

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0501 of 20 September 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer Injection system FIS RC II

Bonded fastener for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

23 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-22/0501

Page 2 of 23 | 20 September 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-22/0501

Page 3 of 23 | 20 September 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "fischer injection system FIS RC II" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS RC II and a steel element according to Annex A3.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 to B 6, C 1 to C 4
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2
Displacements under short-term and long-term loading	See Annex C 5
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-22/0501

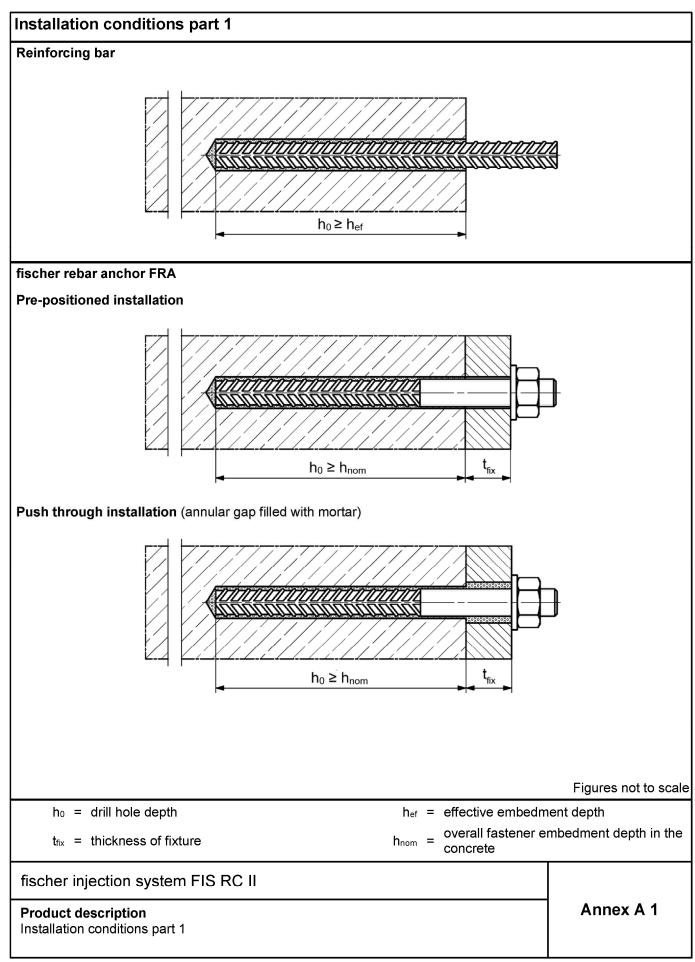
Page 4 of 23 | 20 September 2022

English translation prepared by DIBt

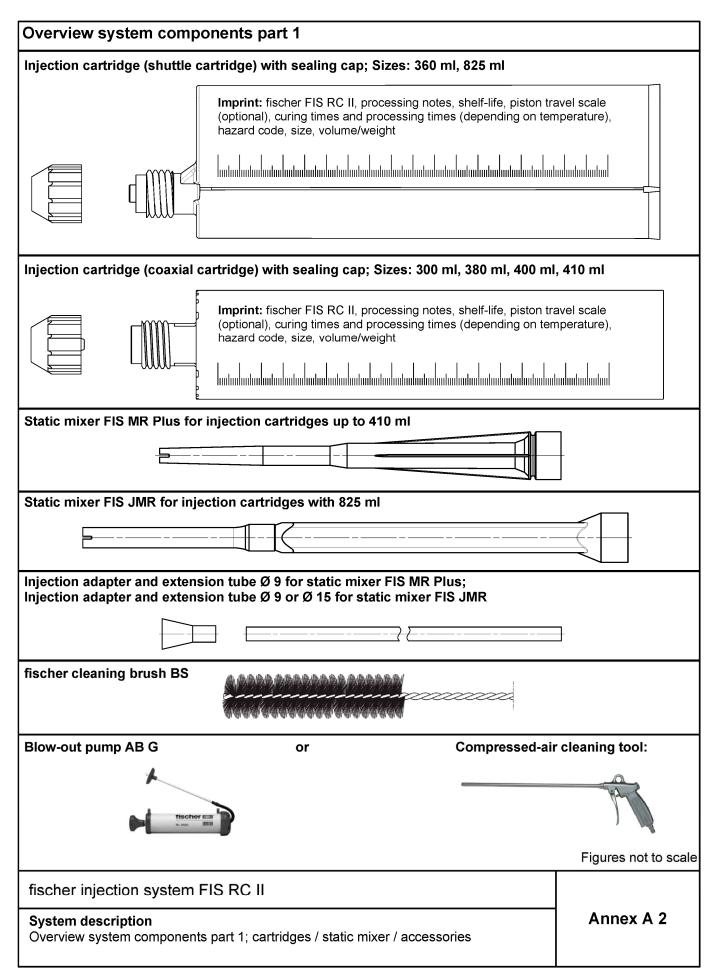
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 20 September 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Overview system components part 2	
Reinforcing bar	
Nominal diameter: φ8, φ10, φ12, φ14, φ16, φ20, φ25, φ28	
fischer rebar anchor FRA Size: M12, M16, M20, M24	
washer / hexagon nut	
	-
C	Figures not to scale
fischer injection system FIS RC II	Annex A 3
System description Overview system components part 2; steel components	Ailliex A 3

