxy with mineral fillersCold curing epoxy with mineral fillersEBEBNSMEB & NSMEB & NSM100 m coil or 150 m coil**S kg can 10 kg can 585 ml injection cartridge11 kg can 36 monthsInfinite (if stored UV-protected)36 months36 months5 to 50 °C, dry environment and UV-protectet5 to 40 °C5 to 40 °C10 to 40 °C10 to 40 °C10 to 40 °C	CFRP CFRP strip FRS- L-HCFRP CFRP strip FRS- L-SCFRP strip FRS- L-S NSMEpoxy mortar FRS-CSEpoxy repair mortar FRS-PC 11Bonding Agent FRS-PC 11Unidirectionational reinforced polymer (CFRP fibers embodyCarbon fiber repair mortarStructural bonding agent for CFRP stripsRepair mortar with polymer binderBonding agent for cold curing epoxy with mineral fillersBonding agent for cold curing epoxy with mineral fillersPrecured composite from carbon fibers embodyCold curing epoxy with mineral fillersCold curing epoxy with mineral fillersCold curing epoxy with mineral fillersCold curing epoxy with mineral fillersCold curing epoxy with mineral fillersEBEBNSMEB & NSMEB & NSMEB & NSMEB & NSM100 m coil**S kg can 10 kg can 585 ml injection cartridge11 kg can 586 ml injection cartridge5 kg can 5 to 40 °C36 months10 to 40 °C5 to 40 °C5 to 40 °C5 to 40 °C10 to 40 °C10 to 40 °C

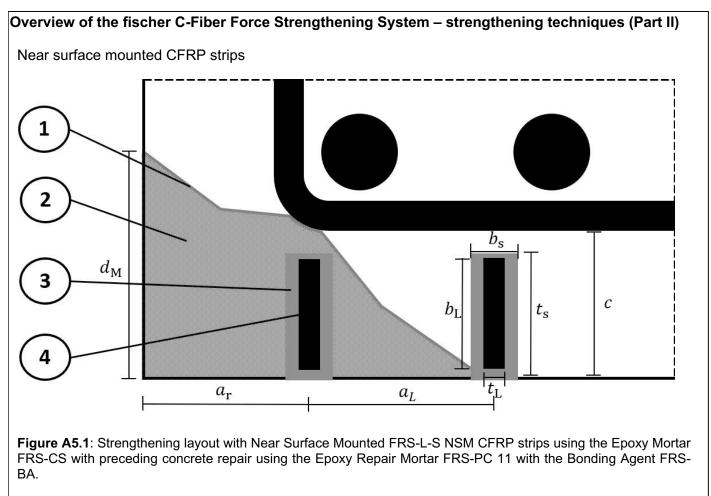

fischer C-Fiber Force Strengthening System

Product description


System components and technical details

Annex A1





Product description Installed condition – externally bonded CFRP strips Annex A4

Legend

- *c* Concrete cover of the internal reinforcements
- *a*_r Edge distance of the externally bonded reinforcements
- $a_{\rm L}$ Center to center distance of externally bonded CFRP strips
- $d_{\rm B}$ Layer thickness or consumption of the Bonding Agent FRS-BA
- $d_{\rm M}$ Layer thickness of the Epoxy Repair Mortar FRS-PC 11
- b_s Width of the concrete slot $t_L + 1$ mm $\leq b_s \leq t_L + 3$ mm
- t_s Depth of the concrete slot $t_s \ge b_L + 3mm$
- $t_{\rm L}$ Thickness of the near-surface mounted CFRP strips
- $b_{\rm L}$ Width of the near-surface mounted CFRP strips
- 1 Component D Bonding Agent FRS-BA: Consumption $\rho_{\rm D}$: 500 g/m² 800 g/m²
- 2 Component C Epoxy Repair Mortar FRS-PC 11: Layer thickness *d*_M: 4 mm 30 mm
- 3 Component B Structural bonding agent FRS-CS: Consumption $\rho_{\rm B}$: 0,06 kg/m 0,20 kg/m
- 4 Component A CFRP strip FRS-L-S NSM: thickness of CFRP strips t_L : 1,2 mm / 1,4 mm / 1,7 mm

fischer C-Fiber Force Strengthening System

Product description

Installed condition – near surface mounted CFRP strips

Annex A5

Overview of the fischer C-Fiber Force Strengthening System – Specifications

Intended use

The fischer C-Fiber Force Strengthening System is used for strengthening the tensile reinforcement area of concrete elements like beams, slabs, walls and columns. It is intended to contribute to the increase of the structural capacity for static, quasi-static and high cycle fatigue loading of concrete elements according to the design rules.

Structural design

The structural design of strengthening layouts with the fischer C-Fiber Force strengthening system by externally bonded CFRP strips and by near surface mounted CFRP strips is the responsibility of an experienced structural engineer according to the national or international guidelines and regulations, in conjunction with this technical assessment as well as technical drawings and the MPII.

The fischer REINFORCE-FIX® design software might provide design proposals for certain strengthening layouts for reinforced concrete elements.

Base materials

The intended use of the strengthening system as covered by this ETA covers concrete elements from normal weight reinforced concrete, whose properties enable assignment to concrete strength classes C12/15 to C50/60 according to EN 206-1:2000 or newer, with a mean surface tensile strength of at least \geq 1,0 N/mm² with a sufficiently even and level surface. In case of the use of higher surface tensile strengths in the structural design, these values need to be verified on the concrete element to be strengthened by means of measurement of bond strength by pull-of tests acc. to EN 1542.

The decision on the suitability and adequate pretreatment of the concrete surface remains the responsibility of an experienced structural engineer.

Installation and use conditions

The installations shall be performed by appropriately qualified personnel under the supervision of the responsible structural engineer. Installation works shall be performed in accordance with the layout given in the structural design without allocation or exchange of defined materials and geometries. All materials covered in the C-Fiber Force Strengthening System shall be used without manipulations

The CFRP strips are only available in the widths according to Appendix B2. The width of the CFRP strips shall not be changed on the construction site. The CFRP strips shall be cut to the required length in accordance with the manufacturer's product installation instructions (MPII).

Storage, transport, handling, preparation and mixing as well as installation works need to be performed according to the manufacturer's technical datasheets and manufacturer's product installation instructions (MPII) and in alignment with national and international regulations.

The temperature range of use of the fischer C-Fiber Force Strengthening System is -25 °C - +40 °C after complete cure of the components. Reductions in load-bearing capacity due to the effects of temperature and other environmental conditions shall be taken into account in the structural design.

The fischer C-Fiber Force Strengthening System may be applied within an ambient temperature range of + 10 °C - + 40 °C if both surface temperature and ambient temperature are in range above dew point in accordance with the manufacturer's product installation instructions (MPII) respectively manuals.

Temperature:	≥ 10 °C	≥ 20 °C	40 °C
FRS-BA	≥ 96 h	≥ 48 h	≥ 24 h
FRS-PC 11	≥ 96 h	≥ 48 h	≥ 24 h
FRS-CS	≥ 48 h	≥ 24 h	≥ 16 h

The curing times of the system components are listed below:

The kit should therefore cure for at least 48 h at standard conditions (21 °C) or at least 96 h at minimum installation temperature (10 °C) depending on the individual weather conditions.

Quality assurance of the application should be defined and performed by the responsible structural engineer to ensure correct design, surface preparation, installation and cure of the kit in alignment with the manufacturers MPII and national regulations if applicable.

fischer C-Fiber Force Strengthening System

Intended use

Specifications and installation conditions

Annex B1

Specifications and installation condition		-					
Concrete repair with FRS-PC 11 (Comp.	,			· ·	/		
Concrete surface treatment	Removal of loose concrete particles and cleaning with a steel brush and vacuum or compressed air.						
System	Repair mortar FRS-PC 11 appl. wet in wet with bonding agent FRS-BA						
Recommended consumption of bonding	0,5 - 0,8						
agent FRS-BA $d_{\rm B}$ [kg/m ²]	0,0 0,0						
Range of layer thickness of repair mortar	4 - 30						
FRS-PC 11 <i>d</i> _M [mm]				1			
Layer thickness of repair mortar FRS-PC 11 d_{M} [mm]	5	10		15	20		30
Corresponding consumption of repair mortar FRS-PC 11 [kg/m ²]	10	20		30	40		60
Consumptions depend on the surface roug	hness of the c	oncrete s	urface).			
Strengthening with externally bonded C	FRP strips FF	RS-L-S / I	FRS-L	-H (Comp. A) & FR	S-CS (C	omp. B)
Concrete Surface treatment	Sand blastin		ot peer			`	edle gun
		<u> </u>		mpressed ai	•	I	0
Recommended layer thickness $d_{\rm G}$ [mm]	1 - 5			1			
Approx. consumption of structural	1 mm	2 mm		3 mm	4 mn	 ו	5 mm
bonding agent FRS-CS [kg/m]	thickness	thickne	ss	thickness	thick		thickness
FRS-L-S / FRS-L-H b_1 = 50 mm	0,10	0,20		0,30	0,40		0,50
FRS-L-S / FRS-L-H b_1 = 75 mm	0,15	0,20		0,45	0,60		0,75
FRS-L-S / FRS-L-H $b_1 = 100 \text{ mm}$	0,20	0,00		0,40	0,80		1,00
Minimum edge distance a_r		,	onoro	te cover of th		nal rainf	
							Jicements
Consumptions depend on the surface roug							
Strengthening with near surface mount	ed CFRP strip	s FRS-L	-S NSI	M (Comp. A)	& FR	S-CS (Co	omp. B)
Surface treatment	Milling groov	/es					
	Cleaning of	slots with	comp	ressed air			
Width and thickness of the CFRP strip	10 x 1,7		15 x	1,4		20 x 1,:	2
[mm x mm]							
Recommended min. slot depth t_s [mm]	13		18			23	
Recommended slot width <i>b</i> _s [mm]	2,7 - 4,7		2,4 –			2,2 – 4	
Approx. consumption of structural bonding agent FRS-CS [kg/m]	0,060 – 0,07	75	0,075	5 – 0,090		0,090 -	- 0,200
Minimum edge distance $a_{ m r}$	$a_r \ge min 30$	$\begin{pmatrix} \cdot & b_f \\ mm \\ d \end{pmatrix}$					1
		d_g)					
	where b _f : w					21	
	d _g : maximum aggregate size					4 b _L →	
Minimum slot-slot distance a_{l}	At least, $a_l \ge$: <i>b</i> _l , witho	ut load	d reduction a	$2 \geq 2 \cdot k$, 1	
Minimum concrete cover <i>c</i>							splay accuracy
	of the device					<u> </u>	
Consumptions depend on the surface roug	hness of the c	oncrete s	urface).			
fischer C-Fiber Force Strengthening Syste	m						
Intended use Specifications and installation conditions						A	nnex B2

