

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-22/0501 of 23 September 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer injection system FIS RC II and FIS RC II Low Speed

Bonded fasteners and bonded expansion fasteners for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

23 pages including 3 annexes which form an integral part of this assessment

EAD 330499-02-0601, Edition 12/2023

ETA-22/0501 issued on 20 September 2022

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de Z196405.25

European Technical Assessment ETA-22/0501

English translation prepared by DIBt

Page 2 of 23 | 23 September 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z196405.25 8.06.01-222/25

Page 3 of 23 | 23 September 2025

Specific Part

1 Technical description of the product

The "fischer injection system FIS RC II and FIS RC II Low Speed" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS RC II, fischer FIS RC II Low Speed, and a steel element according to Annex A3.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B3 to B6, C1 to C4
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Displacements under short-term and long-term loading	See Annex C5
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z196405.25 8.06.01-222/25

European Technical Assessment ETA-22/0501

English translation prepared by DIBt

Page 4 of 23 | 23 September 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 23 September 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Stiller

Z196405.25 8.06.01-222/25

Installation conditions part 1 Reinforcing bar $h_0 \ge h_{efef}$ fischer rebar anchor FRA **Pre-positioned installation** $h_0 \ge h_{nom}$ Push through installation (annular gap filled with mortar) $h_0 \ge h_{nom}$ Figures not to scale h_0 = drill hole depth effective embedment depth h_{ef} overall fastener embedment depth in the h_{nom} t_{fix} = thickness of fixture concrete fischer injection system FIS RC II and FIS RC II Low Speed Annex A1 **Product description** Installation conditions part 1

Overview system components part 1 Injection cartridge (shuttle cartridge) with sealing cap; Sizes: 360 ml, 825 ml Imprint: fischer FIS RC II or FIS RC II Low Speed, processing notes, shelf-life, piston travel scale (optional), curing times and processing times (depending on temperature), hazard code, size, volume/weight Injection cartridge (coaxial cartridge) with sealing cap; Sizes: 300 ml, 380 ml, 400 ml, 410 ml Imprint: fischer FIS RC II or FIS RC II Low Speed, processing notes, shelf-life, piston travel scale (optional), curing times and processing times (depending on temperature), hazard code, size, volume/weight Static mixer FIS MR Plus for injection cartridges up to 410 ml Static mixer FIS JMR for injection cartridges with 825 ml Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS JMR fischer cleaning brush BS Blow-out pump AB G Compressed-air cleaning tool ABP: or Figures not to scale fischer injection system FIS RC II and FIS RC II Low Speed Annex A2 **Product description** Overview system components part 1; cartridges / static mixer / accessories

Page 7 of European Technical Assessment ETA-22/0501 of 23 September 2025

English translation prepared by DIBt

Overview system components part 2 Reinforcing bar Nominal diameter: \$\,\phi\, \$\,\phi\,010, \$\,\phi\,14, \$\,\phi\,16, \$\,\phi\,20, \$\,\phi\,28 fischer rebar anchor FRA (fischer FRA) Size: M12, M16, M20, M24 washer / hexagon nut Figures not to scale fischer injection system FIS RC II and FIS RC II Low Speed Annex A3 **Product description** Overview system components part 2; steel components

