

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0502 of 20 July 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Rebar connection with injection system FIS RC II

Systems for post-installed , rebar connections with mortar

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

27 pages including 3 annexes which form an integral part of this assessment

EAD 330087-01-0601, Edition 06/2021

ETA-22/0502 issued on 19 September 2022

European Technical Assessment ETA-22/0502

Page 2 of 27 | 20 July 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z56249.23 8.06.01-314/22

European Technical Assessment ETA-22/0502

Page 3 of 27 | 20 July 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Rebar connection with injection system FIS RC II" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter of from 8 to 32 mm or the fischer rebar anchor FRA or FRA HCR of sizes M12 to M24 according to Annex A and injection mortar FIS RC II are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Mechanical resistance and stability (BWR 1) 3.1

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1, C 2 and C 5
Characteristic resistance under seismic loading	See Annex B 5, C 3 and C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5 and C 6

Assessment and verification of constancy of performance (AVCP) system applied, with 4 reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z56249.23 8.06.01-314/22

European Technical Assessment ETA-22/0502

Page 4 of 27 | 20 July 2023

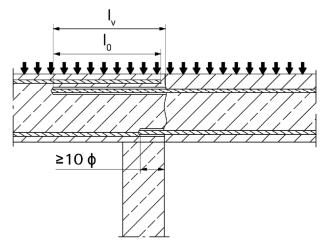
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

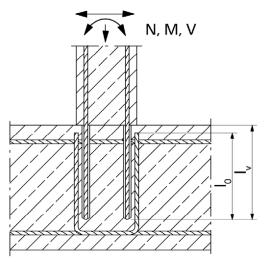
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 20 July 2023 by Deutsches Institut für Bautechnik

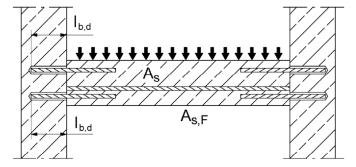
Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Z56249.23 8.06.01-314/22

Installation conditions and application examples reinforcing bars, part 1


Figure A1.1:

Overlap joint with existing reinforcement for rebar connections of slabs and beams


Figure A1.2:

Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed

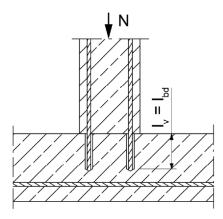
Figure A1.3:

End anchoring of slabs or beams (e.g. designed as simply supported)

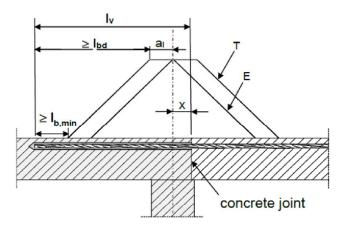
Figures not to scale

Rebar connection with injection system FIS RC II

Product description
Installation conditions and application examples reinforcing bars, part 1


Annex A 1

Installation conditions and application examples reinforcing bars, part 2


Figure A2.1:

Rebar connection for stressed primarily in compression

Figure A2.2:

Anchoring of reinforcement to cover the enveloped line of acting tensile force in the bending member

(only post-installed rebar is plotted)

Key to Figure

- T Acting tensile force
- E Envelope of Med / z + Ned (see EN 1992-1-1:2004+AC:2010)
- x Distance between the theoretical point of support and concrete joint

Note to figure A1.1 to A1.3 and figure A2.1 to A2.2

In the figures no traverse reinforcement is plotted, the transverse reinforcement as required by EN 1992-1-1:2004+AC:2010 shall be present.

The shear transfer between old and new concrete shall be designed according to EN 1992-1-1:2004+AC:2010

Preparation of joints according to Annex B 3 of this document.

Figures not to scale

Rebar connection with injection system FIS RC II	
Product description Installation conditions and application examples reinforcing bars, part 2	Annex A 2

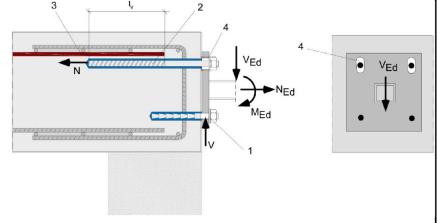
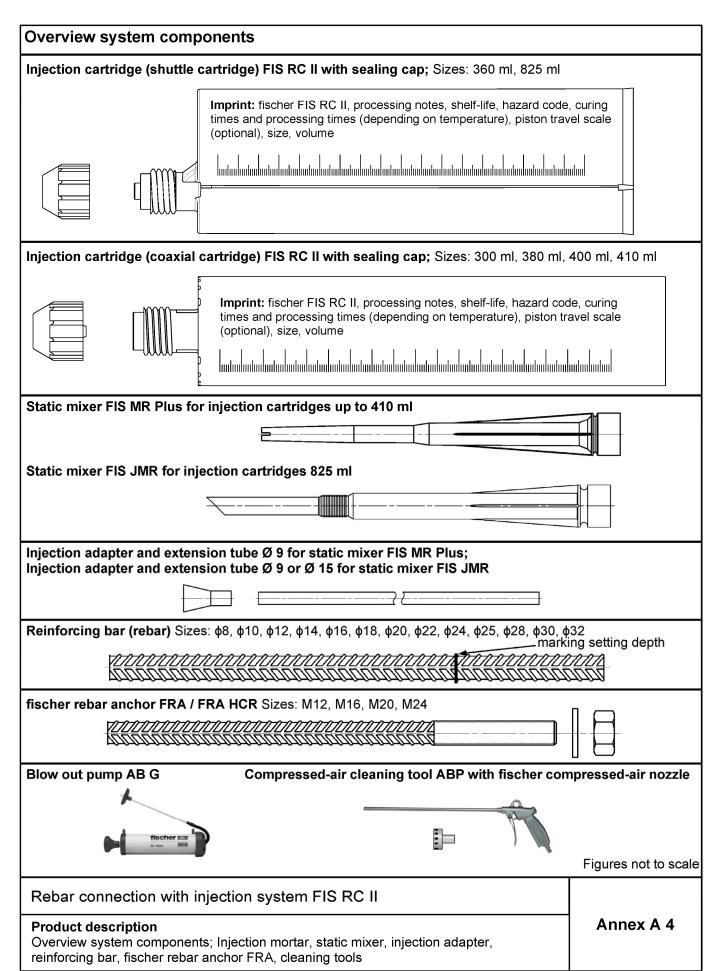