Part	Designation	Ma	iterial							
1	Injection cartridge	Mortar, hardener, filler								
		Stainless steel R		corrosion nt steel HCR						
	Steel grade	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4: 2006+A1:2015	resistance cla	88-1:2014 Corrosion ass CRC V acc. to 4: 2006+A1:2015						
2	Washer ISO 7089:2000 for fischer rebar anchor FRA	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014		65; 1.4529; 088-1:2014						
3	Hexagon nut for fischer rebar anchor FRA	Property class 80 acc. to fischer specification for fischer rebar anchor FRA or EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	to fischer specific anch EN ISO 1.456	class 80 acc. cation for fischer reba or FRA or 3506-2:2020 35; 1.4529 088-1:2014						
4	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class B or C with f_y according to NDP or NCI according to EN 1 $f_{uk} = f_{tk} = k \cdot f_{yk}$								
5	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCI of EN 1992-1-1:2004+AC:2010 $f_{uk} = f_{tk} = k \cdot f_{yk}$	1.4362, 1.4062 acc Corrosion resistand acc. to EN 1993-1-	0 571, 1.4578, 1.4439, to EN 10088-1:201 ce class CRC III 4:2006+A1:2015 to EN 10088-1:201 ce class CRC V						
fiscl	her injection syste	m FIS RC II								

Specifications of intended use part 1 Table B1.1: Overview use and performance categories Anchorages subject to FIS RC II with ... Reinforcing bar fischer rebar anchor FRA KAKKAKAKKAKAKAKAKA Hammer drilling all with standard drill sizes bit Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Nominal drill bit diameter (d₀) Expert"; Bosch 12 mm to 35 mm "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max" Tables: Tables: uncracked C1.1 C1.2 concrete Static and quasi all all C2.1 C2.1 static loading, in sizes sizes cracked C3.1 C4.1 concrete C5.1 C5.2 dry or wet 11 all sizes concrete Use category water filled _1) _1) 12 hole Seismic C1¹⁾ _1) _1) performance C21) category Installation direction D3 (downward and horizontal and upwards installation) Installation $T_{i,min}$ = -5 °C to $T_{i,max}$ = +40 °C temperature Temperature (max. short term temperature +80 °C; -40 °C to +80 °C max. long term temperature +50 °C) range I In-service temperature Temperature (max. short term temperature +120 °C; -40 °C to +120°C max. long term temperature +72 °C) range II 1) Performance not assessed fischer injection system FIS RC II Annex B 1 Intended use Specifications part 1

Specifications of intended use part 2

Base materials:

Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 5 table 5.1.