Graphic depictions of the strengthening method – Externally bonded CFRP strips (Part I)

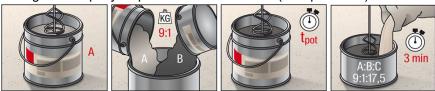
	air and strengthening of concrete structures with the fischer
C-Fiber Force Strengthening System with	th externally bonded CFRP strips tute the complete installation instruction manuals and might not be complete. For detailed
	rresponding Manufacturer's Product Installation Instructions (MPII).
	Application of Bonding Agent FRS-BA as a thin layer on cleaned, fractured, or damaged areas of the concrete as well as on the rust- free, embedded steel reinforcing bars for corrosion protection if exposed. (<i>The necessity of concrete repair is dependent on the actual</i> <i>condition of the individual concrete element to be strengthened</i>)
HILINIA CONTRACTOR	Application of the Epoxy Repair Mortar FRS-PC 11 on the damaged concrete, directly installed into the wet, non-cured bonding agent. (The necessity of concrete repair is dependent on the actual condition of the individual concrete element to be strengthened)
MAN AND AND AND AND AND AND AND AND AND A	Preparation and roughening of the concrete surface to be strengthened for the subsequent bonding of CFRP strips by either sand blasting, shot peening, grinding or similar in the areas, where the CFRP strips are to be applied. After the roughening, the coarse concrete aggregates ≥ 4 mm shall be visible.
HILL CONTRACTOR	Application of a scratch coat of the structural bonding agent, the Epoxy Mortar FRS-CS on the prepared concrete surface as well as on the surface of the FRS-L-S and FRS-L-H CFRP strips in a roof shaped manner with hight from 2 mm to 10 mm.
HIMMEN CONTRACTOR	Application of the fischer FRS-L-S or FRS-L-H externally bonded CFRP strips to the surface of the concrete element to be strengthened. After the CFRP strips are placed on the concrete surface, the excess FRS-CS Epoxy Mortar shall be visible on the sides of the CFRP strips.

fischer C-Fiber Force Strengthening System

Overview

of the stages of the repair and strengthening of concrete structures with externally bonded CFRP strips

Annex B3


Graphic depictions of the strengthening method - Externally bonded CFRP strips (Part II)

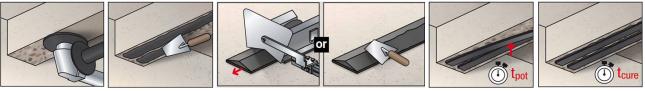
Depiction of the stages of concrete repair and strengthening of concrete structures with the fischer C-Fiber Force Strengthening System with externally bonded CFRP strips

The hereby presented installation steps do not substitute the complete installation instruction manuals and might not be complete. For detailed application and processing information consult the corresponding Manufacturer's Product Installation Instructions (MPII).

Concrete Repair using the Epoxy Repair Mortar FRS-PC 11 with the Bonding Agent FRS-BA:

Mixing of the Epoxy Repair Mortar FRS-PC 11 (Component C):

Mixing of the Bonding Agent FRS-BA (Component D):



General procedure of concrete repair using FRS-BA (Bonding Agent) and FRS-PC 11 (Epoxy Repair Mortar):

Installation of FRS-L-S and FRS-L-H CFRP strips and mix of the Epoxy Mortar FRS-CS

For further information (e.g. on pot life, hardening time etc.) on the FRS-BA, FRS-PC 11, FRS-CS consult the corresponding technical data sheets, product labels, MPII.

fischer C-Fiber Force Strengthening System

Overview

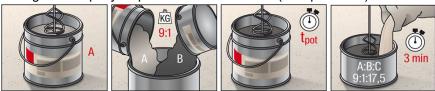
of the stages of the repair and strengthening of concrete structures with externally bonded CFRP Strips

Annex B4

· · · · · · · · · · · · · · · · · · ·	nening method – Near surface mounted CFRP strips (Part I)						
	epair and strengthening of concrete structures with the fischer						
C-Fiber Force Strengthening System	with near surface mounted CFRP strips						
The hereby presented installation steps do not substitute the complete installation instruction manuals and might not be complete. For detailed							
application and processing information consult the corresponding Manufacturer's Product Installation Instructions (MPII).							
A CONTRACTOR OF	Application of Bonding Agent FRS-BA as a thin layer on cleaned fractured, or damaged areas of the concrete as well as on the rust-free, embedded steel reinforcing bars for corrosion protection if exposed. (The necessity of concrete repair is dependent on the actual condition of the individual concrete element to be strengthened)						
MARKAN AND AND AND AND AND AND AND AND AND A	Application of the Epoxy Repair Mortar FRS-PC 11 on the damaged concrete, directly installed into the wet, non-curect bonding agent. (<i>The necessity of concrete repair is dependent on the actua condition of the individual concrete element to be strengthened</i>)						
HILL HARD	Preparation of the concrete surface to be strengthened for bonding by cutting slots with adequate depth and width into the concrete cover and subsequent thorough cleaning of the slot with compressed air.						
AND	The slots are completely filled with adhesive from the bottom of the slots and free of air pockets along their entire length until glue emerges from the slot.						
AND	The CFRP strip is inserted into the middle of the slot until it is completely embedded flush in the slot. The surface is peeled off to remove excess adhesive and to ensure a flat component surface.						
ischer C-Fiber Force Strengthening Syste							
Overview	Annex B5						

of the stages of the repair and strengthening of concrete structures with near surface

mounted CFRP strips


Graphic depictions of the strengthening method – Near surface mounted CFRP strips (Part II)

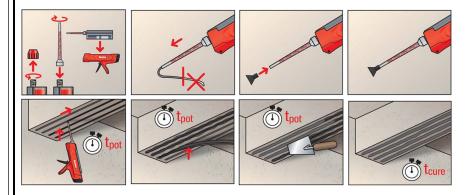
Depiction of the stages of concrete repair and strengthening of concrete structures with the fischer C-Fiber Force Strengthening System with near surface mounted CFRP strips

The hereby presented installation steps do not compensate for an installation instruction and are not exhaustive. For detailed application and processing information consult the corresponding Manufacturer Product Installation Instructions (MPII).

Concrete Repair using the Epoxy Repair Mortar FRS-PC 11 with the Bonding Agent FRS-BA


Mixing of the Epoxy Repair Mortar FRS-PC 11 (Component C):

Mixing if the Bonding Agent FRS-BA (Component D):



General procedure of concrete repair using FRS-BA (Bonding Agent) and FRS-PC 11 (Epoxy Repair Mortar):

Installation of FRS-L-S NSM CFRP strips using the Epoxy Mortar FRS-CS /FRS-CS 585 S cartridge system

fischer C-Fiber Force Strengthening System

Overview

of the stages of the repair and strengthening of concrete structures with near surface mounted CFRP strips

Annex B6

Characteristics of the structural bonding age	ent FRS-CS			
Appearance				
 Component A Component B Mixture of A and B (4:1) 	Highly viscous paste of beige colour with visible aggregate Highly viscous paste of black colour with visible aggregate Smooth, highly viscous paste of grey colour with visible aggregates			
Density - Component A - Component B - Mixture of A and B (4:1)	1,92 g/cm ³ ± 0,05 g/cm ³ 1,63 g/cm ³ ± 0,05 g/cm ³ 1,86 g/cm ³ ± 0,05 g/cm ³			
Mixing ratio by weight	4 : 1			
Elastic modulus in compression** and tension:***	≥ 7500 MPa			
Tensile strength:***	≥ 35 MPa			
 Minimum workability time at minimum installation temperature (10°C) and maximum container size (10 kg)* at standard conditions (21 °C) and maximum container size (10 kg)* at maximum installation temperature (40 °C) and maximum container size (10 kg)* Minimum curing time at minimum installation temperature (10 °C) at standard conditions (21 °C) at maximum installation temperature (40 °C) *Acc. to EN ISO 9514. ***Acc. to EN ISO 527-1, after 7 days at standard conditions 	120 min. 80 min. 25 min. 4 days 2 days 1 day			
fischer C-Fiber Force Strengthening System Product description Technical parameters and details of the structural bon	ding agent FRS-CS	Annex C1		