Installation conditions and application examples fischer rebar anchor FRA A-A B-B Figure A3.1: Lap to a foundation of a column under bending. 1. Shear lug (or fastener loaded in shear) В₫ 2. fischer rebar anchor FRA (tension only) 3. Existing stirrup / reinforcement for overlap (lap splice) Slotted hole N_2

Figure A3.2:

Lap of the anchoring of guardrail posts or anchoring of cantilevered building components.

In the anchor plate, the drill holes for the fischer rebar anchors FRA have to be designed as slotted holes with axial direction to the shear force.


- 1. Fastener for shear load transfer
- 2. fischer rebar anchor FRA (tension only)
- 3. Existing stirrup / reinforcement for overlap (lap splice)
- 4. Slotted hole

The required transverse reinforcement acc. to EN 1992-1-1:2004+AC:2010 is not shown in the figures. The fischer rebar anchor FRA may be only used for axial tensile force. The tensile force must be transferred by lap to the existing reinforcement of the building. The transfer of the shear force has to be ensured by suitable measure, e.g. by means of shear force or anchors with European Technical Assessment (ETA).

	Figures not to scale	
Rebar connection with injection system FIS RC II		
Product description Installation conditions and application examples fischer rebar anchors FRA	Annex A 3	

Properties of reinforcing bars (rebar)

Figure A5.1:

- The minimum value of related rib area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- The maximum outer rebar diameter over the ribs shall be:
 - The nominal diameter of the bar with rib $\phi + 2 \cdot h$ (h ≤ 0,07 · ϕ)
 - ο (φ: Nominal diameter of the bar; h_{rib} = rib height of the bar)

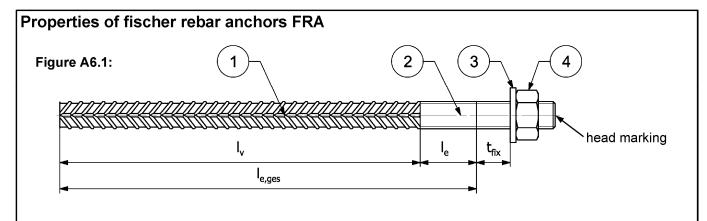
Table A5.1: Installation conditions for rebars

Nominal diameter of the ba	ır	ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	18	20	22	24	25	(1)	28	30	32
Nominal drill hole diameter	d ₀		10 12	12 14	14 16	18	20	25	25	30	30	30	35	35	40	40
Drill hole depth	h_0		$h_0 = I_v$													
Effective embedment depth	Ιν	[mm]	m] acc. to static calculation													
Minimum thickness of concrete member	h _{min}			+ 30 : 100)						_v +	2d ₀					

¹⁾ Both drill hole diameters can be used

Table A5.2: Materials of rebars

Designation	Reinforcing bar (rebar)			
Reinforcing bar FN 1992-1-1:2004+AC:2010 Annex C	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$			


Figures not to scale

Rebar connection with injection system FIS RC II

Product description
Properties and materials of reinforcing bars (rebar)

Annex A 5

Head marking e.g.: FRA (for stainless steel)

FRA HCR (for high corrosion-resistant steel)

Table A6.1: Installation conditions for fischer rebar anchors FRA

Thread diameter			M1	2 ²⁾	M16	M20	M2	24 ²⁾
Nominal diameter	ф	[mm]	1:	2	16	20	2	5
Nominal drill bit diameter	d ₀	[mm]	14	16	20	25	30	35
Drill hole depth (h ₀ = l _{e,ges})	I _{e,ges}	[mm]			l _v -	⊦ l _e		
Effective embedment depth	mbedment depth I _v [mm] according to static calculation)				
Distance concrete surface t welded join	o l _e	[mm]	100					
Maximum Diameter of	Pre-positioned d _f	[mm]	14	4	18	22	2	6
clearance hole in the fixture ¹⁾	Push through d _f	[mm]	16	18	22	26	32	
Minimum thickness of concrete member	h _{min}	[mm]	h ₀ +	30		h ₀ + 2d ₀		
Maximum torque moment for attachment of the fixture	or max T _{inst}	[Nm]	50	0	100	150	15	50

¹⁾ For bigger clearance holes in the fixture see EN 1992-4:2018

Table A6.2: Materials of fischer rebar anchors FRA

Part	Description	Materials				
		FRA	FRA HCR			
		Corrosion resistance class CRC III	Corrosion resistance class CRC V			
		acc. to EN 1993-1-4:2006+A1:2015	acc. to EN 1993-1-4: 2006+A1:2015			
1	Doinforoing har	Bars and de-coiled rods class B or C with fyk	and k according to NDP or NCI of			
'	Reinforcing bar	EN 1992-1-1:NA; $f_{uk} = f_{tk} = k \cdot f_{yk}$; $(f_{yk} = 500 \text{ N/mm}^2)$				
2	Round bar with partial or full thread	Stainless steel, strength class 80, according to EN 10088-1:2014	Stainless steel, strength class 80, according to EN 10088-1:2014			
2	Washer	Stainless steel,	Stainless steel,			
	ISO 7089:2000	according to EN 10088-1:2014	according to EN 10088-1:2014			
4	Hexagon nut	Stainless steel, strength class 80, acc. to EN ISO 3506-2:2020,	Stainless steel, strength class 80, acc. to EN ISO 3506-2:2020,			
		according to EN 10088-1:2014	according to EN 10088-1:2014			