Design:

- Fastenings have to be designed under the responsibility of an engineer with experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

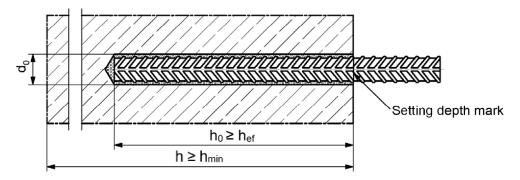
Installation:

- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastenings depth should be marked and adhered to installation.

fischer injection system FIS RC II	
Intended use Specifications part 2	Annex B 2
7636 22	8 06 01-181/22

Z87636.2

Table B3.1: Installation parameters for reinforcing bars											
Nominal diameter of the bar		ф	8 ¹⁾	10 ¹⁾	12 ¹)	14	16	20	25	28
Nominal drill hole diameter	d_0		10 12	12 14	14 1	16	18	20	25	30	35
Drill hole depth	h_0						h ₀ =	: h _{ef}			
Effective	$h_{\text{ef},\text{min}}$		60	60	70		75	80	90	100	112
embedment depth	h _{ef,max}		160	200	240) 2	280	320	400	500	560
Simplified spacing and edge distance ²⁾	s = C	[mm]	40	45	55		60	65	85	110	130
Minimum thickness of concrete member	h _{min}		l	_{ef} + 30 ≥ 100)				he	f + 2d ₀		


¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

Figures not to scale

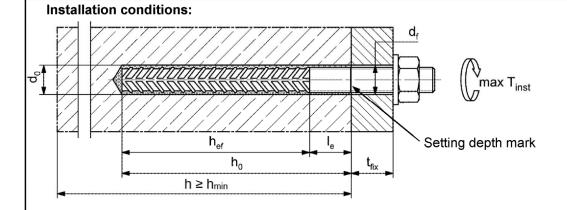
fischer injection system FIS RC II

Intended use
Installation parameters reinforcing bars

Annex B 3

²⁾ Detailed calculation according to Annex B 5 and B 6

					oar anchor FF		ı	
Rebar anchor FRA	•	Thread	M1	2 ¹⁾	M16	M20	M	24
Nominal diameter of the bar	ф	ф		2	16	20	2	5
Nominal drill hole diameter	d₀		14	16	20	25	30	35
Drill hole depth	h ₀				h _{ef}	+ I _e		
Effective embedment depth	h _{ef,min}		7	0	80	90	9	6
Effective embedment depth	h _{ef,max}		14	10	220	300	38	30
Distance concrete surface to welded joint	l _e		100					
Simplified spacing and edge distance ²⁾	s = c	[mm]	55		65	85	10	05
Maximum pre-positioned Diameter of anchorage	df		14		18	22	2	6
clearance hole push through in the fixture anchorage	df		1	8	22	26	32	_3)
Minimum thickness of concrete member	h _{min}		h ₀ + 30			h ₀ + 2d ₀		
Maximum torque moment for attachment of the fixture	max T _{inst}	[Nm]	40 60 120			1	50	


- 1) Both drill hole diameters can be used
- 2) Detailed calculation according to Annex B 5 and B 6
- 3) Performance not assessed

fischer rebar anchor FRA

Marking frontal e. g:

FRA (for stainless steel);
FRA HCR (for high corrosion resistant steel)

Figures not to scale

fischer injection system FIS RC II

Intended use

Installation parameters rebar anchor FRA

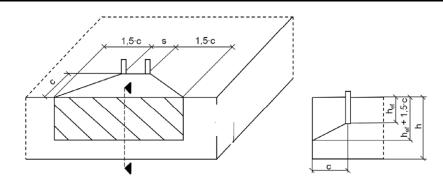
Annex B 4

	5.1: Minimum spacing and minimum edge distance for reinforcing bars and fischer rebar anchor FRA									
Reinforcing bars / FRA (Nominal diameter)		ф	8	10	12	14	16	20	25	28
Minimum edge distance	Minimum edge distance									
Uncracked / cracked concrete	C _{min}	[mm]	40	45	45	45	50	55	75	80
Minimum spacing	s	ַ [וווווון	according to Annex B 6							
Minimum spacing										
Uncracked / cracked concrete	S _{min}	[mm]	40	45	55	60	65	85	120	140
Minimum edge distance	С	[mm]			acc	ording to	Annex	B 6		
Required projecting area										
Uncracked concrete	_ ^	[1000	8,0	13,0	22,0	23,0	24,0	38,5	47,5	64,0
Cracked concrete	— A _{sp,req}	mm²]	6,5	10,0	16,5	17,5	18,5	29,5	36,5	49,0

Splitting failure for minimum edge distance and spacing in dependence of the effective embedment depth h_{ef} .