Glass transition temperature of the structural bon	dina aaen	t FRS-CS
Curing conditions and curing times		Glass transition temperature [°C]
- after 7 days curing at 21 °C ± 2 °C, 50% Rh.	$T_{ m Ggi}$	54 – 59 *; 55 – 59 *
Determination of the glass transition temperature was perfort * Due to the post-curing of the epoxy resin, which is supering temperature, only one temperature range can be specified	nposed on t	the measurement of the glass transition

fischer C-Fiber Force Strengthening System

Performance

Glass transition temperature of the structural bonding agent FRS-CS cured at standard environmental temperature of installation

Characteristics of the repair mortar FRS-PC 11	Characteristics of the repair mortar FRS-PC 11				
Appearance - Component A - Component B - Component C - Mixture of A, B and C (3,6 : 0,4 : 7)	Highly viscous paste of white colour Low viscosity, fluent liquid of black of Free flowing coarse aggregates of b Firm thixotropic mortar of light grey of	eige colour			
Density - Component A - Component B - Component C - Mixture of A and B (3,6 : 0,4 : 7)	2,12 g/cm ³ \pm 0,05 g/cm ³ 0,99 g/cm ³ \pm 0,05 g/cm ³ 2,20 g/cm ³ \pm 0,05 g/cm ³ 2,12 g/cm ³ \pm 0,05 g/cm ³				
Mixing ratio by weight	3,6 : 0,4 : 7				
Elastic modulus in compression**	≥ 20.000 MPa				
Minimum workability time - at minimum installation temperature (10 °C) and maximum container size (11 kg)* at standard conditions (21 °C) and maximum	180 min.				
 at standard conditions (21 °C) and maximum container size (11 kg)* at maximum installation temperature (40 °C) and maximum container size (11 kg)* 	80 min. 25 min.				
Minimum curing time4 days- at minimum installation temperature (10 °C)4 days- at standard conditions (21 °C)2 days- at maximum installation temperature (40 °C)1 day					
*Acc. to EN ISO 9514. **Acc. to EN 13412.					
ischer C-Fiber Force Strengthening System Product description Fechnical parameters and details of the repair mortar FRS-PC 11					

Curing conditions and curing time		Glass transition temperature [°C]
- after 7 days curing at 21 °C ± 2 °C, 50% Rh.	T _{Ggi}	59 – 63 *
		59 – 63 *
Determination of the glass transition temperature was perf	formed usi	ng the first heating cycle.
Due to the post-curing of the epoxy resin, which is super		
emperature, only one temperature range can be specified	for the gla	ass transition temperatures.

fischer C-Fiber Force Strengthening System

Performance Glass transition temperature of the repair mortar FRS-PC 11 cured at standard environmental or minimum temperature of installation

Flexural strength of the structural bonding agent FRS-CS				
Curing conditions and curing times	1	Flexural strength [MPa]		
- after 1 day curing at 10 °C ± 2 °C, 50% Rh.	$f_{ m Gflij}$	26,0; 25,7; 25,6;		
Mean value	<i>f</i> Gflmj	25,8		
Characteristic value	<i>f</i> Gflkj	25,1		
- after 7 days curing at 10 °C ± 2 °C, 50% Rh.	$f_{ m Gflij}$	34,2; 34,0; 32,4;		
Mean value	<i>f</i> Gflmj	33,5		
Characteristic value	f Gflkj	30,2		
- after 14 days curing at 10 $^{\circ}$ C ± 2 $^{\circ}$ C, 50% Rh.	$f_{ m Gflij}$	34,6; 31,7; 33,2;		
Mean value	f _{Gflmj}	33,2		
Characteristic value	<i>f</i> Gflkj	28,3		
- after 7 days curing at 21 °C ± 2 °C, 50% Rh.	$f_{ m Gfli}$	34,0; 31,3; 29,5;		
Mean value	<i>f</i> Gtflm	31,6		
Characteristic value	f Gflk	24,0		

fischer C-Fiber Force Strengthening System

Performance

Flexural strength of the structural bonding agent FRS-CS cured at standard environmental or minimum temperature of installation

Compressive strength of the structural bonding agent FRS-CS				
Curing conditions and curing time	ring conditions and curing time			
- after 1 day curing at 10 $^{\circ}$ C ± 2 $^{\circ}$ C, 50% Rh.	$f_{ m Gcij}$	51,2; 50,1; 51,4; 48,7; 52,9; 47,5;		
Mean value	<i>f</i> _{Gcmj}	50,3		
Characteristic value	$f_{ m Gckj}$	46,0		
- after 7 days curing at 10 °C ± 2 °C, 50% Rh.	$f_{ m Gcij}$	87,8; 85,9; 87,5; 84,3; 86,6; 82,6;		
Mean value	<i>f</i> _{Gcmj}	85,8		
Characteristic value	f _{Gckj}	81,4		
- after 14 days curing at 10 °C ± 2 °C, 50% Rh.	$f_{ m Gcij}$	91,6; 91,3; 91,7; 90,1; 90,2; 89,1;		
Mean value	f _{Gcmj}	90,7		
Characteristic value	f _{Gckj}	88,4		
- after 7 days curing at 21 °C ± 2 °C, 50% Rh.	$f_{ m Gci}$	89,9; 87,6; 89,8; 89,4; 88,8; 90,7;		
Mean value	<i>f</i> _{Gcm}	89,4		
Characteristic value	<i>f</i> _{Gck}	87,0		

fischer C-Fiber Force Strengthening System

Performance Compressive strength of the structural bonding agent FRS-CS cured at standard environmental or at minimum temperature of installation

Flexural strength of the repair mortar FRS-PC 11			
uring conditions and curing time		Flexural strength [MPa]	
- after 1 day curing at 10 °C ± 2 °C, 50% Rh.	$f_{ m Mflij}$	26,3; 25,7; 25,6;	
Mean value	f _{Mflmj}	25,9	
Characteristic value	fмflkj	24,6	
- after 7 days curing at 10 °C ± 2 °C, 50% Rh.	$f_{ m Mflij}$	37,5; 36,9; 38,7;	
Mean value	f _{Mflmj}	37,7	
Characteristic value	fмflkj	34,6	
- after 14 days curing at 10 °C ± 2 °C, 50% Rh.	$f_{ m Mflij}$	40,5; 43,0; 42,4;	
Mean value	<i>f</i> _{Mflmj}	42,0	
Characteristic value	fмflkj	37,6	
- after 7 days curing at 21 °C ± 2 °C, 50% Rh.	fмfli	42,4; 42,3; 41,6;	
Mean value	<i>f</i> _{Mtflm}	42,1	
Characteristic value	<i>f</i> Mflk	41,4	

fischer C-Fiber Force Strengthening System

Performance

Flexural strength of the repair mortar FRS-PC 11 cured at standard environmental or at minimum temperature of installation

Compressive strength of the repair mortar FRS-	PC 11	
Curing conditions and curing time	Compressive strength [MPa]	
- after 1 day curing at 10 °C \pm 2 °C, 50% Rh.	$f_{ m Mcij}$	91,4; 88,1; 87,8; 87,1; 86,9; 87,3;
Mean value	f _{Mcmj}	88,1
Characteristic value	$f_{ m Mckj}$	84,4
- after 7 days curing at 10 °C ± 2 °C, 50% Rh.	$f_{ m Mci}$	137,6; 137,1; 133,5; 135,6; 139,2; 134,3;
Mean value	fмcm	136,2
Characteristic value	f _{Mck}	131,5
- after 14 days curing at 10 °C ± 2 °C, 50% Rh.	$f_{ m Mci}$	146,1; 146,6; 144,3; 143,4; 144,6; 143,8
Mean value	f _{мст}	144,8
Characteristic value	f _{Mck}	142,0
- after 7 days curing at 21 °C ± 2 °C, 50% Rh.	$f_{ m Mci}$	147,0; 150,2; 147,4; 148,4; 146,3; 152,6
Mean value	fмcm	148,7
Characteristic value	$f_{ m Mck}$	143,5

Performance

Compressive strength of the repair mortar FRS-PC 11 cured at standard environmental or at minimum temperature of installation

Characteristics of the FRS-L-H CFRP strips					
Type of application Externally bonded (EB) Reinforcement					
Minimum coil diameter	≥ 800 mm				
Fiber volume content	≥ 67 % by volume*				
Glass transition temperature	≥ 100 °C**				
Geometry	Width <i>b</i> ₁ [mm]	Thickness t ₁ [mm]	Cross section area	[mm ²]	
FRS-L-H 50 x 1,2 mm	50	1,2	60		
FRS-L-H 50 x 1,4 mm	50	1,4	70		
FRS-L-H 75 x 1,2 mm	75	1,2	90		
FRS-L-H 75 x 1,4 mm	75	1,4	105		
FRS-L-H 100 x 1,2 mm	100	1,2	120		
FRS-L-H 100 x 1,4 mm	100	1,4	140		
Characteristics of the FRS-	-S CFRP strip	S			
Type of application	Externally bond	led (EB) Reinforceme	ent		
Minimum coil diameter	≥ 800 mm				
Fiber volume content	≥ 67 % by volu	me*			
Glass transition temperature	≥ 100 °C**				
Geometry	Width b_1 [mm]	Thickness t ₁ [mm]	Cross section area	[mm ²]	
FRS-L-S 50 x 1,2 mm	50	1,2	60		
FRS-L-S 50 x 1,4 mm	50	1,4	70		
FRS-L-S 75 x 1,2 mm	75	1,2	90		
FRS-L-S 75 x 1,4 mm	75	1,4	105		
FRS-L-S 100 x 1,2 mm	100	1,2	120		
FRS-L-S 100 x 1,4 mm	100	1,4	140		
Characteristics of the FRS-	-S NSM CFRP	strips			
Type of application	Near surface m	ounted (NSM) Reinfo	prcement		
Minimum coil diameter	≥ 800 mm				
Fiber volume content	≥ 67 % by volu	me*			
Glass transition temperature	≥ 100 °C**				
Geometry	Width b ₁ [mm]	Thickness t _l [mm]	Cross section area	[mm ²]	
FRS-L-S NSM 10 x 1,7 mm	10	1,7	17		
FRS-L-S NSM 15 x 1,4 mm	15	1,4	21		
FRS-L-S NSM 20 x 1,2 mm	20	1,2	24		
Types of CFRP strips FRS-L-H and FRS-L-S / FRS-L-S NSM only differ in the type of fibers used but are identical in their matrix material and fiber volume content as well as production process. *Acc. to EN 2564 **Acc. to EN 12614					
fischer C-Fiber Force Strengthening System Product Description Types and Geometries of CFRP strips Annex C9				Annex C9	