Page 8 of European Technical Assessment ETA-22/0501 of 23 September 2025

English translation prepared by DIBt

Table A4.1: Materials							
Part	Designation	Mat	terial				
1	Injection cartridge	Mortar, hardener, filler					
		Stainless steel R	High corrosion resistant steel HCR				
	Steel grade	acc. to EN 10088-1:2023 Corrosion resistance class CRC III acc. to EN 1993-1-4: 2006+A1:2015	acc. to EN 10088-1:2023 Corrosion resistance class CRC V acc. to EN 1993-1-4: 2006+A1:2015				
2	Washer ISO 7089:2000 for fischer rebar anchor FRA	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2023	1.4565; 1.4529; EN 10088-1:2023				
3	Hexagon nut for fischer FRA	Property class 80 acc. to fischer specification for fischer FRA or EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 80 acc. to fischer specification for fischer FRA or EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2023				
4	Reinforcing bar	EN 1992-1-1:2004 and AC:2010, Annex C Bars and de-coiled rods, class B or C with f_{yk} according to EN 1992-1-1/NA; $f_{uk} = f_{tk} = k \cdot f_{yk}$					
5	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCI of EN 1992-1-1:2004+AC:2010 $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 8 \%)$ Threaded part: Property class 80 EN ISO 3506-1:2020	$\begin{array}{l} 1.4401, 1.4404, 1.4571, 1.4578, 1.4439,\\ 1.4362, 1.4062 acc. to EN 10088\text{-}1:2023\\ Corrosion resistance class CRC III\\ acc. to EN 1993\text{-}1\text{-}4:2006\text{+}A1:2015\\ 1.4565; 1.4529 acc. to EN 10088\text{-}1:2023\\ Corrosion resistance class CRC V\\ acc. to EN 1993\text{-}1\text{-}4:2006\text{+}A1:2015\\ f_{uk} \leq 1000 N/mm^2;\\ fracture elongation A_5 > 8\% \end{array}$				

fischer injection system FIS RC II and FIS RC II Low Speed	
Product description Materials	Annex A4

Specifications of intended use part 1

	Table B1.1:	Overview use	and performance	categories
--	-------------	--------------	-----------------	------------

Anchorages subje	ect to	FIS RC II with				
		Reinfor	cing bar	fischer FRA		
Hammer drilling with standard drill bit	E4444000000000000000000000000000000000	all sizes				
Hammer drilling with hollow drill bi (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; H "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max"		Nominal drill bit diameter (d₀) 12 mm to 35 mm				
Static and quasi	uncracked concrete	all	Tables: C1.1 C2.1	all	Tables: C1.2 C2.1	
static loading, in	cracked concrete	sizes	C2.1 C3.1 C5.1	sizes	C2.1 C4.1 C5.2	
Use	I1 dry or wet concrete	all sizes				
category	l2 water filled hole	-	1)	_1)		
Seismic performance category	C1 ¹⁾					
Installation directi	on	D3 (do	wnward and horizon	tal and upwards insta	allation)	
Installation temperature		$T_{i,min}$ = -5 °C to $T_{i,max}$ = +40 °C For the standard variation of temperature after installation				
In-service	Temperature range I	-40 °C to +80 °C (max. short term temperature +80 °C; max. long term temperature +50 °C)				
temperature	Temperature range II	-40 °C to +12		ort term temperature +120 °C ; g term temperature +72 °C)		

¹⁾ No performance assessed

fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use Specifications part 1	Annex B1

Page 10 of European Technical Assessment ETA-22/0501 of 23 September 2025

English translation prepared by DIBt

Specifications of intended use part 2

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021.

Use conditions (Environmental conditions):

- · Fastener intended for use in structures subject to dry, internal conditions (all materials).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A4 Table A4.1.

Design:

- Fastenings are designed in accordance with EN 1992-4:2018.
- The structural design is conducted under responsibility of a designer experienced in the field of anchorages and concrete works.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to
 reinforcement or to supports, etc.).

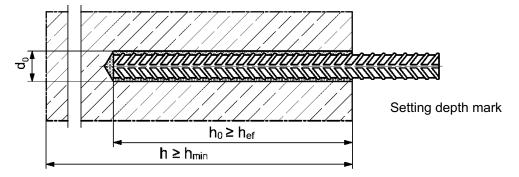
Installation:

- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening depth should be marked and adhered to installation.

fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use Specifications part 2	Annex B2

7215521 25 8 06 01-222/25

Table B3.1: Installation parameters for reinforcing bars										
Nominal diameter of the bar		ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	25	28
Nominal drill hole diameter	d_0		10 12	12 14	14 16	18	20	25	30	35
Drill hole depth	h_0					h ₀ =	= h _{ef}			
Effective	$h_{\text{ef},\text{min}}$		60	60	70	75	80	90	100	112
embedment depth	h _{ef,max}		160	200	240	280	320	400	500	560
Simplified spacing and edge distance ²⁾	s = c	[mm]	40	45	55	60	65	85	110	130
Minimum thickness of concrete member	h _{min}		l	_{ef} + 30 ≥ 100)			h∈	_{ef} + 2d ₀		


¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2011
- The rib height must be within the range: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

Figures not to scale

fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use Installation parameters reinforcing bars	Annex B3

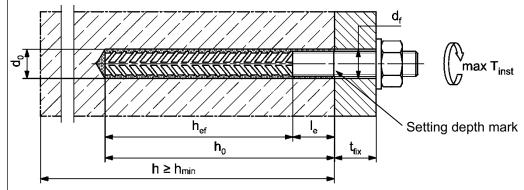
²⁾ Detailed calculation according to Annex B5 and B6



Table B4.1: Installation parameters for fischer rebar anchor FRA							
Rebar anchor FRA Thread M12¹) M16 M20 M24							
Nominal diameter of the bar	ф		1:	2	16	20	25
Nominal drill hole diameter	d_0		14	16	20	25	30
Drill hole depth	h_0				h _{ef}	+ _e	
Effective embedment depth	h _{ef,min}		70)	80	90	96
Enective embedment depth	$h_{\text{ef,max}}$		14	0	220	300	380
Distance concrete surface to welded joint	l _e				100		
Simplified spacing and edge distance ²⁾	s = c	[mm]	55		65	85	105
Maximum pre-positioned Diameter of anchorage	n,		14		18	22	26
clearance hole push through in the fixture anchorage			18		22	26	32
Minimum thickness of concrete member	h _{min}		h ₀ + 30		$h_0 + 30$ $h_0 + 2d_0$		
Maximum torque moment for attachment of the fixture	max T _{inst}	[Nm]] 40 60 120 1		150		

¹⁾ Both drill hole diameters can be used

²⁾ Detailed calculation according to Annex B5 and B6



Marking frontal e.g.:

FRA (for stainless steel);

✓ FRA HCR (for high corrosion resistant steel HCR)

Installation conditions:

Figures not to scale

fischer injection system FIS RC II and FIS RC II Low Speed

Intended use
Installation parameters rebar anchor FRA

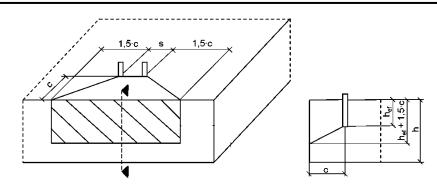
Annex B4

Table B5.1: Minimum sprebar anch	_	nd min	imum	edge di	stance	for reir	nforcin	g bars	and fis	cher
Reinforcing bars / FRA (Nominal diameter)		ф	8	10	12	14	16	20	25	28
Minimum edge distance					·					
Uncracked / cracked concrete	C _{min}	[40	45	45	45	50	55	75	80
Minimum spacing	s	[mm]	according to Annex B6							
Minimum spacing										
Uncracked / cracked concrete	S _{min}	[40	45	55	60	65	85	120	140
Minimum edge distance	C	[mm]		•	aco	cording to	Annex	B6		
Required projecting area										
Uncracked concrete	۸	[1000	8,0	13,0	22,0	23,0	24,0	38,5	47,5	64,0
Cracked concrete	— A _{sp,req}	p,req mm²]	6.5	10,0	16,5	17,5	18,5	29,5	36,5	49,0

Splitting failure for minimum edge distance and spacing in dependence of the effective embedment depth hef-

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

$$A_{sp,req} < A_{sp,t}$$


 $A_{sp,req}$ = required projecting area

A_{sp,t} = effective projecting area (according to **Annex B6**)

fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use Minimum spacing and edge distance for reinforcing bars and fischer rebar anchor FRA	Annex B5

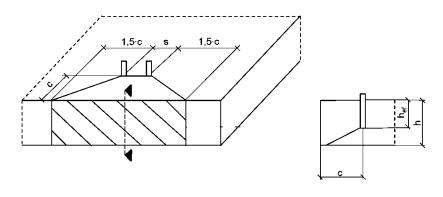


Table B6.1: Projecting area $A_{sp,t}$ with concrete member thickness $h > h_{ef} + 1.5 \cdot c$ and $h \ge h_{min}$