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

 $A_{sp,req} < A_{sp,t}$


 $A_{sp,req}$ = required projecting area

 $A_{sp,t} = A_{sp,ef} = effective projecting area (according to Annex B 6)$

fischer injection system FIS RC II	
Intended use Minimum spacing and edge distance for reinforcing bars and fischer rebar anchor FRA	Annex B 5

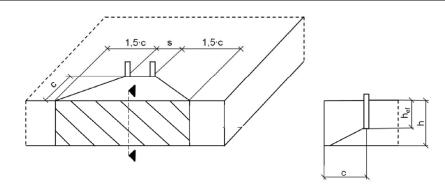


Table B6.1: Effective projecting area $A_{sp,t}$ with concrete member thickness $h > h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

Single anchor		$A_{sp,t} = (3 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	with a > a
Group of anchors with	s > 3 · c	$A_{sp,t} = (6 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	with c ≥ c _{min}
Group of anchors with	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	with c ≥ c _{min} and s ≥ s _{min}

Table B6.2: Effektive projecting area $A_{sp,t}$ with concrete member thickness $h \le h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

Single anchor		$A_{sp,t} = 3 \cdot c \cdot existing h$	[mm²]	with c ≥ c _{min}
Group of anchors with	s > 3 · c	$A_{sp,t} = 6 \cdot c \cdot existing h$	[mm²]	WILLI C = Cmin
Group of anchors with	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot existing h$	[mm²]	with c ≥ c _{min} and s ≥ s _{min}

Edge distance and axial spacing shall be rounded up to at least smooth 5 mm-steps

rigures not to scale

fischer injection system FIS RC II	
Intended use Minimum thickness of concrete member for anchor rods, minimum spacing and edge distance	Annex B 6

Table B7.1:	Parameters of the cleaning brush BS (steel brush with steel bristles)
-------------	--

The size of the cleaning brush refers to the drill hole diameter

Nominal drill hole diameter	d ₀	[mam]	10	12	14	16	18	20	25	35
Steel brush diameter BS	db	[mm]	11	14	16	2	0	25	27	40

Table B7.2: Conditions for use static mixer without an extension tube

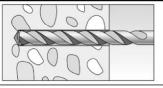
Nominal drill hole diameter	d ₀		10	12	14	16	18	20	25	30	35
Drill hole depth ho by	FIS MR Plus	[mm]	≤9	0	≤120	≤140	≤150	≤160		≤210	
using	FIS JMR		-			≤160	≤180	≤190	≤220	≤250	

Table B7.3 Maximum processing time of the mortar and minimum curing time
(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Temperature at anchoring base	Maximum processing time $t_{\sf work}$	Minimum curing time ¹⁾ t _{cure}
[°C]	FIS RC II	FIS RC II
-5 to 0 ²⁾	-	24 h
> 0 to 5 ²⁾	13 min	3 h
> 5 to 10	9 min	90 min
> 10 to 20	5 min	60 min
> 20 to 30	4 min	45 min
> 30 to 40	2 min	35 min

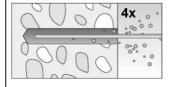
¹⁾ In wet concrete or water filled holes the curing times must be doubled

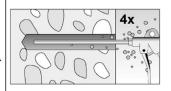
fischer injection system FIS RC II	
Intended use Cleaning brush (steel brush) Processing time and curing time	Annex B 7


²⁾ Minimal cartridge temperature +5°C

Installation instructions part 1

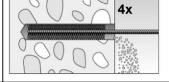
Drilling and cleaning the hole (hammer drilling with standard drill bit)


1

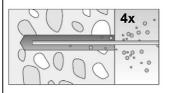

Drill the hole.

Nominal drill hole diameter d₀ and drill hole depth h₀ see tables B3.1, B4.1.

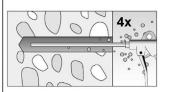
2


Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand.

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$. Use suitable compressed-


air nozzle.