Modulus of elasticity, tensile strength and ultimate strain of CFRP strips FRS-L-H				
Essential characteristic		Performance		
Modulus of elasticity [GPa]		206; 206; 191; 199; 205;		
		194; 202; 195; 191; 191; 206; 201; 200; 199; 199;		
		209; 206; 208; 203; 205		
Mean value [GPa]	E _{Lm}	201		
Tensile strength [MPa]	$f_{\rm Li}$	3499; 3513; 3084; 3226; 3385;		
		3524; 3230; 3289; 3317; 3196;		
		3607; 3031; 3679; 3302; 3554;		
		3609; 3601; 3774; 3369; 3429		
Mean value [MPa]	f _{Lm}	3411		
Characteristic value of the tensile strength	f _{Lk}	3056		
[MPa] Ultimate strain [%]	ε _{Lui}	1,80; 1,65; 1,67; 1,63; 1,64;		
	^c Lui	1,76; 1,60; 1,64; 1,86; 1,63;		
		1,71; 1,42; 1,76; 1,59; 1,71;		
		1.68: 1.70: 1.73: 1.59: 1.77		
Mean value [%]	<i>ɛ</i> _{Lum}	1,68		

Please note that the values of tensile properties in **Annex C10** were determined on five separate tensile measurements from all characteristic cross sections of the type FRS-L-H.

fischer C-Fiber Force Strengthening System

Modulus of elasticity, tensile strength and ultimate strain of FRS-L-H CFRP strips

ssential characteristic		Performance
Modulus of elasticity [GPa]	E _{Li}	173; 169; 178; 170; 177; 177; 175; 167; 170; 178; 176; 178; 181; 177; 177; 175; 173; 178; 174; 170; 167; 169; 170; 170; 173; 176; 167; 163; 175; 166; 173; 173; 176; 173; 172; 171; 170; 174; 171; 169; 181; 178; 176; 177; 175; 177; 178; 174; 170; 174; 176; 178; 173; 181; 173; 173; 172; 170; 172; 174; 171; 170; 167; 176; 169; 171; 172; 170; 172; 171
Mean value [GPa]	E _{Lm}	173
Tensile strength [MPa] Mean value [MPa]	f _{Li}	2959; 3057; 2929; 3047; 2989; 3213; 3203; 3193; 3318; 3282; 3060; 3160; 3183; 2911; 3164; 3287; 3094; 2954; 3132; 2966; 2866; 2878; 2913; 2803; 3086; 3040; 2994; 2894; 3136; 2871; 3135; 3278; 3239; 3230; 3155; 3137; 3218; 3171; 3192; 3247; 2241; 2848; 3297; 3111; 2533; 3104; 3238; 3115; 3268; 3230; 2825; 2874; 2839; 2887; 2987; 2935; 3155; 2969; 2994; 3039; 2809; 2807; 2824; 2847; 2779; 3316; 3245; 3220; 3419; 3438;
	f _{Lm}	3054
Characteristic value of the tensile strength [MPa]	<i>f</i> _{Lk}	2701
Ultimate strain [%]	€Lui	1,69; 1,80; 1,66; 1,76; 1,67; 1,76; 1,70; 1,86; 1,89; 1,84; 1,72; 1,77; 1,89; 1,68; 1,73; 1,82; 1,88; 1,69; 1,75; 1,73; 1,64; 1,77; 1,94; 1,67; 1,78; 1,63; 1,70; 1,73; 1,69; 1,70; 1,75; 1,96; 1,90; 1,78; 1,72; 1,76; 1,82; 1,81; 1,69; 1,86; 1,52; 1,53; 1,81; 1,68; 1,69; 1,67; 1,75; 1,76; 1,79; 1,77; 1,65; 1,57; 1,61; 1,63; 1,85; 1,67; 1,78; 1,69; 1,68; 1,78; 1,77; 1,65; 1,68; 1,55; 1,68; 1,82; 1,88; 1,69; 1,75; 1,73; 1,77; 1,65; 1,68; 1,55; 1,68; 1,87; 1,79; 1,84; 1,92; 1,99;
	ε _{Lum}	1,74

fischer C-Fiber Force Strengthening System

Performance Modulus of elasticity, tensile strength and ultimate strain of FRS-L-S & FRS-L-S NSM CFRP strips

Essential characteristic	Performance	
Modulus of elasticity [GPa]	$E_{\rm Lai}$	192; 196; 198; 196; 200
Mean value [GPa]	E _{Lam}	196
Ratio of modulus of elasticity after / before exposure	R _{LEa}	0,98
$(R_{\rm LEa}=E_{\rm Lam}/E_{\rm Lm})$		
Tensile strength [MPa]	$f_{\rm Lai}$	3135; 3016; 3021; 3243; 3200
Mean value [MPa]	f _{Lam}	3123
Ratio of tensile strength after / before exposure $(R_{Lfa}=f_{Lam}/f_{Lm})$	R _{Lfa}	0,92
Ultimate strain [%]	$arepsilon_{ ext{Luai}}$	1,90; 1,48; 1,69; 1,72; 1,72
Mean value [%]	ELuam	1,70
Ratio of ultimate strain after / before exposure	R _{LEua}	1,01
$(R_{L\varepsilonua} = \varepsilon_{Luam}/\varepsilon_{Lum})$		
Please note that the values of tensile properties in Annex L-H CFRP strips with 1,2 mm thickness after 1800 h ex temperature of use (40 °C).		

fischer C-Fiber Force Strengthening System

Performance

Resistance of FRS-L-H CFRP strips to storage in alkaline environment (pH > 11,0) at maximum temperature according to the intended use (40 $^{\circ}$ C)

Resistance of CFRP strips FRS-L-H to storage in temperature for the intended use	alkaline	environment (pH > 13,7) at maximum
Essential characteristic	Performance	
Modulus of elasticity [GPa]	$E_{\rm Lai}$	194; 196; 184; 192; 194;
Mean value [GPa]	E _{Lam}	192
Ratio of modulus of elasticity after / before exposure	R _{LEa}	0,96
$(R_{\rm LEa}=E_{\rm Lam}/E_{\rm Lm})$		
Tensile strength [MPa]	$f_{ m Lai}$	3054; 3407; 3153; 2932; 3356;
Mean value [MPa]	<i>f</i> Lam	3180
Ratio of tensile strength after / before exposure		0,93
$(R_{\rm Lfa}=f_{\rm Lam}/f_{\rm Lm})$		
Ultimate strain [%]	$\varepsilon_{\mathrm{Luai}}$	1,66; 1,68; 1,65; 1,53; 1,68;
Mean value [%]	<i>E</i> Luam	1,64
Ratio of ultimate strain after / before exposure	R _{Leua}	0,98
$(R_{L\epsilon ua} = \varepsilon_{Luam} / \varepsilon_{Lum})$		

Please note that the following values of tensile properties in **Annex C13** were determined from measurements of strips with 1,2 mm thickness after 1800 h exposure to alkaline solution (pH > 13,7) at maximum temperature of use (40 °C).

fischer C-Fiber Force Strengthening System

Performance

Resistance of FRS-L-H CFRP strips to storage in alkaline environment (pH > 13,7) at maximum temperature according to the intended use (40 $^{\circ}$ C)

Resistance of CFRP strips FRS-L-S & FRS-L-S NSM at maximum temperature for the intended use	to storag	e in alkaline environment (pH > 11,0)
Essential characteristic	Performance	
Modulus of elasticity [GPa]	$E_{\rm Lai}$	171; 168; 173; 172; 170;
Mean value [GPa]	E _{Lam}	171
Ratio of modulus of elasticity after / before exposure	R _{LEa}	0,99
(R _{LEa} =E _{Lam} / E _{Lm}) Tensile strength [MPa] Mean value [MPa]	f _{Lai} , f Lam	3167; 3175; 3122; 3086; 3039; 3118
Ratio of tensile strength after / before exposure	R _{Lfa}	1,02
$(R_{\rm Lfa}=f_{\rm Lam}/f_{\rm Lm})$		
Ultimate strain [%]	ε _{Luai} ,	1,81; 1,83; 1,79; 1,73; 1,77;
Mean value [%]	ELuam	1,79
Ratio of ultimate strain after / before exposure ($R_{L\epsilon ua} = \epsilon_{Luam} / \epsilon_{Lum}$)	R _{Lɛua}	1,02
Please note that the following values of tensile properties in strips with 1,2 mm thickness after 1800 h exposure to alkalin (40 °C).		