Figures not to scale

Rebar connection with injection system FIS RC II

Product description

Properties and materials of fischer rebar anchors FRA

Annex A 6

²⁾ Both drill bit diameters can be used

Specifications of intended use part 1 Table B1.1: Overview use and performance categories Anchorages subject to FIS RC II with ... Reinforcing bar fischer rebar anchor FRA Hammer drilling or compressed air all sizes drilling with standard drill bit Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Nominal drill bit diameter (d₀) Expert", Bosch 12 mm to 35 mm "Speed Clean", Hilti "TE-CD, TE-YD") dry or wet Use category all sizes concrete Tables: Tables: C1.1 uncracked C1.1 C1.2 concrete Characteristic C1.2 C1.3 resistance under C1.3 all sizes all sizes C2.1 static and quasi C2.1 C2.2 static loading, in C2.2 cracked C2.3 C2.3 concrete C5.1 C5.2 Tables: C3.1 Characteristic C3.2 resistance under all sizes C3.3 No performance assessed C4.1 seismic loading C4.2 C4.3 Installation direction D3 (downward and horizontal and upwards (e.g. overhead)) Installation temperature $T_{i,min}$ = -10 °C to $T_{i,max}$ = +40 °C Service Temperature (max. short term temperature +80 °C; -40 °C to +80 °C max long term temperature +50 °C) temperature range Resistance to fire all sizes Annex C 6 all sizes Table C5.3 Rebar connection with injection system FIS RC II Annex B 1 Intended use Specifications part 1

Specifications of intended use part 2

Anchorages subject to:

- Static and quasi-static loading: reinforcing bar (rebar) size 8 mm to 32 mm; FRA M12 to M24
- · seismic loading: reinforcing bar (rebar) size 8 mm to 32 mm
- Fire exposure: reinforcing bar (rebar) size 8 mm to 32 mm; FRA M12 to M24

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016
- Concrete strength classes C12/15 to C50/60 according to EN 206:2013+A1:2016
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+A1:2016
- · Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1 :2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Use conditions (Environmental conditions) for fischer rebar anchors FRA

 For all conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 6 Table A6.2.

Design:

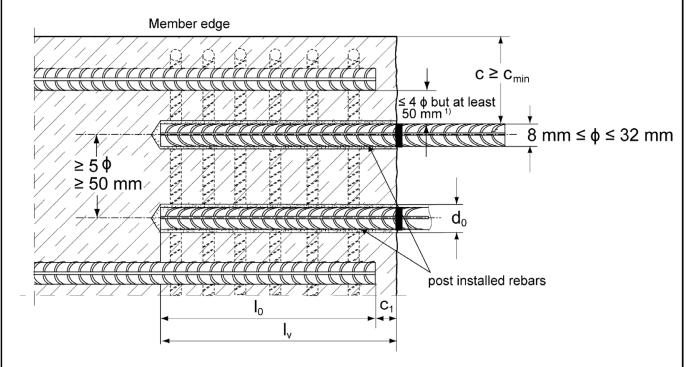
- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010; EN 1992-1-2:2004+AC:2008 and Annex B 3 and B 4.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- The installation of post-installed rebar respectively fischer rebar anchor FRA shall be done only by suitable trained installer and under Supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for Supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Rebar connection with injection system FIS RC II

Intended use
Specifications part 2


Annex B 2

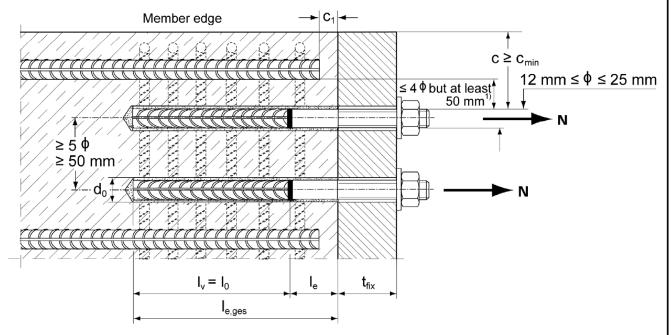
General construction rules for post-installed rebars

Figure B3.1:

- · Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

- ¹⁾ If the clear distance between lapped bars exceeds 4 φ but at least 50 mm then the lap length shall be increased by the difference between the clear bar distance and 4 φ but at least 50 mm.
 - c concrete cover of post-installed rebar
 - c₁ concrete cover at end-face of existing rebar
 - c_{min} minimum concrete cover according to **Table B5.1** and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 - φ nominal diameter of reinforcing bar
 - l₀ lap length, according to EN 1992-1-1:2004+AC:2010
 - I_{v} effective embedment depth, $\geq I_{0} + c_{1}$
 - do nominal drill bit diameter, see Annex B 6

Figures not to scale

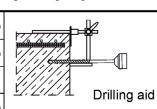

Rebar connection with injection system FIS RC II	
Intended use General construction rules for post-installed rebars	Annex B 3

General construction rules for post-installed fischer rebar anchors FRA

Figure B4.1:

- · Only tension forces in the axis of the fischer rebar anchor FRA may be transmitted.
- The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transmission of the shear load shall be ensured by appropriate additional measures, e.g. by shear lugs or by anchors with a European Technical Assessment (ETA).
- In the anchor plate, the holes for the tension anchor shall be executed as slotted holes with the axis in the direction of the shear force.