3



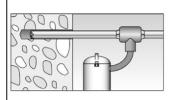
Brush the drill hole four times. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Use suitable brushes (see **table B7.1**)

4

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand.

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$. Use suitable compressedair nozzle.

Go to step 5


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction.

2

Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter d_0 and drill hole depth h_0 see tables B3.1, B4.1.

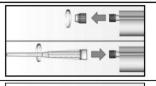
Go to step 5

fischer injection system FIS RC II

Intended use

Installation instructions part 1

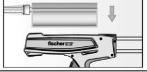
Annex B 8


Installation instructions part 2

Preparing the cartridge

5

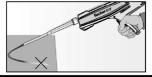
Mark the setting depth of the steel element.


6

Remove the sealing cap.

Screw on the static mixer (the spiral in the static mixer must be clearly visible).

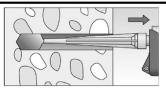
7



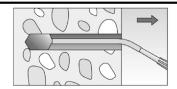
Place the cartridge into the dispenser.

8

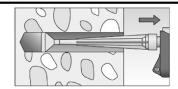
9



Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.


Go to step 9

Injection of the mortar


For $h_0 = h_{ef}$ fill approximately 2/3 of the drill hole with mortar. For $h_0 > h_{ef}$ more mortar is needed.

Always begin from the bottom of the hole and avoid bubbles.

The conditions for mortar injection without extension tube can be found in **table B7.2.**

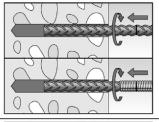
For deeper drill holes, than those mentioned in **table B7.2**, use a suitable extension tube.

For deep holes (h₀ > 250 mm) use an injection adapter.

Go to step 10

fischer injection system FIS RC II

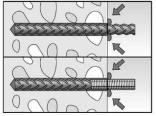
Intended use


Installation instructions part 2

Annex B 9

Installation instructions part 3

Installation reinforcing bars and fischer rebar anchor FRA



Only use clean and oil-free reinforcing bars or fischer FRA. Insert the rebar / fischer rebar anchor FRA slowly twisted into the borehole until the embedment mark is reached.

Recommendation:

Rotation back and forth of the reinforcement bar or the fischer rebar anchor FRA makes pushing easy.

10

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

11

Wait for the specified curing time t_{cure} see **table B7.3**

12

Mounting the fixture max T_{inst} for fischer rebar anchor FRA see **table B4.1**

fischer injection system FIS RC II

Intended use

Installation instructions part 3

Annex B 10

Table C1.1: Character reinforcing		tance	to ste	el failu	i re und	er tens	ion/s	hear Id	ading	of
Nominal diameter of the bar		ф	8	10	12	14	16	20	25	28
Characteristic resistance to s	teel failure	under	tensio	n loadir	ng					
Characteristic resistance N _{Rk,s}			$A_s \cdot f_{uk^2}$							
Characteristic resistance to s	teel failure	under	shear	loading						
Without lever arm										
Characteristic resistance	$V^0_{Rk,s}$	[kN]				k 6 ¹⁾ · <i>F</i>	$\mathbf{h}_{s} \cdot \mathbf{f}_{uk^{2)}}$			
Ductility factor k ₇ [-]			1	,0						
With lever arm										
Characteristic resistance Morks		[Nm1				1,2 · V	$V_{\rm el} \cdot f_{\rm uk}^{2)}$			

¹⁾ In accordance with EN 1992-4:2018 section 7.2.2.3.1

Table C1.2: Characteristic resistance to steel failure under tension / shear loading of fischer rebar anchors FRA

fischer rebar anchor FRA			M12	M16	M20	M24
Characteristic resistance to	steel failure	under	tension loadin	g		
Characteristic resistance	N _{Rk,s}	[kN]	62	111	173	263
Partial factor ¹⁾		· ·				
Partial factor	γMs,N	[-]		1	,4	
Characteristic resistance to	steel failure	under	shear loading			
Without lever arm						
Characteristic resistance	V^0 Rk,s	[kN]	34	63	98	141
Ductility factor	k ₇	[-]		1	,0	
With lever arm						
Characteristic resistance	M^0 Rk,s	[Nm]	105	266	519	898
Partial factor ¹⁾		,			•	
Partial factor	γMs,V	[-]		1,	25	