fischer C-Fiber Force Strengthening System

Performance An Resistance of FRS-L-S & FRS-L-S NSM CFRP strips to storage in alkaline environment (pH > 11,0) at maximum temperature according to the intended use (40 °C)

Resistance of CFRP strips FRS-L-S & FRS-L-S NSM at maximum temperature for the intended use	/I to storag	ge in alkaline environment (pH > 13,7)	
Essential characteristic	Performance		
Modulus of elasticity [GPa]	$E_{\rm Lai}$	170; 171; 166; 169; 172;	
Mean value [GPa]	<i>E</i> _{Lam}	170	
Ratio of modulus of elasticity after / before exposure	R _{LEa}	0,98	
(R _{LEa} =E _{Lam} / E _{Lm})			
Tensile strength [MPa]	f Lai	2632; 2868; 2647; 2819; 2835;	
Mean value [MPa]	f _{Lam}	2760	
Ratio of tensile strength after / before exposure	R _{Lfa}	0,90	
$(R_{\rm Lfa}=f_{\rm Lam}/f_{\rm Lm})$			
Ultimate strain [%]	$\varepsilon_{ m Luai}$	1,64; 1,76; 1,67; 1,73; 1,64;	
Mean value [%]	<i>E</i> Luam	1,69	
Ratio of ultimate strain after / before exposure	R _{Leua}	0,97	
$(R_{L\epsilon ua} = \varepsilon_{Luam} / \varepsilon_{Lum})$			

Please note that the following values of tensile properties in **Annex C15** were determined from measurements of strips with 1,2 mm thickness after 1800 h exposure to alkaline solution (pH > 13,7) at maximum temperature of use (40 °C).

fischer C-Fiber Force Strengthening System

PerformanceAnnex C15Resistance of FRS-L-S & FRS-L-S NSM CFRP strips to storage in alkaline environment(pH > 13,7) at maximum temperature according to the intended use (40 °C)

Appearance		
- Component A	Highly viscous paste of white colour	
- Component B	Low viscosity, fluent liquid of black col	our
- Mixture of A and B (9:1)	Medium viscosity liquid of light grey co	blour
Density		
- Component A	2,12 g/cm ³ ± 0,05 g/cm ³	
- Component B	0,99 g/cm ³ ± 0,05 g/cm ³	
- Mixture of A and B (9:1)	2,01 g/cm ³ ± 0,05 g/cm ³	
Mixing ratio by weight	9 : 1	
Elastic modulus in tension*	≥ 7000 MPa	
Mean value of the tensile strength**	≥ 35 MPa	
Glass transition temperature***	≥ 50 °C	
Minimum workability time		
- at minimum installation temperature (10 °C)	180 min.	
and maximum container size (5 kg)		
 at standard conditions (21 °C) and maximum container size (5 kg) 	50 min.	
- at maximum installation temperature (40 °C)	20 min.	
and maximum container size (5 kg)	20 mm.	
Minimum curing time		
- at minimum installation temperature (10 °C)	4 days	
 at standard conditions (21 °C) 	2 days	
- at maximum installation temperature (40 °C)	1 day	
*Acc. to EN ISO 9514. **Acc. to EN ISO 527-1:2019, after 7 days of curing a ***Acc. to EN 12614 after 7 days of curing at standard		

Technical parameters and details of the bonding agent FRS-BA

			Bond strength	Failure mode
Kit composition and layer structure	e		[MPa]	
Bonding agent FRS-BA, repair Single values		$f_{ m cti,surf}$	2,59	100% Cohesion*
mortar FRS-PC 11, structural			3,00	100% Cohesion*
oonding agent FRS-CS, CFRP strip			2,39	100% Cohesion*
FRS-L-H			2,79	100% Cohesion*
			3,10	100% Cohesion*
	Mean value $f_{\rm ctm,sur}$		2,77	-
	Characteristic value	f _{ctk,surf}	2,09	-
Structural bonding agent FRS-CS,	Single values	$f_{\rm cti,surf}$	2,00	100% Cohesion*
CFRP strip FRS-L-H	-		2,97	100% Cohesion*
			3,30	100% Cohesion*
			3,66	100% Cohesion*
			3,29	100% Cohesion*
	Mean value	f _{ctm,surf}	3,04	-
	Characteristic value	f _{ctk,surf}	1,56	-
Bonding agent FRS-BA, repair	Single values	f _{cti,surf}	3,07	100% Cohesion*
nortar FRS-PC 11, structural		,,	3,37	100% Cohesion*
oonding agent FRS-CS, CFRP strip			2,51	100% Cohesion*
RS-L-S			3,48	100% Cohesion*
			3,15	100% Cohesion*
	Mean value	f _{ctm,surf}	3,12	-
	Characteristic value	f _{ctk,surf}	2,24	-
Structural bonding agent FRS-CS,	Single values	f cti,surf	3,24	100% Cohesion*
CFRP strip FRS-L-S	U U	y eensuri	3,54	100% Cohesion*
			3,19	100% Cohesion*
			3,50	100% Cohesion*
			3,20	100% Cohesion*
	Mean value	f _{ctm,surf}	3,33	-
	Characteristic value	f ctk,surf	2,92	-
Layer thicknesses: Bonding agent for the repair mortar F Concrete repair mortar FRS-PC 11 d_{G} Structural bonding agent FRS-CS d_{G} , CFRP strip FRS-L-S or FRS-L-H t_{L} : Curing time: 7 days Curing temperature: 21 °C ± 2 °C Curing tolesive failure in the concre	M,max.: 30 mm min.: 1 mm 1,4 mm f cm: 50,5 MPa	a ; <i>f</i> _{ck} : 49,0 M		

fischer C-Fiber Force Strengthening System

Kit Performance

Bond strength of the C-Fiber Force Strengthening System to concrete cured at standard environmental conditions

Bond strength after low	cycle fatigue action			
Kit composition and layer s	structure		Bond strength [MPa]	Failure mode
Bonding agent FRS-BA,	Single values	$f_{ m cti,surf,fat}$	4,73	100% Cohesion*
repair mortar FRS-PC 11,			3,60	100% Cohesion*
structural bonding agent			3,98	100% Cohesion*
FRS-CS, CFRP strip FRS-			4,39	100% Cohesion*
L-H			5,53	100% Cohesion*
	Mean value	f _{ctm,surf,fat}	4,45**	-
	Characteristic value	f _{ctk,surf,fat}	2,72	-
$(R_{fat,m} = f_{ctm,surf,fat} / f_{ctm,surf})$	Ratio	R _{fat,m}	1,45	-
Structural bonding agent	Single values	f _{cti,surf,fat}	5,14	100% Cohesion*
FRS-CS, CFRP strip FRS-			4,33	100% Cohesion*
L-H			5,31	100% Cohesion*
			4,31	100% Cohesion*
			4,10	100% Cohesion*
	Mean value	fctm,surf,fat	4,64**	-
	Characteristic value	f _{ctk,surf,fat}	3,37	-
$(R_{\text{fat,m}} = f_{\text{ctm,surf,fat}} / f_{\text{ctm,surf}})$	Ratio	R _{fat,m}	1,51	-
) aver thicknesses				

Layer thicknesses:

Bonding agent for the repair mortar FRS-BA:

Concrete repair mortar FRS-PC 11 $d_{M,max}$: Structural bonding agent FRS-CS $d_{G,min}$: 500-800 g/m² 30 mm 1 mm f _{cm}: 50,5 MPa ; f_{ck}: 49,0 MPa

Curing time: 7 days Curing temperature: 21 °C ± 2 °C

Exposure: 100,000 load cycles with an upper load of 3,32 kN (corresponds to 55 % of reference bond strength 3,07 N/mm²) and a lower load of 0,60 kN (corresponds to 10 % of reference bond strength 3,07 N/mm²)

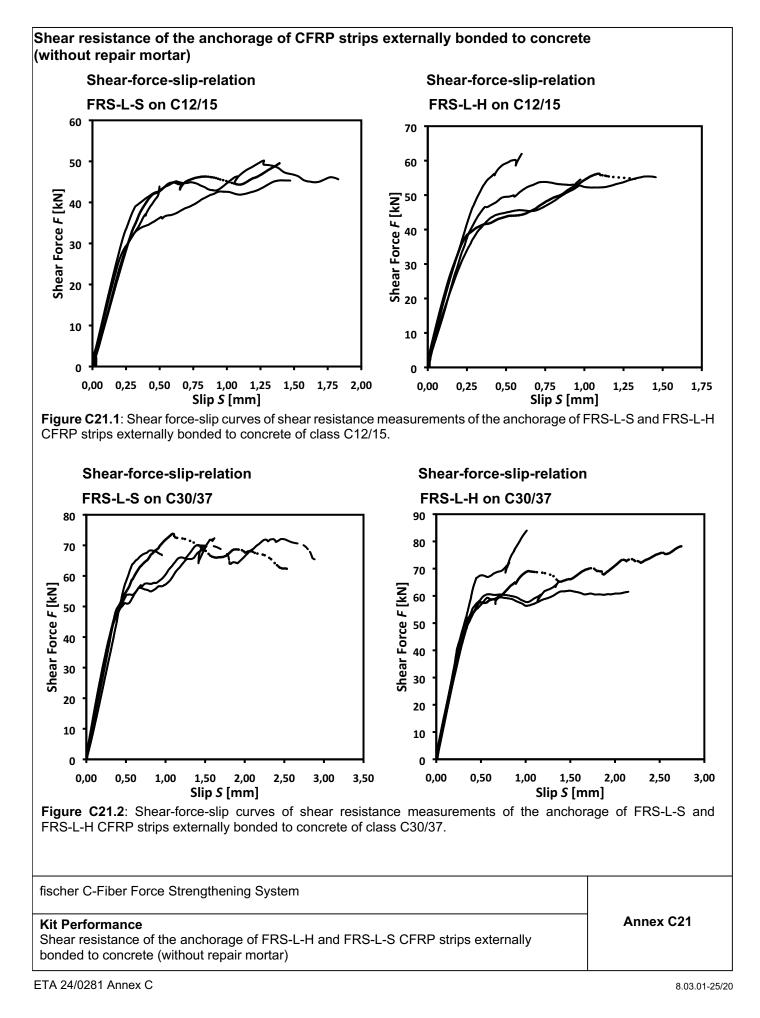
*100 % Cohesive failure in the concrete substrate. Reference concrete according to EN 1542, class C50/60. **Reference bond strength of the unexposed reference member: $f_{ctm,surf} = 3,07$ MPa

fischer C-Fiber Force Strengthening System

Kit Performance Bond strength of the C-Fiber Force Strengthening System to concrete after low cycle fatigue action