- 1) If the clear distance between lapped bars exceeds 4 φ but at least 50 mm then the lap length shall be increased by the difference between the clear bar distance and 4 φ but at least 50 mm.
 - c concrete cover of post-installed fischer rebar anchor FRA
 - c₁ concrete cover at end-face of existing rebar
 - c_{min} minimum concrete cover according to **Table B5.1** and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 - φ nominal diameter of reinforcing bar
 - lo lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
 - $I_{e,ges}$ overall embedment depth, $\geq I_0 + I_e$
 - d₀ nominal drill bit diameter, see Annex B 6
 - le length of the bonded in threaded part
 - thickness of the fixture
 - I_v effective embedment depth


Figures not to scale

	-
Rebar connection with injection system FIS RC II	
Intended use General construction rules for post-installed fischer rebar anchors FRA	Annex B 4

Table B5.1:	nding of the drilling method and the		
	nominal diameter	Mi	nimum concrete cover c _{min}
Drilling method	of reinforcing	Without drilling aid ²⁾	\Nith drilling aid 2) [mm]

With drilling aid 2 [mm] bar φ [mm] [mm] Hammer drilling < 25 $30 \text{ mm} + 0.06 \text{ l}_{\text{v}} \ge 2 \text{ } \phi$ 30 mm + 0,02 I_V ≥ 2 ϕ with standard drill 40 mm + 0,02 l_ν ≥ 2 φ 40 mm + 0,06 $I_{v} \ge 2 \phi$ bit or hollow drill bit ≥ 25 < 25 50 mm + 0,08 l_v 50 mm + 0,02 l_v Compressed air drilling ≥ 25 60 mm + 0,08 I_V ≥ 2 ϕ 60 mm + 0,02 l_v ≥ 2 ф

¹⁾ See Annex B 3, figure B3.1 and Annex B 4, figure B4.1 Note: The minimum concrete cover as specified in EN 1992-1-1:2004+AC:2010 must be observed. The same minimum concrete covers apply to rebar elements in case of seismic loading. cmin,seis = 2 φ.

²⁾ For FRA (HCR) I_{e,ges} instead of I_{v.}

Table B5.2: Dispensers and cartridge sizes corresponding to maximum embedment depth I_{v,max}

reinforcing bars (rebar)	fischer rebar	Manual dispenser	Accu and pneumatic dispenser (small)	Accu and pneumatic dispenser (large)
	anchor FRA		Cartridge size	
		< 50	00 ml	> 500 ml
φ [mm]	thread [-]	I _{v,max} / I _{e,g}	ges,max [mm]	I _{v,max} / I _{e,ges,max} [mm]
8			1000	
10			1000	
12	FRA M12			
12	FRA HCR M12	CR M12 1000 1200	1200	
14				1800
16	FRA M16		1500	
10	FRA HCR M16		1500	
18, 20, 22,	FRA M20		1300	
24	FRA HCR M20	700	1300	
25	FRA M24	700	1000	
25	FRA HCR M24		1000	2000
28		700	700	
30, 32		700	700	T _{i,} > 0 °C: 1500
30, 32		700	700	$T_{i,} \ge 0$ °C: 1900 $T_{i,} \le 0$ °C: 2000

Table B5.3: Conditions for use static mixer without an extension tube

Nominal drill hole diameter	d_0		10	12	14	16	18	20	24	25	30	35	40
Drill hole depth h₀ by	FIS MR Plus	[mm]	≤ 9	90	≤ 120	≤ 140	≤ 150	≤ 160	≤ 190		≤ 2	10	
using	FIS JMR		-	-	≤ 90	≤ 160	≤ 180	≤ 190	≤ 2	220		≤ 250	

Rebar connection with injection system FIS RC II	
Intended use Minimum concrete cover; dispenser and cartridge sizes corresponding to maximum embedment depth	Annex B 5

Table B6.1: W	Table B6.1: Working times twork and curing times tcure										
Temperature in the anchorage base [°C]	Maximum working time ¹⁾ t _{work} FIS RC II	Minimum curing time ²⁾ t _{cure} FIS RC II									
-10 to 0	20 min ³⁾	12 h									
> 0 to 5	13 min ³⁾	3 h									
> 5 to 10	9 min ³⁾	90 min									
> 10 to 20	5 min	60 min									
> 20 to 30	4 min	45 min									
> 30 to 40	2 min ⁴⁾	35 min									

¹⁾ Maximum time from the beginning of the injection to rebar / fischer rebar anchor FRA setting and positioning

Table B6.2: Installation tools for drilling and cleaning the bore hole and injection of the mortar

reinforcing			Drilling and	cleaning		Inje	ction
bars (rebar)	fischer rebar anchor FRA	Nominal drill bit diameter	Diameter of	Steel brush	Diameter of fischer	Diameter of	Injection
		bit diameter	cutting edge	diameter	compressed- air nozzle	extension tube	adapter
φ [mm]	Designation	d₀ [mm]	d _{cut} [mm]	d₅ [mm]	[mm]	[mm]	[colour]
8 ¹⁾		10	≤ 10,50	11,0			
0 '',		12	≤ 12,50	12,5			nature
10 ¹⁾		12	≤ 12,50	12,5	11	9	natui c
10 7		14	≤ 14,50	15]	blue
12 ¹⁾	FRA M12 ¹⁾	14	≤ 14,50	15			bide
12	FRA HCR M12 ¹⁾	16	≤ 16,50	17	15		red
14		18	≤ 18,50	19			yellow
16	FRA M16 FRA HCR M16	20	≤ 20,55	21,5	19		green
18 20	FRA M20 FRA HCR M20	25	≤ 25,55	26,5	19		black
22		20	< 20 FF	20		0 - 15	
24		30	≤ 30,55	32		9 or 15	grey
25 ¹⁾	FRA M24 ¹⁾	30	≤ 30,55	32	28		
25"	FRA HCR M24 ¹⁾	35	≤ 35,70	37			brown
28		35	≤ 35,70	37			brown
30		40	≤ 40,70	42	38		red
32		+0	= +0,70	72			160