¹⁾ In absence of other national regulations

fischer injection system FIS RC II

Performance
Characteristic resistance to steel failure under tension / shear loading of reinforcing bars and fischer rebar anchors FRA

Annex C 1

 k_6 = 0,6 for fasteners made of carbon steel with $f_{uk} \le 500 \text{ N/mm}^2$

^{= 0,5} for fasteners made of carbon steel with 500 < $f_{uk} \le 1000 \text{ N/mm}^2$

²⁾ fuk respectively must be taken from the specifications of the reinforcing bar

γinst capth of C25/30 C35/45 C35/45 C40/50 C45/55 C50/60 capth of C50/60 capt	[-]	rete > C	50 /	Se S	1,1 1, 1, 1,1 1,0 4,6 hef 2,26 2 c	05 10 15 19 22 26 hef - 1,8 h 6 hef cr,sp			
γinst capth of C25/30 C35/45 C35/45 C40/50 C45/55 C50/60 capth of C50/60 capt	[-] f conc [-] [mm]	ì	50 /	Se S	1,1 1, 1, 1,1 1,0 4,6 hef 2,26 2 c	05 10 15 19 22 26 hef - 1,8 h 6 hef cr,sp			
C25/30 C35/45 C40/50 C45/55 C50/60 Ccr,sp Kucr,N Kcr,N Ccr,N Scr,N Sding	[mm] [°C]	rete > C	50 /	/ 80	1,1 1, 1, 1,1 1,0 4,6 hef 2,26 2 c	05 10 15 19 22 26 hef - 1,8 h 6 hef cr,sp			
C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 Ccr,sp kucr,N kcr,N Ccr,N scr,N ading	[-] [mm] - [-] - [mm]	rete > C	50 /		1, 1, 1, 1, 1,0 4,6 hef 2,26 2 c	10 15 19 22 26 hef - 1,8 h 6 hef cr,sp			
C30/37 C35/45 C40/50 C45/55 C50/60 - Ccr,sp Scr,sp Kucr,N Kcr,N Ccr,N Scr,N	[mm] [mm]				1, 1, 1, 1, 1,0 4,6 hef 2,26 2 c	10 15 19 22 26 hef - 1,8 h 6 hef cr,sp			
C35/45 C40/50 C45/55 C50/60 - Ccr,sp - Scr,sp Kucr,N Kcr,N Scr,N Scr,N ading	[-] [mm] - [-] - [mm]				1, 1, 1, 1, 1,0 4,6 hef 2,26 2 c	15 19 22 26 hef - 1,8 h 6 hef er,sp			
C40/50 C45/55 C50/60 Ccr,sp Scr,sp Kucr,N Kcr,N Ccr,N Scr,N ading	[-] [mm] - [-] - [mm]				1, 1,0 4,6 hef 2,26 2 c	19 22 26 hef - 1,8 h 6 hef cr,sp			
C45/55 C50/60 Ccr,sp Kucr,N Kcr,N Ccr,N Scr,N ading	[mm] - [-] - [mm]				1, 1,0 4,6 h _{ef} 2,26 2 c	22 26 hef - 1,8 h 5 hef cr,sp			
C50/60 Ccr,sp Scr,sp Kucr,N Ccr,N Scr,N ading	[mm] - [-] - [mm]				1,0 4,6 hef 2,26 2 c	26 hef - 1,8 h 6 hef cr,sp			
Scr,sp Kucr,N Kcr,N Ccr,N Scr,N ading	[mm] - [-] - [mm]				1,0 4,6 h _{ef} 2,26 2 c 11 7	h _{ef} - 1,8 h 6 h _{ef} - 1,0 1,0 7 h _{ef}			
Scr,sp Kucr,N Kcr,N Ccr,N Scr,N ading	[-] [mm]				4,6 h _{ef} 2,26 2 c 11 7 1,5	- 1,8 h 6 h _{ef} icr,sp			
Scr,sp Kucr,N Kcr,N Ccr,N Scr,N ading	[-] [mm]				4,6 h _{ef} 2,26 2 c 11 7 1,5	- 1,8 h 6 h _{ef} icr,sp			
Scr,sp Kucr,N Kcr,N Ccr,N Scr,N 4ding	[-] [mm]				2,26 2 c 11 7 1,5	6 hef ccr,sp			
Scr,sp Kucr,N Kcr,N Ccr,N Scr,N ading	[-] [mm]				2 c 11 7 1,5	,7			
k _{ucr,N} k _{cr,N} C _{cr,N} S _{cr,N} ading	[mm]				11 7 1,5	,0 ,7 h _{ef}			
k _{cr,N} C _{cr,N} S _{cr,N} ading	[mm]				7, 1,5	,7 h _{ef}			
k _{cr,N} C _{cr,N} S _{cr,N} ading	[mm]				7, 1,5	,7 h _{ef}			
C _{cr,N} S _{cr,N} ading	[mm]				1,5	h _{ef}			
Scr,N ading	[°C]								
ading Ψ ⁰ sus	[°C]				2 0	cr,N			
$\Psi^0_{ ext{sus}}$									
	[-]		0.	7.4	[°C] 50 / 80 72 / 120				
arata f			•,	Factor $\left \Psi^{0}_{\text{sus}}\right $ [-] $0,74$ $0,87$					
crete fa	ailure ι	ınder sl	near Ioa	ding					
γinst	[-]				1	,0			
k ₈	[-]				2	,0			
I f	[mm]		or d _{nom} ≤ or d _{nom} >) 300 mm))	
		М	12	M	16	M	20	M	24
d _{nom}	[mm]	1	2	1	6	2	20	2	5
ф		8	10	12	14	16	20	25	28
d _{nom}	[mm]	8	10	12	14	16	20	25	28
RC II	nt						A	nnex C	; 2
	ф dnom sessme	ф [mm] sessment	d _{nom} [mm] 1	ф [mm] 8 10 essment RC II	d _{nom} [mm] 12 1 ф [mm] 8 10 12 d _{nom} 8 10 12 sessment	d _{nom} [mm] 12 16 φ [mm] 8 10 12 14 d _{nom} 8 10 12 14 sessment	d _{nom} [mm] 12 16 2 2 2 2 2 2 2 2 2	d _{nom} [mm] 12 16 20 ф [mm] 8 10 12 14 16 20 d _{nom} 8 10 12 14 16 20 sessment RC II	d _{nom} [mm] 12 16 20 2 ф [mm] 8 10 12 14 16 20 25 d _{nom} 8 10 12 14 16 20 25 Seessment RC II Annex C