Kit composition and layer struc	Bond strength [MPa]	Failure mode		
Bonding agent FRS-BA, repair	Single values	$f_{\rm cti,surf,T_{min}}$	3,12	100% Cohesion*
mortar FRS-PC 11, structural			2,30	100% Cohesion*
oonding agent FRS-CS, CFRP			3,41	100% Cohesion*
strip FRS-L-H			2,75	100% Cohesion*
			3,74	100% Cohesion*
	Mean value	$f_{\rm ctm, surf, T_{min}}$	3,06	-
	Characteristic value	fctk,surf,T _{min}	1,75	-
$(R_{T_{\min,m}} = f_{\operatorname{ctm,surf},T_{\min}} / f_{\operatorname{ctm,surf}})$	Ratio	$R_{\mathrm{T_{min,m}}}$	1,01	-
Structural bonding agent FRS-	Single values	f _{cti,surf,T_{min}}	3,55	100% Cohesion*
CS, CFRP strip FRS-L-H			3,04	100% Cohesion*
			3,55	100% Cohesion*
			3,95	100% Cohesion*
			3,66	100% Cohesion*
	Mean value	$f_{\rm ctm,surf,T_{min}}$	3,55	-
	Characteristic value	$f_{\text{ctk,surf,T}_{\min}}$	2,78	
$R_{T_{\min,m}} = f_{\text{ctm,surf,}T_{\min}} / f_{\text{ctm,surf}}$	Ratio	R _{Tmin,m}	1,07	
	Single values	$f_{\text{cti,surf,T}_{\min}}$	3,38	100% Cohesion*
Bonding agent FRS-BA, repair mortar FRS-PC 11, structural	Silligie values	J Cu,Sul 1, 1 _{min}	3,58	100% Conesion*
			3,17	100% Conesion*
bonding agent FRS-CS, CFRP				100% Cohesion*
strip FRS-L-S			3,49	100% Conesion*
	Maan valua	fctm,surf,T _{min}	3,59	
	Mean value	-	3,46	-
$(P_m - f_{i}, c_m / f_{i}, c)$	Characteristic value	fctk,surf,T _{min}	3,0	-
$(R_{T_{\min,m}} = f_{ctm,surf,T_{\min}} / f_{ctm,surf})$	Ratio	R _{Tmin,m}	1,25	-
Structural bonding agent FRS-	Single values	$f_{ m cti,surf,T_{min}}$	3,70	100% Cohesion*
CS, CFRP strip FRS-L-S			3,58	100% Cohesion*
			3,78	100% Cohesion*
			3,78	100% Cohesion*
		£	3,68	100% Cohesion*
	Mean value	$f_{\rm ctm,surf,T_{\rm min}}$	3,71	-
	Characteristic value	$f_{\text{ctk,surf,T}_{\min}}$	3,51	-
$(R_{T_{\min,m}} = f_{ctm,surf,T_{\min}} / f_{ctm,surf})$	Ratio	$R_{\mathrm{T}_{\mathrm{min},\mathrm{m}}}$	1,19	-
Layer thicknesses: Bonding agent for the repair morta Concrete repair mortar FRS-PC 1 Structural bonding agent FRS-CS CFRP strip FRS-L-S or FRS-L-H	$\begin{array}{ccc} 1 \ d_{M,\max} & 30 \\ d_{G,\min} & 1 \end{array}$	0-800 g/m²) mm mm 4 mm		
Curing time: 7 days	-	_m : 50,5 MPa ; <i>f</i> _{cl}	.: 49,0 MPa	
Curing temperature: 10 °C ± 2 °C	٠			
*100 % Cohesive failure in the co	ncrete substrate. Referer	nce concrete acc	ording to EN 1542,	class C50/60
scher C-Fiber Force Strengthenin	a System			

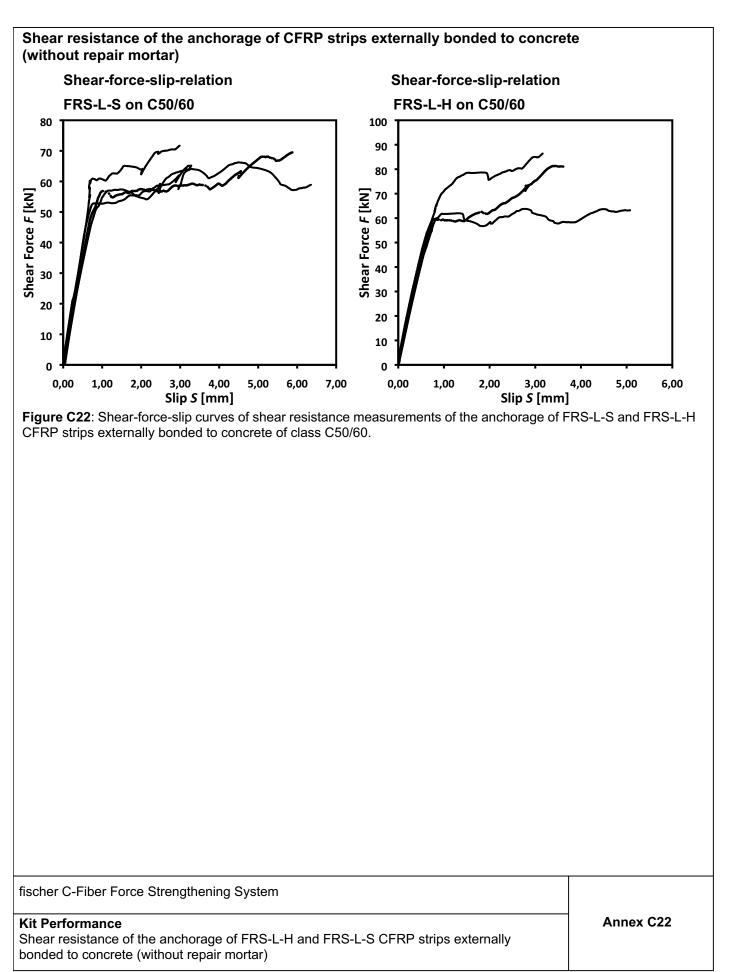
Bond strength of the C-Fiber Force Strengthening System to concrete cured at minimum installation temperature depending on the curing time

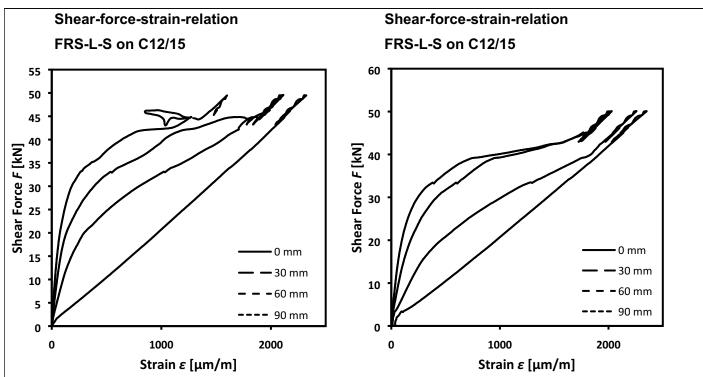


Type of the strip						Failure mode	
FRS-L-H	C12/15	<i>f</i> _{ctim,surf} : 1,47	Single values	F _{bLi}	84,17	100% Cohesior	
	f _{cm} : 18,6	<i>f</i> _{ctik,surf} : 0,64			87,82	100% Cohesior	
	<i>f</i> _{ck} : 14,1	$f_{\text{ctim,surf}}$: 1,59			80,23	100% Cohesior	
		<i>f</i> _{ctik,surf} : 1,30			104,62	100% Cohesior	
		-	Mean value	F _{bLm}	89,21	-	
		-	Characteristic value	F _{bLk}	61,00	-	
FRS-L-H	C30/37	$f_{\text{ctim,surf}}$: 2,25	Single values	$F_{\rm bLi}$	116,75	100% Cohesior	
	f _{cm} : 33,2	<i>f</i> _{ctik,surf} : 0,85			127,06	100% Cohesion	
	f _{ck} : 29,7	<i>f</i> _{ctim,surf} : 1,81			93,95	100% Cohesion	
		fctik,surf -**			104,57	100% Cohesion	
		-	Mean value	F _{bLm}	110,58	-	
		-	Characteristic value	F _{bLk}	72,71	-	
RS-L-H	C50/60	$f_{\text{ctim,surf}}$: 4,04	Single values	F _{bLi}	121,19	100% Cohesio	
	<i>f</i> _{cm} : 47.6	<i>f</i> _{ctik,surf} : 3,45			144,15	100% Cohesion	
f	<i>f</i> _{ck} : 42,3	$f_{\text{ctim,surf}}$: 2,10	1		119,59	100% Cohesio	
		<i>f</i> _{ctik,surf} : 1,47			118,37	100% Cohesio	
		-	Mean value	F _{bLm}	125,83	-	
		-	Characteristic value	F _{bLk}	93,56	-	
RS-L-S	C12/15	$f_{\text{ctim,surf}}$: 2,26	Single values	F _{bLi}	83,11	100% Cohesio	
	f _{cm} : 18,6	<i>f</i> _{ctik,surf} : 1,12			92,37	100% Cohesio	
	<i>f</i> _{ck} : 14,1	$f_{\text{ctim,surf}}$: 1,10			85,95	100% Cohesio	
		$f_{\text{ctik,surf}}$ -**			92,35	100% Cohesion	
		-	Mean value	F _{bLm}	88,45	-	
		-	Characteristic value	F _{bLk}	76,17	-	
FRS-L-S	C30/37	$f_{\text{ctim,surf}}$: 2,45	Single values	$F_{\rm bLi}$	109,49	100% Cohesion	
	f _{cm} : 33,2	<i>f</i> _{ctik,surf} : 0,85			134,98	100% Cohesion	
	f _{ck} : 29,7	$f_{\text{ctim,surf}}$: 2,10			102,60	100% Cohesion	
		<i>f</i> _{ctik,surf} : 1,10			111,04	100% Cohesion	
		-	Mean value	F _{bLm}	114,53	-	
		-	Characteristic value	F _{bLk}	77,39	-	
RS-L-S	C50/60	$f_{\text{ctim,surf}}$: 3,80	Single values	$F_{\rm bLi}$	112,53	100% Cohesion	
	<i>f</i> _{cm} : 47.6	<i>f</i> _{ctik,surf} : 2,69	-		119,29	100% Cohesion	
	<i>f</i> _{ck} : 42,3	$f_{\text{ctim.surf}}$: 2,57			105,01	100% Cohesio	
		<i>f</i> _{ctik,surf} : 1,31			106,34	100% Cohesion	
		-	Mean value	F _{bLm}	110,79	-	
		-	Characteristic value	F _{bLk}	93,58	-	
ayer thick	th l_v of CFRP strip: cness of the structur of CFRP strips FRS e CFRP strip b_L :	al bonding agent FRS- -L-S or FRS-L-H <i>t</i> _L :	1000 mr CS d _{G,min} : 1 mm 1,4 mm 100 mn				

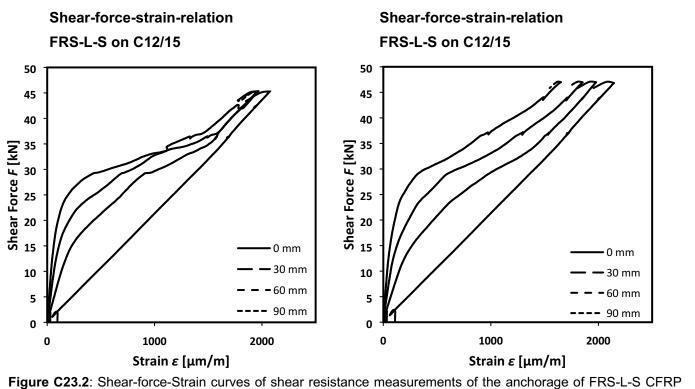
fischer C-Fiber Force Strengthening System

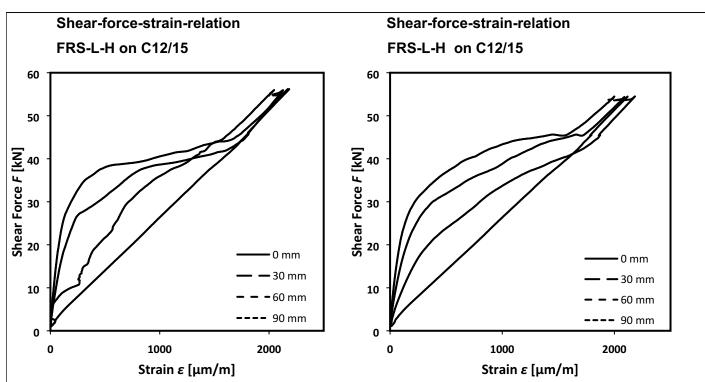
Kit Performance Shear resistance of the anchorage of FRS-L-H and FRS-L-S CFRP strips externally bonded to concrete (without repair mortar)

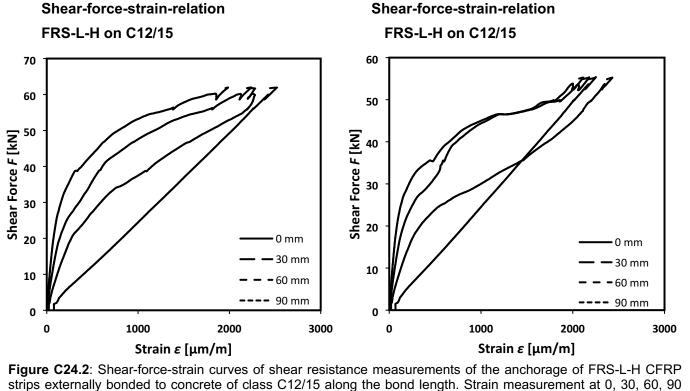



Page 39 of European Technical Assessment ETA-24/0281 of 6 December 2024

English translation prepared by DIBt

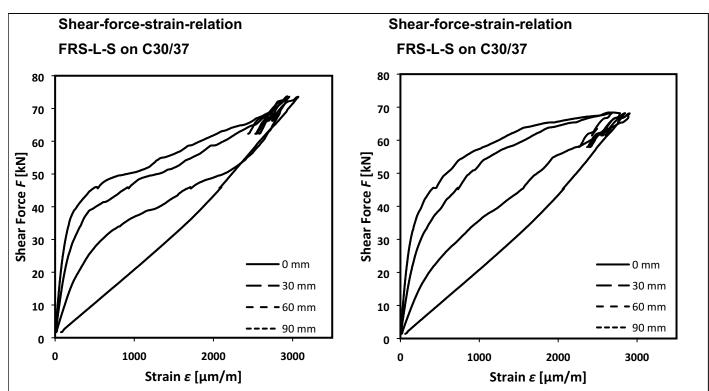



Figure C23.1: Shear-force-strain curves of shear resistance measurements of the anchorage of FRS-L-S CFRP strips externally bonded to concrete of class C12/15 along the bond length. Strain measurement at 0, 30, 60, 90 mm distances from the beginning of the bonded area.

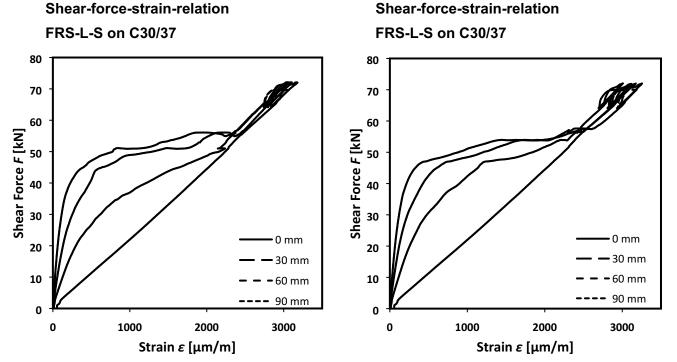

Figure C23.2: Shear-force-Strain curves of shear resistance measurements of the anchorage of FRS-L-S CFRP strips externally bonded to concrete of class C12/15 along the bond length. Strain measurement at 0, 30, 60, 90 mm distances from the load application point.

fischer C-Fiber Force Strengthening System **Kit Performance** Annex C23 Shear resistance of the anchorage of FRS-L-S CFRP strips externally bonded to concrete (without repair mortar). Evaluation of the strains along the load application zone.

Figure C24.1: Shear-force-strain curves of shear resistance measurements of the anchorage of FRS-L-H CFRP strips externally bonded to concrete of class C12/15 along the bond length. Strain measurement at 0, 30, 60, 90 mm distances from the load application point.

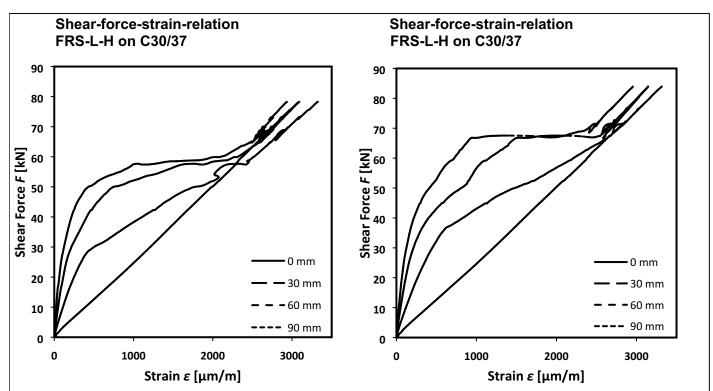

mm distances from the load application point.

fischer C-Fiber Force Strengthening System

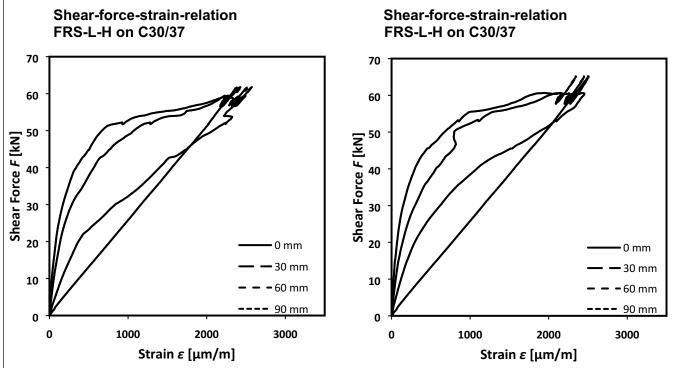

Kit Performance

Shear resistance of the anchorage of FRS-L-H CFRP strips externally bonded to concrete (without repair mortar). Evaluation of the strains along the load application zone.

Figure C25.1: Shear-force-strain curves of shear resistance measurements of the anchorage of FRS-L-S CFRP strips externally bonded to concrete of class C30/37 along the bond length. Strain measurement at 0, 30, 60, 90 mm distances from the load application point.

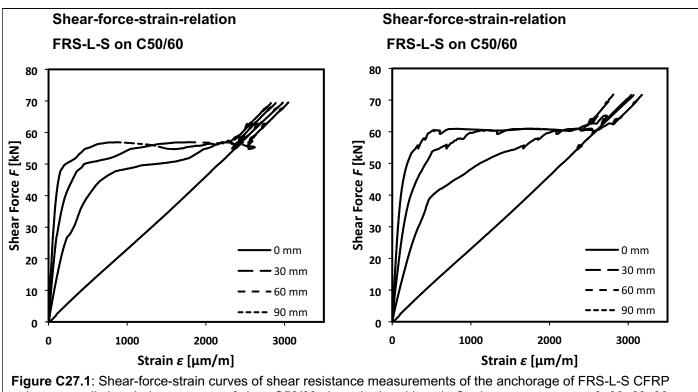

Figure C25.2: Shear-force-strain of shear resistance measurements of the anchorage of FRS-L-S CFRP strips externally bonded to concrete of class C30/37 along the bond length. Strain measurement at 0, 30, 60, 90 mm distances from the load application point.

fischer C-Fiber Force Strengthening System
Kit Performance

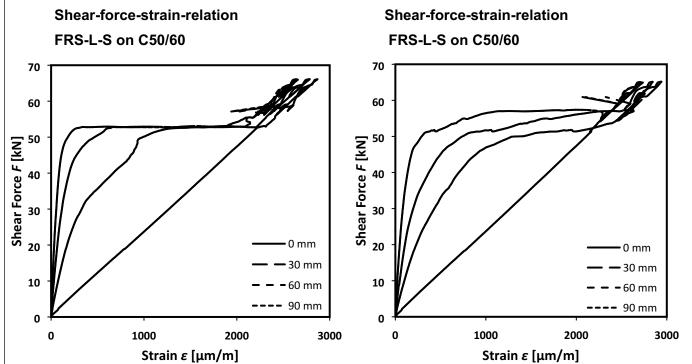

Annex C25

ETA 24/0281 Annex C

Figure C26.1: Shear-force-strain curves of shear resistance measurements of the anchorage of FRS-L-H CFRP strips externally bonded to concrete of class C30/37 along the bond length. Strain measurement at 0, 30, 60, 90 mm distances from the load application point.

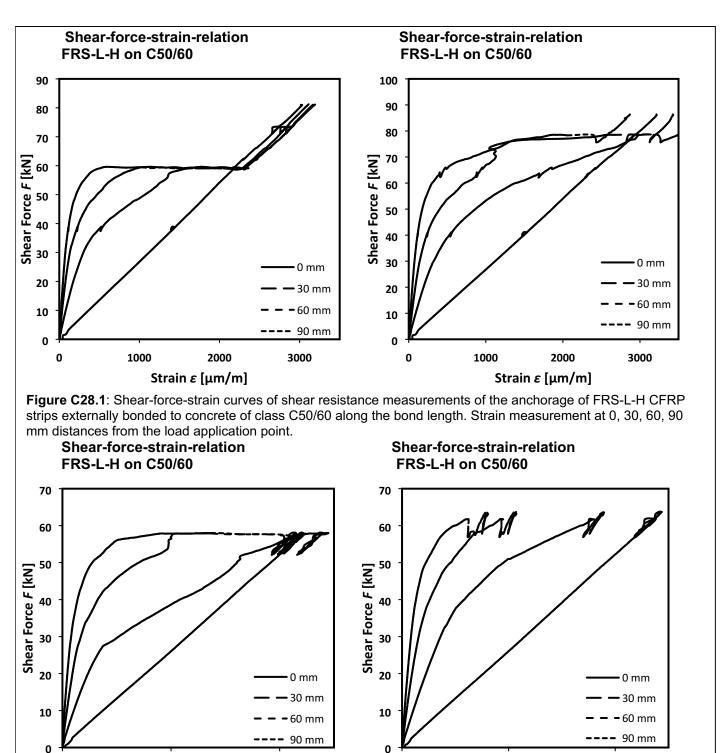

Figure C26.2: Shear-force-strain curves of shear resistance measurements of the anchorage of FRS-L-H CFRP strips externally bonded to concrete of class C30/37 along the bond length. Strain measurement at 0, 30, 60, 90 mm distances from the load application point.

 fischer C-Fiber Force Strengthening System
 Annex C26


 Kit Performance
 Annex C26

 Shear resistance of the anchorage of FRS-L-H CFRP strips externally bonded to concrete (without repair mortar). Evaluation of the strains along the load application zone
 Annex C26

Figure C27.1: Shear-force-strain curves of shear resistance measurements of the anchorage of FRS-L-S CFRP strips externally bonded to concrete of class C50/60 along the bond length. Strain measurement at 0, 30, 60, 90 mm distances from the load application point.


Figure C27.2: Shear-force-strain curves of shear resistance measurements of the anchorage of FRS-L-S CFRP strips externally bonded to concrete of class C50/60 along the bond length. Strain measurement at 0, 30, 60, 90 mm distances from the load application point.

fischer C-Fiber Force Strengthening System

 Kit Performance
 Annex C27

 Shear resistance of the anchorage of FRS-L-S CFRP strips externally bonded to concrete (without repair mortar). Evaluation of the strains along the load application zone
 Annex C27

Strain ε [µm/m]

1000

Strain ε [µm/m]

1000

Figure C28.2: Shear-force-strain curves of shear resistance measurements of the anchorage of FRS-L-H CFRP strips externally bonded to concrete of class C50/60 along the bond length. Strain measurement at 0, 30, 60, 90 mm distances from the load application point.

0

fischer C-Fiber Force Strengthening System
Kit Performance

Annex C28

2000

Shear resistance of the anchorage of FRS-L-S CFRP strips externally bonded to concrete (without repair mortar). Evaluation of the strains along the load application zone

2000

0

Concrete grade	Bond length l _{bl} [mm]	Edge distance a_r [mm]	Ultimate load [kN	N]				Type of Fracture
C12/15	300	30	Single values	Test	4.1**	F _{bLi}	19,28	A*
				No.	4.2		18,05	B, A*
					4.3		20,16	B, A*
			Mean value			F _{bLm}		,
			Characteristic va	alue		F _{bLk}	15,60	
C12/15	300	150	Single values	Test	5.1	F _{bLi}	29,43	B*
				No.	5.2**	- DLI	30,51	B*
					5.3		24,17	B*
			Mean value			F _{bLm}		-
			Characteristic va	alue		F _{bLk}	16,61	-
C50/60	100	150	Single values	Test	2.1	F _{bLi}	24,69	B*
				No.	2.2	- DLI	23,16	B*
					2.3**		28,59	B*
			Mean value			Fhim	25,48	-
			Characteristic va	alue		F _{bLk}	16,04	-
C50/60	300	30	Single values	Test	3.1	F _{bLi}	26,00	B, L*
				No.	3.2	- DLi	30,82	B, L*
					3.3		29,85	B, L*
			Mean value			F _{bLm}		-
			Characteristic va	alue		F _{bLk}		-
C50/60	300	150	Single values	Test	1.1	F _{bLi}	25,34	B*
				No.	1.2**	- DLI	28,81	B*
					1.3**		35,00	B*
			Mean value		-	Fhim	29,72	-
			Characteristic va	alue		F _{bLk}	13,23	-
_{f cm} : 48,1 M Type and g FRS-L-S N Characteris FRS-L-S N	SM: <i>E</i> _{Lm} : 173	a (C50/60) CFRP strips: P strips and struc GPa ; <i>f</i> _{Lm} : 3054 Mi	De 21 tural bonding agen Pa; W _{fi} : 77,4 %	idth of the s epth of the °C, 50 Rh, n t :	slots t _s :	13 mm		
FRS-CS: *Type of fai	lure: f_{Gcm} : 89,4 B \triangleq Coh	6 MPa ; f_{GRk} : 24,0 I MPa ; f_{Gck} : 87,0 N hesive failure in the hesive failure in the sile failure of the CF	/IPa concrete substrate; adhesive;					
** Recalcula	ation of the slip fro	om the fiber optic s	train measurement r	not possible	e			