¹⁾ Both drill bit diameters can be used

Rebar connection with injection system FIS RC II

Intended use
Working times and curing times;
Installation tools for drilling and cleaning the bore hole and injection of the mortar

²⁾ For wet concrete the curing time must be doubled

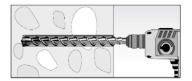
³⁾ If the temperature in the concrete falls below 10 °C the cartridge must be warmed up to +15 °C

⁴⁾ If the temperature in the concrete exceeds 30 °C the cartridge must be cooled down to +15 °C up to 20 °C

Safety regulations

Review the Safety Data Sheet (SDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with mortar FIS RC II.

Important: Observe the instructions for use provided with each cartridge.

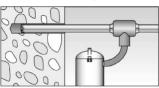

Installation instruction part 1; Installation with FIS RC II

Hole drilling

Note: Before drilling, remove carbonized concrete; clean contact areas (see **Annex B 2**) In case of aborted drill holes the drill hole shall be filled with mortar.

Hammer drilling or compressed air drilling

1a



Drill the hole to the required embedment depth using a hammer drill with carbide drill bit set in rotation hammer mode or a pneumatic drill.

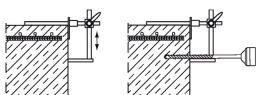
Drill bit sizes see Table B6.2.


Hammer drilling with hollow drill bit

1b

Drill the hole to the required embedment depth using a hammer drill with hollow drill bit in rotation hammer mode. Dust extraction conditions see drill hole cleaning **Annex B 8**.

Drill bit sizes see Table B6.2.


Measure and control concrete cover c

 $(c_{drill} = c + \emptyset / 2)$

Drill parallel to surface edge and to existing rebar.

Where applicable use drilling aid.

2

For holes $I_V > 20$ cm use drilling aid. Three different options can be considered:

- A) drilling aid
- B) Slat or spirit level
- C) Visual check

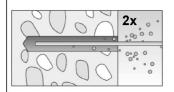
Minimum concrete cover c_{min} see **Table B5.1**.

Rebar connection with injection system FIS RC II

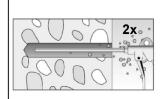
Intended use

Safety regulations; Installation instruction part 1, hole drilling

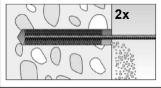
Annex B 7



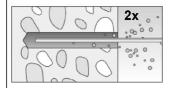
Installation instruction part 2; Installation with FIS RC II


Drill hole cleaning

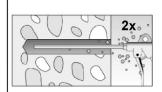
Hammer or compressed air drilling



Clean the drill hole: For $d_0 < 18$ mm and depths I_v resp. $I_{e,ges} \le 12 \cdot \phi$ blow out the hole two times by hand

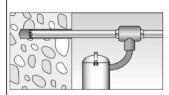

For $d_0 \ge 18$ mm and depths I_v resp. $I_{e,ges} > 12 \cdot \varphi$ blow out the hole two times with oil-free compressed air $(p \ge 6 \text{ bar})$. Use suitable compressed-air nozzle (see Table B6.2).

3a



Brush drill hole two times; for drill hole diameters $d_0 \ge 30$ mm attach brush to a power tool and brush hole with a speed of max. 550 revolutions per minute. For deep holes a brush extension is mandatory.

Clean the drill hole: For $d_0 < 18$ mm and depths I_v resp. $I_{e,ges} \le 12 \cdot \phi$ blow out the hole two times by hand



For $d_0 \ge 18$ mm and depths I_v resp. $I_{e,ges} > 12 \cdot \varphi$ blow out the hole two times with oil-free compressed air $(p \ge 6$ bar) Use suitable compressed-air nozzle (see **Table B6.2**).

Hammer drilling with hollow drill bit

3b

Use a suitable dust extraction system, e. g.

fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power.

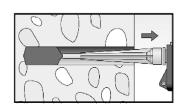
No further drill hole cleaning necessary

Rebar connection with injection system FIS RC II

Intended use

Installation instruction part 2, drill hole cleaning

Annex B 8


Installation instruction part 3; Installation with FIS RC II reinforcing bars (rebar) / fischer rebar anchor FRA and cartridge preparation Before use, ensure that the rebar or the fischer rebar anchor FRA is dry and free of oil or other residue. Mark the embedment depth I_v (e.g. with tape) 4 Insert rebar in borehole, to verify drill hole depth and setting depth I_v resp. I_{e,ges} Twist off the sealing cap Twist on the static mixer (the spiral in the static mixer must be 5 clearly visible). Place the cartridge into a suitable dispenser. 6 Press out approximately 10 cm of mortar until the resin is 7 permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed.

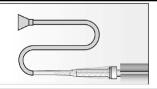
Rebar connection with injection system FIS RC II	
Intended use Installation instruction part 3, reinforcing bars (rebar) / fischer rebar anchor FRA and cartridge preparation	Annex B 9

Installation instruction part 4; Installation with FIS RC II

Injection of the mortar without extension tube

Inject the mortar from the back of the hole towards the front and slowly withdraw the static mixer step by step with each trigger pull. Avoid bubbles.