Table C3.1: Character reinforcial					•					
Nominal diameter of the bar	Nominal diameter of the bar φ 8 10 12 14 16 20 25 28									
Combined pull-out and cond	rete co	ne failure								
Calculation diameter	d	[mm]	8	10	12	14	16	20	25	28
Uncracked concrete										
Characteristic bond resistan	ce in u	ncracked	concret	te C20/2	5					
Hammer-drilling with standard	drill bit	or hollow o	drill bit (d	dry or we	t concre	<u>te)</u>				
Tem- I: 50 °C / 80 °C	σ.	[N/mm ²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
range II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[14/111111]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Installation factor										
Dry or wet concrete	γinst	[-]				1,	,0			
Cracked concrete										
Characteristic bond resistan	ce in cı	acked co	ncrete (C20/25						
Hammer-drilling with standard	drill bit	or hollow o	drill bit (d	dry or we	t concre	<u>te)</u>				
Tem- I: 50 °C / 80 °C	T	[N/mm ²]	_1)	3,0	5,0	5,0	5,0	4,5	4,0	4,0
range II: 72 °C / 120 °C	$ au_{Rk,cr}$	[[14/11]]	_1)	3,0	4,5	4,5	4,5	4,0	3,5	3,5
Installation factor										
Dry or wet concrete	γinst	[-]				1,	,0			

1)	Performance not as	sessed
----	--------------------	--------

fischer injection system FIS RC II	
Performance Characteristic resistance to combined pull-out and concrete failure for reinforcing bars	Annex C 3

Table C4.1:	Characteristic resistance to combined pull-out and concrete failure for
	fischer rebar anchors FRA in hammer drilled holes; uncracked or
	cracked concrete