Single anchor		$A_{sp,t} = (3 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	with c > c
Group of anchors with	s > 3 · c	$A_{sp,t} = (6 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	with c ≥ c _{min}
Group of anchors with	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot (h_{ef} + 1,5 \cdot c)$	[mm²]	with $c \ge c_{min}$ and $s \ge s_{min}$

Table B6.2: Projecting area $A_{sp,t}$ with concrete member thickness $h \le h_{ef} + 1.5 \cdot c$ and $h \ge h_{min}$

Single anchor		$A_{sp,t} = 3 \cdot c \cdot existing h$	[mm²]	with a > a
Group of anchors with	s > 3 · c	$A_{sp,t} = 6 \cdot c \cdot existing h$	[mm²]	with c ≥ c _{min}
Group of anchors with	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot existing h$	[mm²]	with $c \ge c_{min}$ and $s \ge s_{min}$

Edge distance and axial spacing shall be rounded up to at least 5 mm-steps

Figures not to scale

fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use Minimum thickness of concrete member for anchor rods, minimum spacing and edge distance	Annex B6

Table B7.1:		Parameters of the cleaning brush BS (steel brush with steel bristles) The size of the cleaning brush refers to the drill hole diameter									
Nominal drill hole diameter	d_0	[mana]	10 12 14 16 18 20 25 35								
Steel brush diameter BS	d _b	[mm]	11	14	16	2	0	25	27	40	

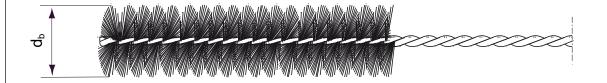


 Table B7.2:
 Conditions for use static mixer without an extension tube

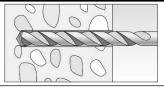
Nominal drill hole diameter	d_0		10	12	14	16	18	20	25	30	35
Drill hole depth h ₀ by	FIS MR Plus	[mm]	[mm] ≤90		≤120	≤140	≤150	≤160		≤210	
using	FIS JMR		-	-	≤90	≤160	≤180	≤190	≤220	≤2	50

Table B7.3 Maximum processing time of the mortar and minimum curing time
(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Temperature at	· .	ocessing time	Minimum curing time 1) t _{cure}			
anchoring base [°C]	FIS RC II	FIS RC II Low Speed	FIS RC II	FIS RC II Low Speed		
> -5 to 0 ²⁾	20 min	40 min	24 h	5 d		
> 0 to 5 ²⁾	13 min	30 min	3 h	48 h		
> 5 to 10	9 min	20 min	90 min	24 h		
> 10 to 20	5 min	13 min	60 min	120 min		
> 20 to 30	4 min	9 min	45 min	60 min		
> 30 to 40	2 min	7 min	35 min	45 min		

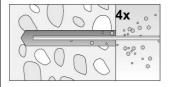
¹⁾ In wet concrete or water filled holes the curing times must be doubled

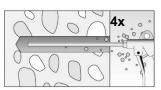
fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use Cleaning brush (steel brush) Processing time and curing time	Annex B7


²⁾ Minimal cartridge temperature +5°C

Installation instructions part 1

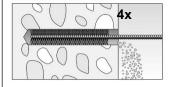
Drilling and cleaning the hole (hammer drilling with standard drill bit)


1

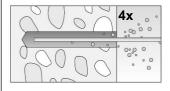

Drill the hole.

Nominal drill hole diameter d_0 and drill hole depth h_0 see **Tables B3.1**, **B4.1**.

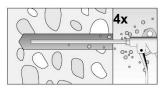
2



Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand.


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$. Use suitable compressedair nozzle.

3



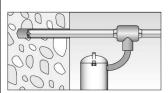
Brush the drill hole four times. For drill hole diameter \geq 30 mm use a power drill. For deep holes use an extension. Use suitable brushes (see **Table B7.1**)

4

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand.

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air (p ≥ 6 bar). Use suitable compressedair nozzle.

Go to step 5


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

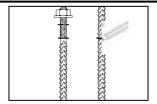
Check a suitable hollow drill (see **Table B1.1**) for correct operation of the dust extraction.

2

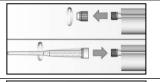
Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see **Tables B3.1, B4.1.**

Go to step 5


fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use	Annex B8
Installation instructions part 1	

Installation instructions part 2


Preparing the cartridge

5

Mark the setting depth of the steel element.

6

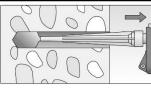
Remove the sealing cap.

Screw on the static mixer (the spiral in the static mixer must be clearly visible).

7

Place the cartridge into the dispenser.

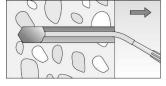
8



Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.

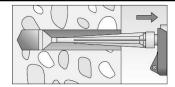
Go to step 9

Injection of the mortar


9

For $h_0 = h_{ef}$ fill approximately 2/3 of the drill hole with mortar.

For $h_0 > h_{ef}$ more mortar is needed.


Always begin from the bottom of

the hole and avoid bubbles.

The conditions for mortar injection without extension tube can be found in **Table B7.2**.

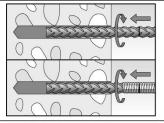
For deeper drill holes, than those mentioned in **Table B7.2**, use a suitable extension tube.

For deep holes ($h_0 > 250$ mm) use an injection adapter.

Go to step 10

fischer injection system FIS RC II and FIS RC II Low Speed

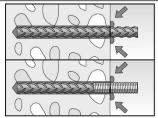
Intended use


Installation instructions part 2

Annex B9

Installation instructions part 3

Installation reinforcing bars and fischer rebar anchor FRA



Only use clean and oil-free reinforcing bars or fischer FRA. Insert the rebar / fischer FRA slowly twisted into the borehole until the embedment mark is reached.

Recommendation:

Rotation back and forth of the reinforcement bar or the fischer FRA makes pushing easy.

10

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

11

Wait for the specified curing time $t_{\text{cure}}\,\text{see}$ Table B7.3

12

Mounting the fixture max T_{inst} for fischer FRA see **Table B4.1**

fischer injection system FIS RC II and FIS RC II Low Speed

Intended use

Installation instructions part 3

Annex B10

Table C1.1:	Characteristic resistance to steel failure under tension / shear loading of reinforcing bars										
Nominal diame	Nominal diameter of the bar ϕ 8 10 12 14 16 20 25							28			
Characteristic r	resistance to ste	el failure	under	tension	loading	9					
Characteristic re	Characteristic resistance $N_{Rk,s}$ [kN] $A_s \cdot f_{uk}^{1}$										
Characteristic resistance to steel failure under shear loading											

Characteristic resistance	$N_{Rk,s}$	[kN]	$A_s \cdot t_{uk}$ 1)								
Characteristic resistance to steel failure under shear loading											
Without lever arm											
Characteristic resistance	$V^0_{Rk,s}$	[kN]	$k_6^{2)} \cdot A_s \cdot f_{uk}^{1)}$								
Ductility factor	k ₇	[-]	1,0								
With lever arm											
Characteristic resistance	$M_{Rk,s}$	[Nm]	$1.2 \cdot W_{el} \cdot f_{uk}$ 1)								

f_{uk} respectively shall be taken from the specifications of the reinforcing bar.

- $k_6 = 0.6$ for fasteners made of carbon steel with $f_{uk} \le 500 \text{ N/mm}^2$,
 - = 0,5 for fasteners made of carbon steel with 500 N/mm² < $f_{uk} \le 1000$ N/mm²,
 - = 0,5 for fasteners made of stainless steel.

Table C1.2: Characteristic resistance to steel failure under tension / shear loading of fischer rebar anchors FRA

fischer rebar anchor FRA			M12	M16	M20	M24	
Characteristic resistance to s	teel failure	under	tension loading	9			
Characteristic resistance	$N_{Rk,s}$	[kN]	62,0	111,0	173,0	236,5	
Partial factor ¹⁾							
Partial factor	γMs,N	[-]		1	,4		
Characteristic resistance to steel failure under shear loading							
Without lever arm							
Characteristic resistance	$V^0_{Rk,s}$	[kN]	34,5	64,3	100,4	144,7	
Ductility factor	k ₇	[-]		1	,0		
With lever arm							
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	107,4	273,0	532,2	920,4	
Partial factor ¹⁾							
Partial factor	γ̃Ms,V	[-]		1	,5		

¹⁾ In absence of other national regulations

fischer injection system FIS RC II and FIS RC II Low Speed	
Performance Characteristic resistance to steel failure under tension / shear loading of reinforcing bars and fischer rebar anchors FRA	Annex C1

²⁾ In accordance with EN 1992-4:2018 section 7.2.2.3.1:

Page 20 of European Technical Assessment ETA-22/0501 of 23 September 2025

English translation prepared by DIBt

0!			o com	crete ta	iiure u	nder te	nsion /	snear	loadin	9
Size All sizes										
Characteristic resistance to	concrete fai	lure ur	nder ten	sion loa	ding					
Installation factor	γ_{inst}	[-]			S	ee anne	x C3 to C	24		
Factors for the compressive	strength of	concr	ete > C2	0/25						
	C25/30					1,	05			
Increasing factor ψ _c for	C30/37		1,10							
cracked or uncracked	C35/45	[_]				1,	15			
concrete	C40/50	[-]				1,	19			
$\tau_{Rk\;(X,Y)} = \psi_{c} \cdot \tau_{Rk\;(C20/25)}$	C45/55					1,:	22			
	C50/60					1,:	26			
Splitting failure										
h / h _{ef}							h_{ef}			
Edge distance $2.0 > h / h_{ef} > 1.3$ $c_{cr,sp}$		[mm]				4,6 h _{ef}	- 1,8 h			
h / h _{ef}	≤ 1,3	[]					3 h _{ef}			
Spacing					2 c	cr,sp				
Concrete cone failure			T							
Uncracked concrete	k _{ucr,N}	[-]					,0			
Cracked concrete	k _{cr,N}	k _{cr,N} 7,7								
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}							
Spacing $s_{cr,N}$ [11111] $2 c_{cr,N}$										
Factors for sustained tension	n loading	1					T			
Temperature range		[°C]		50	80			72 /	120	
Factor	$\Psi^0_{ m sus}$	[-]		0,	74			0,	87	
Characteristic resistance to	concrete fai	lure ur	T							
Installation factor	γ_{inst}	[-]			1,0					
Concrete pry-out failure										
Factor for pry-out failure	k ₈	[-]				2	,0			
Concrete edge failure			1							
Effective length of fastener in shear loading	l _f	[mm]	for d _{nom}	າ ≤ 24 mn າ > 24 mn	n: min (h n: min (h	_{ef} ; 12 d _{no} _{ef} ; max (8	_m) 8 d _{nom} ; 30	00 mm))		
Calculation diameters										
Size			N	112	M	16	М	20	М	24
fischer rebar anchor FRA	d_{nom}	[mm]	1	2	1	6	2	0	2	5
Size (nominal diameter of the b	oar) þ		8	10	12	14	16	20	25	28
Reinforcing bar	d_{nom}	[mm]	8	10	12	14	16	20	25	28

Table C3.1: Characteristic resistance to combined pull-out and concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete										
Nominal diameter of the bar		ф	8	10	12	14	16	20	25	28
Combined pull-out and concr	ete con	e failure								
Calculation diameter	d	[mm]	8	10	12	14	16	20	25	28
Uncracked concrete										
Characteristic bond resistance in uncracked concrete C20/25										
Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)										
Tem- I: 50 °C / 80 °C		[N]/mayna 21	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
range II: 72 °C / 120 °C	$ au_{Rk,ucr}$	$\tau_{\rm Rk,ucr}$ [N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Installation factor										
Dry or wet concrete	γinst	[-]				1,	0			
Cracked concrete										
Characteristic bond resistand	e in cra	cked con	crete C	20/25						
Hammer-drilling with standard of	Irill bit o	r hollow dr	ill bit (dr	y or wet	concrete)				
Tem- I: 50 °C / 80 °C		[N]/mm 21	_1)	3,0	5,0	5,0	5,0	4,5	4,0	4,0
range II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_1)	3,0	4,5	4,5	4,5	4,0	3,5	3,5
Installation factor										
Dry or wet concrete	γinst	[-]				1,	0			

¹⁾ No performance assessed

fischer injection system FIS RC II and FIS RC II Low Speed	
Performance Characteristic resistance to combined pull-out and concrete failure for reinforcing bars	Annex C3

Table C4.1: Characteristic resistance to combined pull-out and concrete failure for fischer rebar anchors FRA in hammer drilled holes; uncracked or cracked concrete

Contract						
fischer rebar anchor FRA			M12	M16	M20	M24
Combined pull-out and conc	rete con	e failure				
Calculation diameter	d	[mm]	12	16	20	25
Uncracked concrete						
Characteristic bond resistan	ce in un	cracked c	oncrete C20/25			
Hammer-drilling with standard	drill bit o	r hollow dr	rill bit (dry or wet	concrete)		
Tem- I: 50 °C / 80 °C	_	7 [N/mm²] -	11,0	10,0	9,5	9,5
perature range II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	9,0	8,5	8,0	7,5
Installation factors						
Dry or wet concrete	γinst	[-]		1	,0	
Cracked concrete						
Characteristic bond resistan	ce in cra	cked con	crete C20/25			
Hammer-drilling with standard	drill bit o	r hollow dr	rill bit (dry or wet	concrete)		
Tem- I: 50 °C / 80 °C	_	[N]/mm ²¹	5,0	5,0	4,5	4,0
range II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,0	3,5
Installation factors	·					
Dry or wet concrete	γinst	[-]		1	,0	

fischer injection system FIS RC II and FIS RC II Low Speed	
Performance Characteristic resistance to combined pull-out and concrete failure for fischer rebar anchor FRA	Annex C4

Table C5.1: Displacements for reinforcing bars									
Nomina of the ba	I diameter ar	8	10	12	14	16	20	25	28
Displacement-Factors for tension loading ¹⁾									
Uncrack	ed concrete; Te	emperatur	e range I, II						
$\delta_{\text{N0-Factor}}$	[mana//N1/mana2)]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11
$\delta_{\text{N}\infty\text{-Factor}}$	[mm/(N/mm ²)]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13
Cracked	l concrete; Tem	perature r	ange I, II						
$\delta_{\text{N0-Factor}}$	[mana//N1/mana2)]	_3)	0,12	0,13	0,13	0,13	0,13	0,13	0,14
$\delta_{\text{N}\infty\text{-Factor}}$	[!!!!!!/(! \ /!!!!!! <i>)</i>]	_3)	0,27	0,30	0,30	0,30	0,30	0,35	0,37
Displacement-Factors for shear loading ²⁾									
Uncracked or cracked concrete; Temperature range I, II									
$\delta_{\text{V0-Factor}}$	[0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08
$\delta_{\text{V}\infty\text{-Factor}}$	[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09

¹⁾ Calculation of effective displacement:

2) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-Factor}} \cdot \tau$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$

τ: acting bond strength under tension loading

V: acting shear loading

Table C5.2: Displacements for fischer rebar anchors FRA

fischer r FRA	ner rebar anchor M12		M16	M20	M24				
Displacement-Factors for tension loading ¹⁾									
Uncracked concrete; Temperature range I, II									
$\delta_{\text{N0-Factor}}$	[mana//N1/mana2)]	0,10	0,10	0,10	0,10				
δ _{N∞-Factor}	[mm/(N/mm ²)]	0,12	0,12	0,12	0,13				
Cracked	concrete; Temp	erature range I, II							
$\delta_{\text{N0-Factor}}$	[mana//N1/mana2)]	0,12	0,13	0,13	0,13				
δ _{N∞-Factor}	[mm/(N/mm ²)]	0,30	0,30	0,30	0,35				
Displacement-Factors for shear loading ²⁾									
Uncracked or cracked concrete; Temperature range I, II									
$\delta_{\text{V0-Factor}}$	[/IsNI]	0,10	0,10	0,09	0,09				
δ _{V∞-Factor}	[mm/kN]	0,11	0,11	0,10	0,10				

¹⁾ Calculation of effective displacement:

2) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-Factor}} \cdot \tau$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V$

τ: acting bond strength under tension loading

V: acting shear loading

fischer injection system FIS RC II and FIS RC II Low Speed	
Performance Displacements for reinforcing bars and fischer rebar anchors FRA	Annex C5

³⁾ No performance assessed