Fill holes approximately 2/3 full, to ensure that the annular gap between the rebar and the concrete will be completely filled with adhesive over the entire embedment length.

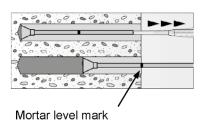

The conditions for mortar injection without extension tube can be found in **Table B5.3**

After injecting, release the dispenser. This will prevent further mortar discharge from the static mixer.

Injection of the mortar with extension tube

Assemble mixing nozzle FIS MR Plus or FIS JMR, extension tube and appropriate injection adapter (see **Table B6.2**)

Mark the required mortar level I_m and embedment depth I_v resp. $I_{e,ges}$ with tape or marker on the injection extension tube.


a) Estimation:

$$l_m = \frac{1}{3} \cdot l_v \, resp. \, l_m = \frac{1}{3} \cdot l_{e,ges} \, [mm]$$

b) Precise equation for optimum mortar volume:

$$l_m = l_v \, resp. \, l_{e,ges} \, \left((1,2 \cdot \frac{d_s^2}{d_0^2} - 0,2) \right)$$
 [mm]

8b

Insert injection adapter to back of the hole. Begin injection allowing the pressure of the injected adhesive mortar to push the injection adapter towards the front of the hole. Do not actively pull out!

Fill holes approximately 2/3 full, to ensure that the annular gap between the rebar and the concrete will be completely filled with adhesive over the embedment length.

When using an injection adapter continue injection until the mortar level mark I_{m} becomes visible.

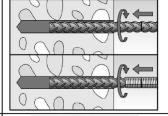
Maximum embedment depth see Table B5.2

After injecting, release the dispenser. This will prevent further mortar discharge from static mixer.

Rebar connection with injection system FIS RC II

Intended use

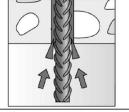
Installation instruction part 4, mortar injection


Annex B 10

Installation instruction part 5; Installation with FIS RC II

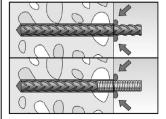
Insert rebar / fischer rebar anchor FRA

9



Insert the rebar / fischer rebar anchor FRA slowly twisted into the borehole until the embedment mark is reached.

Recommendation:


Rotation back and forth of the reinforcement bar or the fischer rebar anchor FRA makes pushing easy

10

For overhead installation, support the rebar / fischer rebar anchor FRA and secure it from falling till mortar started to harden, e.g. using wedges.

11

After installing the rebar or fischer rebar anchor FRA the annular gap must be completely filled with mortar.

Proper installation

- Desired embedment depth is reached I_v, resp. I_{e,ges}: embedment mark at concrete surface
- Excess mortar flows out of the borehole after the rebar has been fully inserted up to the embedment mark.


12

Observe the working time "twork" (see Table B6.1), which varies according to temperature of base material. Minor adjustments to the rebar / fischer rebar anchor FRA position may be performed during the working time

Full load may be applied only after the curing time " t_{cure} " has elapsed (see Table B 6.1)

13

Mounting the fixture for fischer rebar anchor FRA, max T_{inst} see $Table \ A6.1$

Rebar connection with injection system FIS RC II

Intended use

Installation instruction part 5, insert rebar / fischer rebar anchor FRA

Annex B 11

Minimum anchorage length and minimum lap length for 50 years working life

The minimum anchorage length $l_{b,min}$ and the minimum lap length $l_{0,min}$ according to EN 1992-1-1:2004 +AC:2010 shall be multiplied by the relevant amplification factor α_{lb} according to **Table C1.1**.

Table C1.1: Amplification factor α_{lb} related to concrete strength class and drilling method

Hammer drilling,	hollow drilling a	and compressed	air drilling
,			

Rebar / fischer		ication fac	on factor α _{lb}							
rebar anchor FRA	nchor FRA Concrete strength class									
φ [mm]	C12/15	C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55								
8 to 25			1	1	,1	1,2				
28 to 32					1,0					

Table C1.2: Bond efficiency factor k_b related to concrete strength class and drilling method

Hammer drilling, hollow drilling and compressed air drilling

Rebar / fischer	Bond efficiency factor kb										
rebar anchor FRA	Concrete strength class										
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 to 25		1,00									
28 to 32		1,00 0,91 0,84 0,84									

Table C1.3: Design values of the bond strength f_{bd,PIR} in N/mm² related to concrete strength class and drilling method for good bond conditions

 $f_{bd,PIR} = k_b \cdot f_{bd}$

 f_{bd} : Design value of the bond strength in N/mm² considering the concrete strength classes and

the rebar diameter for good bond condition (for all other bond conditions multiply the values

by $\eta_1 = 0.7$)

and recommended partial factor γ_c = 1,5 according to EN 1992-1-1: 2004+AC:2010

k_b: Bond efficiency factor according to **Table C1.2**

Hammer drilling, hollow drilling and compressed air drilling

	Rebar / fischer				Bond stre	ength f _{bd,Pl}	R [N/mm²]			
rebar anchor FRA Concrete strength class										
	φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
	8 to 25	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
	28 to 32	1,6	2,0	2,3	2,7	3,0	3,4	3,4	3,4	3,7

Rebar connection with injection system FIS RC II

Performance

Amplification factor α_{Ib}, bond efficiency factor k_b, design values of the bond strength f_{bd,PIR}

Annex C 1

Minimum anchorage length and minimum lap length for 100 years working life

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1:2004 +AC:2010 shall be multiplied by the relevant amplification factor $\alpha_{lb,100y}$ according to **Table C2.1**.

Table C2.1: Amplification factor $\alpha_{lb,100y}$ related to concrete strength class and drilling method

Hammer drilling, hollow drilling and compressed air drilling Amplification factor α_{Ib,100y} Rebar / fischer rebar anchor FRA Concrete strength class C20/25 C30/37 φ [mm] C12/15 C16/20 C25/30 C35/45 C40/50 C45/55 C50/60 8 to 12 1,0 1,1 1,2 1,2 1,3 14 to 25 1,0 1,1 1,2 1,2 1,2 28 to 32 1,0 1,1

Table C2.2: Bond efficiency factor k_{b,100y} related to concrete strength class and drilling method

Hammer drilling, hollow drilling and compressed air drilling										
Rebar / fischer	Bond efficiency factor k _{b,100y}									
rebar anchor FRA	Concrete strength class									
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
8 to 12					1,00					
14 to 25		1,00 0,92 0,80							0,86	
28 to 32		1,0	00		0,90	0,90	0,82	0,76	0,76	

Table C2.3: Design values of the bond strength f_{bd,PIR,100y} in N/mm² related to concrete strength class and drilling method for good bond conditions

 $f_{bd,PIR,100y} = k_{b,100y} \cdot f_{bd}$

f_{bd}: Design value of the bond strength in N/mm² considering the concrete strength classes and

the rebar diameter for good bond condition (for all other bond conditions multiply the values

by $\eta_1 = 0,7$)

and recommended partial factor γ_c = 1,5 according to EN 1992-1-1: 2004+AC:2010

k_{b,100y}: Bond efficiency factor according to **Table C2.2**

Hammer drilling, hollow drilling and compressed air drilling

Rebar / fischer	Bond strength fbd,PIR,100y [N/mm²]										
rebar anchor FRA Concrete strength class											
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 to 12	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		
14 to 25	1,6	2,0	2,3	2,7	3,0	3,4	3,7	3,7	3,7		
28 to 32	1,6	2,0	2,3	2,7	2,7	3,0	3,0	3,0	3,4		

Rebar connection with injection system FIS RC II

Performance

Amplification factor $\alpha_{lb,100y}$ bond efficiency factor $k_{b,100y}$, design values of the bond strength $f_{bd,PIR,100y}$

Annex C 2

Minimum anchorage length and minimum lap length under seismic conditions for 50 years working life

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1: 2004+AC:2010 shall be multiplied by the relevant amplification factor $\alpha_{lb,seis}$ according to table C3.1.

Table C3.1: Amplification factor α_{lb,seis} related to concrete strength class and drilling method

Hammer drilling, hollow drilling and compressed air drilling												
Rebar		Amplification factor α _{lb,seis}										
φ [mm]		Concrete strength class										
¥ []	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60				
8-25			1,0		1,1 1,2							
28 to 32					1,0							

Table C3.2: Bond efficiency factor k_{b,seis} for hammer drilling, hollow drilling and compressed air drilling with a service life of 50 years

lammer drilling, hollow drilling and compressed air drilling										
Rebar	Bond efficiency factor k _{b,seis}									
φ [mm]	Concrete strength class									
Ψ []	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8-25		1,00								
32			1,0			0,91	0,84	0,84		

Table C3.3: Design values of the bond strength f_{bd,PIR,seis} in N/mm² for hammer drilling, hollow drilling and compressed air drilling **under seismic action** and for good bond conditions with a service life of 50 years

 $f_{bd,PIR,seis} = k_{b,seis} \cdot f_{bd}$

Hammer drilling, I	lammer drilling, hollow drilling and compressed air drilling										
Rebar bond strength fbd,PIR,seis [N/mm²]											
φ [mm]	Concrete strength class										
φ μιτιτή	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
8-25	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3			
28 -32	2,0	2,3	2,7	3,0	3,4	3,4	3,4	3,7			

Rebar connection with injection system FIS RC II	
Performance Amplification factor $\alpha_{\text{lb,seis}}$, bond efficiency factor $k_{\text{b,seis}}$, Design values of the bond strength $f_{\text{bd,PIR,seis}}$	Annex C 3

14 - 25

28 - 32

Minimum anchorage length and minimum lap length under seismic conditions for 100 years working life

The minimum anchorage length l_{b,min} and the minimum lap length l_{0,min} according to EN 1992-1-1: 2004+AC:2010 shall be multiplied by the relevant amplification factor α_{lb,seis, 100y} according to table C4.1.

Table C4.1: Amplification factor \$\alpha_{\text{lb}, \text{seis100y}}\$ related to concrete strength class and drilling method

Hammer drilling, hollow drilling and compressed air drilling Amplification factor α_{Ib,seis,100y} Rebar Concrete strength class φ [mm] C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 8 -12 1,0 1,1 1,2 1,2 1,3

1,0

1,1

1,2

1,2

1,2

1,1

Table C4.2: Bond efficiency factor kb, seis, 100y for hammer drilling, hollow drilling and compressed air drilling with a service life of 100 years

1,0

Hammer drilling, hollow drilling and compressed air drilling

Rebar		Bond efficiency factor k _{b,seis,100y}										
φ [mm]	Concrete strength class											
Ψίιιιιι	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60				
8 to 12		1,00										
14 to 25		1,00 0,92 0,86						0,86				
28 to 32		1,00			0,90	0,82	0,76	0,76				

Table C4.3: Design values of the bond strength fbd,PIR,seis,100y in N/mm² for hammer drilling, hollow drilling and compressed air drilling under seismic action and for good bond conditions with a service life of 100 years

 $f_{bd,PIR,seis,100y} = k_{b,seis,100y} \bullet f_{bd}$

Hammer drilling, h	Hammer drilling, hollow drilling and compressed air drilling										
Rebar bond strength fbd,PIR,seis,100y [N/mm²]											
φ [mm]	Concrete strength class										
Ψιιιιιι	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
8-12	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3			
14-25	2,0	2,3	2,7	3,0	3,4	3,7	3,7	3,7			
28-32	2,0	2,3	2,7	2,7	3,0	3,0	3,0	3,4			

Rebar connection with injection system FIS RC II	
Performance Amplification factor $\alpha_{\text{lb,seis,100y}}$, bond efficiency factor $k_{\text{b,seis,100y}}$, Design values of the bond strength $f_{\text{bd,PIR,seis,100y}}$	Annex C 4

Table C5.1: Characteristic tensile yield strength for rebar part of fischer rebar anchors FRA									
fischer rebar anchor FRA / FRA HCR M12 M16 M20 M24									
Characteristic tensile yield strength for rebar part									
Rebar diameter	ф	[mm]	12	16	20	25			
Characteristic tensile yield strength for rebar	f yk	[N/mm ²]	500	500	500	500			
Partial factor for rebar part	γ _{Ms,N} 1)	[-]	1,15						

¹⁾ In absence of national regulations

Table C5.2: Characteristic resistance to **steel failure** under tension loading of **fischer rebar anchors FRA**

fischer rebar anchor FRA	M12	M16	M20	M24			
Characteristic resistance to steel failure under tension loading							
Characteristic resistance	$N_{Rk,s}$	[kN]	62	111	173	263	
Partial factor							
Partial factor	γMs,N ¹⁾	[-]	1,4				

¹⁾ In absence of national regulations

Table C5.3: Characteristics resistance to **steel failure** for **fischer rebar anchors FRA** under tension loading and fire exposure R30 to R120

fischer rebar anchor FRA / FRA HCR			M12	M16	M20	M24	
Characteristic resistance to steel failure under tension loading and fire exposure	R30		[kN]	2,5	4,7	7,4	10,6
	R60	NI NI		2,1	3,9	6,1	8,8
	R90	N _{Rk,s,fi}		1,7	3,1	4,9	7,1
	R120			1,3	2,5	3,9	5,6

Rebar connection with injection system FIS RC II

Performance
Characteristic tensile yield strength for rebar part of FRA; Design value of the steel bearing capacity NRk,s,fi under fire exposure for fischer rebar anchor FRA

Annex C 5

Design value of the ultimate bond strength f_{bd,fi} resp. f_{bd,fi,100y} at increased temperature for concrete strength classes C12/15 to C50/60 (all drilling methods)

The design value of the bond strength $f_{bd,fi}$ resp. $f_{bd,fi,100y}$ at increased temperature has to be calculated by the following equation:

$$f_{bd,fi,(100y)} = k_{fi,(100y)}(\theta) \cdot f_{bd,PIR,(100y)} \cdot \frac{\gamma_c}{\gamma_{m.fi}}$$

If:
$$\theta > 74$$
 °C $k_{fi,(100y)}(\theta) = \frac{24,308 \cdot e^{-0.012 \cdot \theta}}{f_{bd,PIR,(100y)} \cdot 4.3} \le 1,0$

If:
$$\theta > \theta_{\text{max}}$$
 (317 °C) k_{fi} (θ) = 0

f_{bd,fi} = Design value of the ultimate bond strength at increased temperature in N/mm² for working life 50 years

 $f_{bd,fi,100y}$ = Design value of the ultimate bond strength at increased temperature in N/mm² for working life 100 years

θ = Temperature in °C in the mortar layer

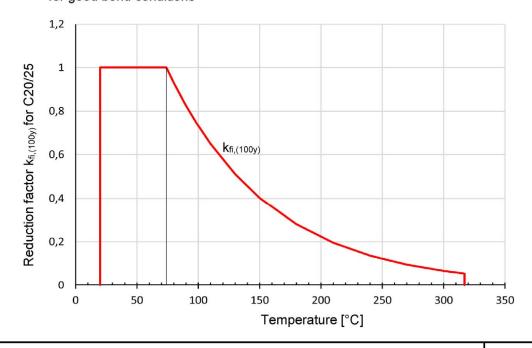
 $k_{\text{fi}}\left(\theta\right)$ = Reduction factor at increased temperature for working life 50 years

 $k_{fi,100y}(\theta)$ = Reduction factor at increased temperature for working life 100 years

f_{bd,PIR} = Design value of the bond strength in N/mm² in cold condition according to **Table C1.3** considering the concrete strength classes, the rebar diameter, the drilling method and the bond

conditions according to EN 1992-1-1:2004+AC:2010

f_{bd,PIR,100y} = Design value of the bond strength in N/mm² in cold condition according to **Table C2.3** considering the concrete strength classes, the rebar diameter, the drilling method and the bond conditions


according to EN 1992-1-1:2004+AC:2010

 $\gamma_{\rm C}$ = 1,5 recommended partial factor according to EN 1992-1-1:2004+AC:2010

 $\gamma_{m,fi}$ = 1,0 recommended partial factor

For evidence at increased temperature the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent ultimate design value of bond strength f_{bd,fi} resp. f_{bd,fi,100y}.

Figure C6.1: Example graph of reduction factor $k_{fi,(100y)}$ (θ) for concrete class C20/25 for good bond conditions

Rebar connection with injection system FIS RC II

Performance

Design value of bond strength fbd,fi resp. fbd,fi,100y at increased temperature

Annex C 6