Cracked (COLICIE	ele					
fischer rebar anchor FRA			M12	M16	M20	M24	
Combined pull-out and conc	rete co	ne failure					
Calculation diameter	d	[mm]	12	16	20	25	
Uncracked concrete							
Characteristic bond resistan	ce in u	ncracked	concrete C20/2	5			
Hammer-drilling with standard	drill bit	or hollow	drill bit (dry or we	t concrete)			
Tem- I: 50 °C / 80 °C	τ _{Rk,ucr} [N/mm ²		11,0	10,0	9,5	9,5	
perature range II: 72 °C / 120 °C			9,0	8,5	8,0	7,5	
Installation factors							
Dry or wet concrete	γinst	[-]	1,0				
Cracked concrete							
Characteristic bond resistan	ce in cı	acked co	ncrete C20/25				
Hammer-drilling with standard	drill bit	or hollow o	drill bit (dry or we	t concrete)			
Tem- I: 50 °C / 80 °C	_	[N/mm ²]	5,0	5,0	4,5	4,0	
perature Transcor Transcor II: 72 °C / 120 °C Transcor III: 72 °C / 120 °C		ן נוא/וווווי- <u>]</u>	4,5	4,5	4,0	3,5	
Installation factors							
Dry or wet concrete	γinst	[-]	1,0				

fischer injection system FIS RC II

Performance

Characteristic resistance to combined pull-out and concrete failure for fischer rebar anchor FRA

Annex C 4

Table (C5.1: Dis	placeme	nts for rei	nforcing	bars				
Nominal diameter φ distribution		8	10	12	14	16	20	25	28
Displace	ement-Factors	for tensio	n loading ¹⁾						
Uncrack	ked concrete;	Temperatu	re range I,	II					
$\delta_{\text{N0-Factor}}$	[mama//N1/mama2\]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11
δ _{N∞-} Factor	[mm/(N/mm ²)]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13
Cracked	l concrete; Ter	nperature	range I, II						
$\delta_{\text{N0-Factor}}$	[mama//N1/mama2\]	_3)	0,12	0,13	0,13	0,13	0,13	0,13	0,14
δ _{N∞-} Factor	[mm/(N/mm ²)]	_3)	0,27	0,30	0,30	0,30	0,30	0,35	0,37
Displacement-Factors for shear loading ²⁾									
Uncracked or cracked concrete; Temperature range I, II									
δ V0-Factor	[mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08
δ∨∞-Factor		0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-}\mathsf{Factor}} \cdot \tau$

 τ : acting bond strength under tension loading

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V$

V: acting shear loading

Table C5.2: Displacements for fischer rebar anchors FRA

fischer rebar anchor FRA		M12	M16	M20	M24
Displace	ement-Factors	for tension loading ¹⁾			
Uncrack	ked concrete; ⁻	Геmperature range I, I	II		
$\delta_{\text{N0-Factor}}$	[mm/(N/mm²)]	0,10	0,10	0,10	0,10
$\delta_{\text{N}\text{Factor}}$	[[[[[[[]]	0,12	0,12	0,12	0,13
Cracked	l concrete; Ter	nperature range I, II			
$\delta_{\text{N0-Factor}}$	[mm/(N/mm²)]	0,12	0,13	0,13	0,13
$\delta_{\text{N}\infty\text{-Factor}}$		0,30	0,30	0,30	0,35
Displace	ement-Factors	for shear loading ²⁾			
Uncrack	ed or cracked	concrete; Temperatu	ıre range I, II		
δ V0-Factor	[mm/kN]	0,10	0,10	0,09	0,09
S		0.11	0.11	0.10	0.10

0,11

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

δ∨∞-Factor

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-}\mathsf{Factor}} \cdot \tau$

 $\tau :$ acting bond strength under tension loading

0,10

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot \text{V}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V$

V: acting shear loading

fischer injection system FIS RC II

Performance

Displacements for reinforcing bars and fischer rebar anchors FRA

0,11

Annex C 5

0,10

²⁾ Calculation of effective displacement:

³⁾ Performance not assessed

¹⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement: