

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-22/0501 vom 23. September 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verbunddübel und Verbundspreizdübel zur Verankerung in Beton

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

23 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-02-0601, Edition 12/2023

ETA-22/0501 vom 20. September 2022

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z215574.25 8.06.01-222/25

Seite 2 von 23 | 23. September 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 23 | 23. September 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "fischer Injektionssystem FIS RC II und FIS RC II Low Speed" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel fischer FIS RC II, fischer FIS RC II Low Speed und einem Stahlteil gemäß Anhang A3 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B3 bis B6, C1 bis C4
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C1 und C2
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C5
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Leistung nicht bewertet

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Leistung nicht bewertet

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Seite 4 von 23 | 23. September 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-02-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 23. September 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Stiller

Einbauzustände Teil 1 **Betonstahl** $h_0 \ge h_{ef}$ fischer Bewehrungsanker FRA Vorsteckmontage $h_0 \ge h_{nom}$ Durchsteckmontage (Ringspalt mit Mörtel verfüllt) $h_0 \ge h_{nom}$ Abbildungen nicht maßstäblich h₀ = Bohrlochtiefe Effektive Verankerungstiefe h_{ef} t_{fix} = Dicke des Anbauteils Gesamteinbindetiefe des Dübels im Beton fischer Injektionssystem FIS RC II und FIS RC II Low Speed Anhang A1 Produktbeschreibung Einbauzustände Teil 1

Übersicht Systemkomponenten Teil 1 Injektionskartusche (Shuttlekartusche) mit Verschlusskappe; Größen: 360ml, 825 ml Aufdruck: fischer FIS RC II oder FIS RC II Low Speed, Verarbeitungshinweise, Haltbarkeitsdatum, Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Gefahrenhinweis, Größe, Volumen/Gewicht Injektionskartusche (Koaxialkartusche) mit Verschlusskappe; Größen: 300 ml, 380 ml, 400 ml, 410 ml Aufdruck: fischer FIS RC II oder FIS RC II Low Speed, Verarbeitungshinweise, Haltbarkeitsdatum, Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Gefahrenhinweis, Größe, Volumen/Gewicht Statikmischer FIS MR Plus für Injektionskartuschen bis 410 ml Statikmischer FIS JMR für Injektionskartuschen mit 825 ml Injektionshilfe und Verlängerungsschlauch Ø 9 für Statikmischer FIS MR Plus; Injektionshilfe und Verlängerungsschlauch Ø 9 oder Ø 15 für Statikmischer FIS JMR fischer Reinigungsbürste BS Ausbläser AB G oder Druckluft-Reinigungsgerät ABP: Abbildungen nicht maßstäblich fischer Injektionssystem FIS RC II und FIS RC II Low Speed Anhang A2 **Produktbeschreibung** Übersicht Systemkomponenten Teil 1; Kartuschen / Statikmischer / Zubehör

Übersicht Systemkomponenten Teil 2 **Betonstahl** Nenndurchmesser: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$, \$\phi 28\$ fischer Bewehrungsanker FRA (fischer FRA) Größen: M12, M16, M20, M24 Scheibe / Mutter

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Produktbeschreibung

Übersicht Systemkomponenten Teil 2; Stahlteile

Anhang A3

Teil	Bezeichnung	Mat	terial
1	Injektionskartusche	Mörtel, Här	ter, Füllstoffe
		Nichtrostender Stahl R	Hochkorrosionsbeständiger Stahl HCR
	Stahlart	gemäß EN 10088-1:2023 der Korrosionsbeständigkeitsklasse CRC III nach EN 1993-1-4: 2006+A1:2015	gemäß EN 10088-1:2023 der Korrosionsbeständigkeitsklasse CRC V nach EN 1993-1-4: 2006+A1:2015
2	Unterlegscheibe ISO 7089:2000 für fischer Bewehrungs- anker FRA	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	1.4565; 1.4529; EN 10088-1:2023
3	Sechskantmutter für fischer FRA	Festigkeitsklasse 80 gemäß fischer Spezifikation für fischer FRA oder EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Festigkeitsklasse 80 gemäß fischer Spezifikation für fischer FRA oder EN ISO 3506-2:2020 1.4565; 1.4529; EN 10088-1:2023
4	Betonstahl	EN 1992-1-1:2004 und AC:2010, Anhang C Stäbe und Betonstahl vom Ring, Klasse B ode EN 1992-1-1/NA; $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 8 \%)$	er C mit f _{yk} und k gemäß NDP oder NCI der
5	fischer Bewehrungsanker FRA	Betonstahlteil: Stäbe und Betonstahl vom Ring Klasse B oder C mit f_{yk} und k gemäß NDP oder NCI der EN 1992-1-1:2004/AC:2010 $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 8 \%)$ Gewindeteil: Festigkeitsklasse 80 EN ISO 3506-1:2020	1.4401, 1.4404, 1.4571, 1.4578, 1.4439, 1.4362, 1.4062 gemäß EN 10088-1:2023 der Korrosionsbeständigkeitsklasse CRC III nach EN 1993-1-4: 2006+A1:2015 1.4565; 1.4529 gemäß EN 10088-1:2023 der Korrosionsbeständigkeitsklasse CRC V nach EN 1993-1-4: 2006+A1:2015 $f_{uk} \le 1000 \text{ N/mm}^2$; Bruchdehnung $A_5 > 8 \text{ \%}$

fischer Injektionssystem FIS RC II und FIS RC II Low Speed	
Produktbeschreibung Werkstoffe	Anhang A4

Spezifizierung des Verwendungszwecks Teil 1

Tabelle B1.1:	Übersicht N	Nutzungs- und	Leistungskategorien
---------------	-------------	---------------	---------------------

			FIS RC II mit							
		Beto	nstahl	fische	er FRA					

Hammerbohren n Standardbohrer	nit	alle Größen								
Hammerbohren mit Hohlbohrer (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE CD, TE-YD", DreBo "D-Plus", DreBo "D-Max"	<u> </u>	Bohrernenndurchmesser (d ₀) 12 mm bis 35 mm								
Statische und quasi-statische	ungerissenen Beton	Alle	Tabelle: C1.1 C2.1	Alle	Tabelle: C1.2 C2.1					
Beanspruchung, im	im gerissenen Beton	Größen	C3.1 C5.1	Größen	C4.1 C5.2					
Nutzungs-	Trockener I1 oder nasser Beton		alle Größen							
kategorie	Wasser- I2 gefülltes Bohrloch		_1)	_1)						
Seismische Leistungs- kategorie	C1 ¹⁾	-	_1)	-	.1)					
Einbaurichtung		D3 (horizontale und verti	kale Montage nach ι	ınten)					
Einbautemperatu	r	für die Star	T _{i,min} = -5 °C bi ndard-Temperatursch	s T _{i,max} = +40 °C iwankungen nach de	r Installation					
Gebrauchs- temperatur-	Temperatur- bereich I	-40 °C bis +8		e Kurzzeittemperatu e Langzeittemperatu						
bereiche	Temperatur- bereich II	-40 °C bis +12		e Kurzzeittemperatu e Langzeittemperatu						

hang B1
ı

Spezifizierung des Verwendungszwecks Teil 2

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A2:2021.

Anwendungsbedingungen (Umweltbedingungen):

- Verbindungselement für die Verwendung unter den Bedingungen trockener Innenräume (alle Stahlsorten).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2015 entsprechend der Korrosionsbeständigkeitsklassen nach Anhang A4 Tabelle A4.1.

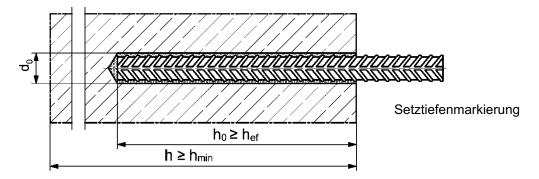
Bemessung:

- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit EN 1992-4:2018.
- Die ingenieurmäßige Bemessung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Planers.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).

Einbau:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- · Effektive Verankerungstiefe markieren und einhalten.

fischer Injektionssystem FIS RC II und FIS RC II Low Speed	
Verwendungszweck Spezifikationen Teil 2	Anhang B2


Tabelle B3.1: Montagekennwerte für Betonstahl										
Stabnenndurchmesser		ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	25	28
Bohrernenndurchmesser	d_0		10 12	12 14	14 16	18	20	25	30	35
Bohrlochtiefe	h_0		$h_0 = h_{ef}$							
Effektive Verankerungstiefe	h _{ef,min}		60	60	70	75	80	90	100	112
	h _{ef,max}		160	200	240	280	320	400	500	560
Vereinfachter Achs- und Randabstand ²⁾	s = c	[mm]	40	45	55	60	65	85	110	130
Mindestdicke des Betonbauteils	h _{min}		1	_{ef} + 30 ≥ 100)			h,	_{ef} + 2d ₀		

¹⁾ Beide Bohrernenndurchmesser sind möglich

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2011
- Die Rippenhöhe muss im folgenden Bereich liegen: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Stabnenndurchmesser, h_{rib} = Rippenhöhe)

Einbauzustände:

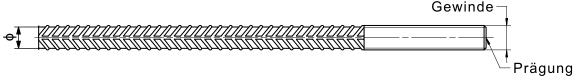
Abbildungen nicht maßstäblich

fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verwendungszweck

Montagekennwerte Betonstahl

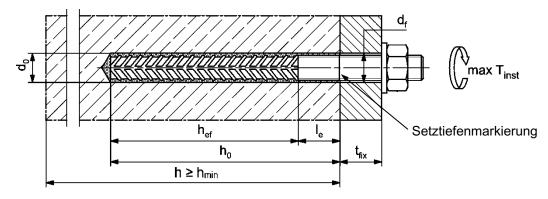
Anhang B3


²⁾ Detaillierte Berechnung nach Anhang B5 und B6

Bewehrungsanke	r FRA	Ge	winde	M1:	2 ¹)	M16	M20	M24	
Stabnenndurchmes	sser	ф		12	2	16	20	25	
Bohrernenndurchm	esser	d ₀		14	16	20	25	30	
Bohrlochtiefe		h ₀				h _{ef}	+ l _e	•	
Effoktiva Varankarı	ungatiofo	h _{ef,min}		70)	80	90	96	
Effektive Verankeru	ingsuele -	h _{ef,max}		14	0	220	300	380	
Abstand Betonoberfläche zur Schweißstelle		l _e		100					
Vereinfachter Achs und Randabstand ²		s = c	[mm]	55		65	85	105	
Maximaler Durchmesser des	Vorsteck- montage	d _f		14		18	22	26	
Durchgangslochs Durchsteck- im Anbauteil montage		d _f		18		22	26	32	
Mindestdicke des Betonbauteils		h _{min}		h ₀ + 30			h ₀ + 2d ₀		
Maximales Montagedrehmome	ent	max T _{inst}	[Nm]	40)	60	120	150	

¹⁾ Beide Bohrernenndurchmesser sind möglich

fischer Bewehrungsanker FRA



Prägung stirnseitig z.B.:

FRA (für nichtrostenden Stahl);

✓ FRA HCR (für hochkorrosionsbeständigen Stahl HCR)

Einbauzustände:

Abbildungen nicht maßstäblich

Fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verwendungszweck

Montagekennwerte fischer Bewehrungsanker FRA

Anhang B4

²⁾ Detaillierte Berechnung nach **Anhang B5** und **B6**

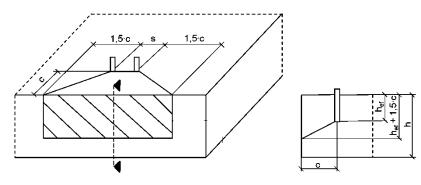
Tabelle B5.1: Minimale Ach Bewehrungs			abstän	de für I	Betons	tahl un	d fisch	er		
Betonstahl / FRA (Stabnenndurchmesser)		ф	8	10	12	14	16	20	25	28
Minimaler Randabstand										
Ungerissener / Gerissener Beton	C _{min}	[mana]	40	45	45	45	50	55	75	80
Minimaler Achsabstand	s	[mm]			g	emäß Aı	nhang B	6		
Minimaler Achsabstand										
Ungerissener / Gerissener Beton	S _{min}	[mana]	40	45	55	60	65	85	120	140
Minimaler Randabstand	С	[mm]		gemäß Anhang B6						
Erforderliche projizierte Fläche										
Ungerissener Beton	Δ.	[1000	8,0	13,0	22,0	23,0	24,0	38,5	47,5	64,0
Gerissener Beton	- A _{sp,req}	mm²]	6,5	10,0	16,5	17,5	18,5	29,5	36,5	49,0

Spaltversagen für minimale Achs- und Randabstände in Abhängigkeit der effektiven Verankerungstiefe hef

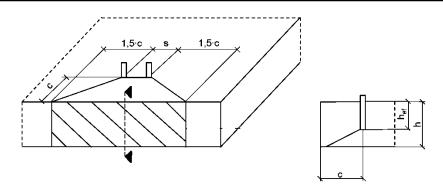
Für die Berechnung des minimalen Achsabstands und des minimalen Randabstands der Anker in Kombination mit verschiedenen Einbindetiefen und -dicken des Betonbauteils ist die folgende Gleichung zu erfüllen:

$$A_{sp,req} < A_{sp,t}$$

A_{sp,req} = erforderliche projizierte Fläche


A_{sp,t} = projizierte Fläche (gemäß **Anhang B6**)

fischer Injektionssystem FIS RC II und FIS RC II Low Speed	
Verwendungszweck Minimale Achs- und Randabstände für Betonstahl und fischer Bewehrungsanker FRA	Anhang B5


Tabelle B6.1: Projizierte Fläche A_{sp,t} bei einer Betonbauteildicke von

 $h > h_{ef} + 1.5 \cdot c \text{ und } h \ge h_{min}$

Einzelanker		$A_{sp,t} = (3 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	mit o > o
Ankergruppen mit	s > 3 · c	$A_{sp,t} = (6 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot (h_{ef} + 1.5 \cdot c)$	[mm²]	mit c ≥ c _{min} und s ≥ s _{min}

Tabelle B6.2: Projizierte Fläche $A_{sp,t}$ bei einer Betonbauteildicke von $h \le h_{ef} + 1,5 \cdot c$ und $h \ge h_{min}$

Einzelanker		$A_{sp,t} = 3 \cdot c \cdot vorhandenes h$	[mm²]	mit o > o		
Ankergruppen mit s > 3 · c		$A_{sp,t} = 6 \cdot c \cdot vorhandenes h$	[mm²]	mit c ≥ c _{min}		
Ankergruppen mit	s≤3·c	$A_{sp,t} = (3 \cdot c + s) \cdot vorhandenes h$	[mm²]	mit $c \ge c_{min}$ und $s \ge s_{min}$		

Randabstände und Achsabstände sind auf 5 mm-Schritte aufzurunden

Abbildungen nicht maßstäblich

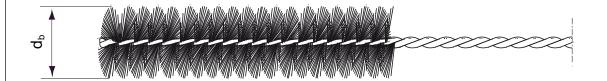
fischer Injektionssystem FIS RC II und FIS RC II Low Speed	
Verwendungszweck Mindestdicke der Betonbauteile für Ankerstangen und Betonstahl; minimale Achs- und Randabstände	Anhang B6

 d_b

Stahlbürsten-

durchmesser BS

25


27

40

Tabelle B7.1:		Kennwerte der Reinigungsbürsten BS (Stahlbürste mit Stahlborsten) Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser										
Bohrernenn- durchmesser	d_0	[mm]	10	12	14	16	18	20	25	35		
Otalilla "t.		[mm]										

16

20

14

11

Tabelle B7.2: Bedingungen zur Verwendung eines **Statikmischers** ohne **Verlängerungsschlauch**

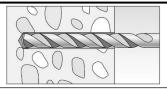
Bohrernenn- durchmesser	d ₀		10	12	14	16	18	20	25	30	35
Bohrlochtiefe h ₀ bei Verwendung	FIS MR Plus	[mm] ≤90		≤120	≤140	≤150	≤160	≤210			
	FIS JMR		-	-	≤90	≤160	≤180	≤190	≤220	≤2	50

Tabelle B7.3 Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

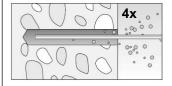
Temperatur im		arbeitungszeit	Minimale Aushärtezeit ¹⁾ t _{cure}			
Verankerungsgrund [°C]	FIS RC II	FIS RC II Low Speed	FIS RC II	FIS RC II Low Speed		
> -5 bis 0 ²⁾	20 min	40 min	24 h	5 d		
> 0 bis 5 ²⁾	13 min	30 min	3 h	48 h		
> 5 bis 10	9 min	20 min	90 min	24 h		
> 10 bis 20	5 min	13 min	60 min	120 min		
> 20 bis 30	4 min	9 min	45 min	60 min		
> 30 bis 40	2 min	7 min	35 min	45 min		

¹⁾ Im nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln

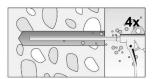
fischer Injektionssystem FIS RC II und FIS RC II Low Speed	
Verwendungszweck Kennwerte der Reinigungsbürsten Verarbeitungs- und Aushärtezeiten	Anhang B7


²⁾ Minimale Kartuschentemperatur +5°C

Montageanleitung Teil 1

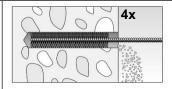

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

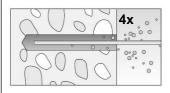


Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen B3.1**, **B4.1**.

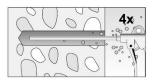
2



Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen.


Bei $h_{ef} > 12d$ und / oder $d_0 \ge 18$ mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar). Passende fischer Druckluftdüse verwenden.

3



Bohrloch viermal ausbürsten. Für Bohrlochdurchmesser ≥ 30 mm eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Passende Bürsten verwenden (siehe**Tabelle B7.1**).

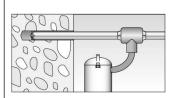
4

Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen.

Bei h_{ef} > 12d und / oder $d_0 \ge 18$ mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar). Passende fischer Druck-

luftdüse verwenden.

Mit Schritt 5 fortfahren


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe **Tabelle B1.1**) auf Funktion der Staubabsaugung prüfen

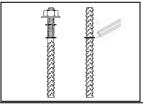
2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten.

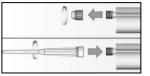
Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser \mathbf{d}_0 und Bohrlochtiefe \mathbf{h}_0 siehe **Tabellen B3.1, B4.1.**

Mit Schritt 5 fortfahren

 ${\bf fischer\ Injektions system\ FIS\ RC\ II\ und\ FIS\ RC\ II\ Low\ Speed}$

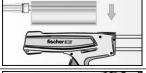

Verwendungszweck Montageanleitung Teil 1 **Anhang B8**

Montageanleitung Teil 2


Kartuschenvorbereitung

5

Setztiefe des Stahlteiles markieren.


6

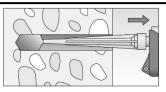
Verschlusskappe abschrauben.

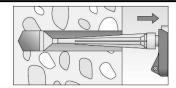
Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).

7

Kartusche in das Auspressgerät legen.

8





Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.

Mit Schritt 9 fortfahren

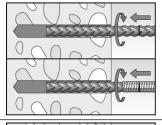
Mörtelinjektion

9

Für $h_0 = h_{ef}$ ca. 2/3 des Bohrlochs mit Mörtel füllen. Für $h_0 > h_{ef}$ wird mehr Mörtel benötigt. Immer am Bohrlochgrund beginnen und Blasen vermeiden. Die Bedingungen für die Mörtelinjektion ohne Verlängerungsschlauch sind **Tabelle B7.2** zu entnehmen.

Bei größeren Bohrlochtiefen als den in **Tabelle B7.2** genannten ist ein passender Verlängerungsschlauch zu verwenden. Bei tiefen Bohrlöchern (h₀ > 250 mm) Injektionshilfe verwenden.

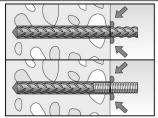
Mit Schritt 10 fortfahren


fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verwendungszweck Montageanleitung Teil 2 **Anhang B9**

Montageanleitung Teil 3

Montage Betonstahl und fischer Bewehrungsanker FRA

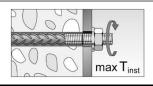


Nur sauberen und ölfreien Betonstahl oder fischer FRA verwenden. Den Betonstahl oder den fischer FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben.

Empfehlung:

Erleichterung des Setzvorgangs durch hin und her drehende Bewegungen des Betonstahls oder des fischer FRA.

10


Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

11

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B7.3**

12

Montage des Anbauteils mit fischer FRA, max T_{inst} siehe **Tabelle B4.1**

fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verwendungszweck Montageanleitung Teil 3 **Anhang B10**

Tabelle C1.1:	Charakteristischer Widerstand gegen Stahlversagen unter Zug- / Quer-
	beanspruchung von Betonstahl

•										
Stabnenndurchmesser		ф	8	10	12	14	16	20	25	28
Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung										
Charakteristischer Widerstand $N_{Rk,s}$ [kN] $A_s \cdot f_{uk}^{1}$										
Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung										
Ohne Hebelarm										
Charakteristischer Widerstand	teristischer Widerstand $V^0_{Rk,s}$ [kN] $k_6^{2)} \cdot A_s \cdot f_{uk}^{1)}$									
Duktilitätsfaktor	k ₇	[-]	[-] 1,0							
Mit Hebelarm										
Charakteristischer Widerstand	$M^0_{Rk,s}$	[Nm]	$1,2 \cdot W_{el} \cdot f_{uk}$ 1)							

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen.

Tabelle C1.2: Charakteristischer Widerstand gegen Stahlversagen unter Zug-/ Querzugbeanspruchung von fischer Bewehrungsankern FRA

fischer Bewehrungsanker FRA			M12	M16	M20	M24			
Charakteristischer Widerstand	Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung								
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	62,0	111,0	173,0	236,5			
Teilsicherheitsbeiwert ¹⁾									
Teilsicherheitsbeiwert	γ̃Ms,N	[-]		,	1,4				
Charakteristischer Widerstand gegen Stahlversagen unter Querbeanspruchung									
Ohne Hebelarm									
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]	34,5	64,3	100,4	144,7			
Duktilitätsfaktor	k ₇	[-]		•	1,0				
Mit Hebelarm									
Charakteristischer Widerstand	$M^0_{Rk,s}$	[Nm]	107,4	273,0	532,2	920,4			
Teilsicherheitsbeiwert 1)	Teilsicherheitsbeiwert 1)								
Teilsicherheitsbeiwert $\gamma_{Ms,V}$ [-] 1,5									

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS RC II und FIS RC II Low Speed	
Leistungen Charakteristischer Widerstand gegen Stahlversagen unter Zug- / Querzugbeanspruchung von Betonstahl und fischer Bewehrungsanker FRA	Anhang C1

²⁾ Gemäß EN 1992-4:2018 Abschnitt 7.2.2.3.1:

^{= 0.6} für Dübel aus Stahl mit $f_{uk} \le 500 \text{ N/mm}^2$, = 0.5 für Dübel aus Stahl mit 500 N/mm² < $f_{uk} \le 1000 \text{ N/mm}^2$,

^{= 0,5} für Dübel aus nichtrostendem Stahl.

Tabelle C2.1: Charakteristischer Widerstand gegen Betonversagen unter Zug- / Querbeanspruchung

Größe						Alle G	rößen				
Charakteristischer Widersta	nd gegen Be	tonve	rsagen	unter Zu	gbeans						
Montagebeiwert	γ _{inst}	[-]				e Anhän	_	s C4			
Faktoren für Betondruckfest	•		l								
	C25/30					1,0	05				
Erhöhungsfaktor ψ _c für	C30/37		1,10								
gerissenen oder	C35/45	r 1				1,	15				
ungerissenen Beton	C40/50	[-]				1,	19				
$\tau_{Rk(X,Y)} = \psi_c \cdot \tau_{Rk (C20/25)}$	C45/55					1,2	22				
	C50/60					1,2	26				
Versagen durch Spalten											
h / h _{ef}	≥ 2,0					1,0	h _{ef}				
Randabstand $2,0 > h / h_{ef}$	> 1,3	[mm]				4,6 h _{ef}	- 1,8 h				
h / h _{ef}	≤ 1,3	[]				2,26	3 h _{ef}				
Achsabstand	$S_{cr,sp}$					2 c	cr,sp				
Versagen durch Betonausbr			1								
Ungerissener Beton	k _{ucr,N}	[-]	11,0								
Gerissener Beton	k _{cr,N}	1,1									
Randabstand	C _{cr,N}	[mm]	1,5 h _{ef}								
Achsabstand	S _{cr,N}	[]	2 C _{cr,N}								
Faktor für Dauerzugbelastur	ng	•									
Temperaturbereich		[°C]		50	/ 80			72 /	120		
Faktor	$\Psi^0_{ ext{sus}}$	[-]	0,74 0,87								
Charakteristischer Widersta	nd gegen Be	tonve	rsagen	unter Qเ	erbeans	spruchu	ng				
Montagebeiwert	γinst	[-]				1,	,0				
Betonausbruch auf der lasta	bgewandter	Seite									
Faktor für Betonausbruch	k ₈	[-]				2	,0				
Betonkantenausbruch											
Effektive Länge des Stahlteils unter Querzugbelastung	l _f	[mm]	Für $d_{\text{nom}} \le 24$ mm: min $(h_{\text{ef}}; 12 d_{\text{nom}})$ Für $d_{\text{nom}} > 24$ mm: min $(h_{\text{ef}}; \text{ max } (8 d_{\text{nom}}; 300 \text{ mm}))$								
Rechnerische Durchmesser											
Größe			M12 M16 M20 M			M	24				
fischer Bewehrungsanker FRA	d _{nom}	[mm]	1	2	1	6	20		25		
Stabnenndurchmesser	ф	[ma:1	8	10	12	14	16	20	25	28	
Betonstahl	d_{nom}	[mm]	8	10	12	14	16	20	25	28	

fischer Injektionssystem FIS RC II und FIS RC II Low Speed	
Leistungen Charakteristischer Widerstand gegen Betonversagen unter Zug- / Querbeanspruchung	Anhang C2

1,0

Tabelle C3.1: Charakterist hammergebo									hl im
Stabnenndurchmesser	ф	8	10	12	14	16	20	25	28
Kombiniertes Versagen durch H	erausziehen u	ınd Betc	nausbru	uch					
Rechnerischer Durchmesser	d [mm]	8	10	12	14	16	20	25	28
Ungerissener Beton									
Charakteristischer Verbundwide	rstand im ung	gerissen	en Beto	n C20/25	5				
Hammerbohren mit Standard- oder H	lohlbohrer (troc	kener od	er nasse	r Beton)					
Tempe- I: 50 °C / 80 °C	FN 1/ 21	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
ratur- bereich II: 72 °C / 120 °C	(,ucr [N/mm²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Montagebeiwerte									
Trockener oder nasser Beton γ	inst [-]				1	,0			
Gerissener Beton									
Charakteristischer Verbundwide	rstand im ger	issenen	Beton C	20/25					
Hammerbohren mit Standard- oder	Hohlbohrer (t	rockener	oder na	sser Bet	<u>on)</u>				
Tempe- I: 50 °C / 80 °C	[N1/max 27	_1)	3,0	5,0	5,0	5,0	4,5	4,0	4,0
ratur- TR or 120 °C / 120 °C TR	k,cr [N/mm ²]	_1)	3,0	4,5	4,5	4,5	4,0	3,5	3,5

[-]

 γ_{inst}

Trockener oder nasser Beton

Montagebeiwerte

fischer Injektionssystem FIS RC II und FIS RC II Low Speed	
Leistungen Charakteristischer Widerstand unter Zugbeanspruchung von Betonstahl	Anhang C3

¹⁾ Leistung nicht bewertet

Tabelle C4.1: Charakteristischer Widerstand unter Zugbeanspruchung von fischer Bewehrungsankern FRA im hammergebohrten Bohrloch; ungerissener oder gerissener Beton

fischer Bewehrungsanker FR	A		M12	M16	M20	M24
Kombiniertes Versagen durc		sziehen u	nd Betonausbru	ıch		
Rechnerischer Durchmesser	d	[mm]	12	16	20	25
Ungerissener Beton						
Charakteristischer Verbundw	vidersta	nd im ung	erissenen Betoi	n C20/25		
Hammerbohren mit Standard- o	der Hoh	lbohrer (tr	ockener oder nas	sser Beton)		
Tempe- I: 50 °C / 80 °C		[N]/ma ma 21	11,0	10,0	9,5	9,5
ratur- bereich II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	9,0	8,5	8,0	7,5
Montagebeiwerte						
Trockener oder nasser Beton	γinst	[-]		1	,0	
Gerissener Beton						
Charakteristischer Verbundw	viderstaı	nd im geri	issenen Beton C	20/25		
Hammerbohren mit Standard- o	oder Hoh	<u>ılbohrer (tr</u>	ockener oder na	sser Beton)		
Tempe- I: 50 °C / 80 °C		[N/mm2]	5,0	5,0	4,5	4,0
ratur- bereich II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,0	3,5
Montagebeiwerte						
Trockener oder nasser Beton	γinst	[-]		1	,0	

fischer Injektionssystem FIS RC II und FIS RC II Low Speed	
Leistungen Charakteristischer Widerstand unter Zugbeanspruchung von fischer Bewehrungsankern FRA	Anhang C4

Stabnen durchme	т ф	8	10	12	14	16	20	25	28
Verschie	bungs-Faktore	n für Zugb	eanspruch	ung¹)					
Ungeris	sener Beton; Te	emperaturk	ereich I, II						
$\delta_{ extsf{N0-Faktor}}$	[mm/(N/mm²)]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11
δ _{N∞-Faktor}	[mm/(N/mm²)]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13
Gerisser	ner Beton; Tem	peraturber	eich I, II						
$\delta_{N0-Faktor}$	[mama//N1/mama2\]	_3)	0,12	0,13	0,13	0,13	0,13	0,13	0,14
δ _{N∞-Faktor}	[mm/(N/mm ²)]	_3)	0,27	0,30	0,30	0,30	0,30	0,35	0,37
Verschie	bungs-Faktore	n für Quer	beanspruc	hung²)					
Ungeriss	sener oder geri	ssener Bet	on; Tempe	raturbereic	h I, II				
$\delta_{ extsf{V0-Faktor}}$	F /I N II	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08
δ _{V∞-Faktor}	[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{N0} = \delta_{N0\text{-Faktor}} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot \tau$

 $\label{eq:tau} \tau = \text{einwirkende Verbundspannung unter} \\ \text{Zugbeanspruchung}$

3) Leistung nicht bewertet

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Faktor}} \cdot V$

V = einwirkende Querbeanspruchung

Tabelle C5.2: Verschiebungen für fischer Bewehrungsanker FRA

fischer E anker FF	Bewehrungs- RA	M12	M16	M20	M24				
Verschiebungs-Faktoren für Zugbeanspruchung¹)									
Ungerissener Beton; Temperaturbereich I, II									
$\delta_{N0-Faktor}$	[mm/(N/mm ²)]	0,10	0,10	0,10	0,10				
δ _{N∞-Faktor}	[[[]]]]][]][]][]][]][]][]][]][]][]][]][0,12	0,12	0,12	0,13				
Gerissener Beton; Temperaturbereich I, II									
$\delta_{N0-Faktor}$	[mm//N/mm2)]	0,12	0,13	0,13	0,13				
δ _{N∞-Faktor}	[mm/(N/mm ²)]	0,30	0,30	0,30	0,35				
Verschie	ebungs-Faktore	n für Querbeansprucl	nung²)						
Ungeris	sener oder geri	ssener Beton; Tempe	raturbereich I, II						
$\delta_{\text{V0-Faktor}}$	[mana/kA]]	0,10	0,10	0,09	0,09				
$\delta_{V_{\infty} ext{-}Faktor}$	[mm/kN]	0,11	0,11	0,10	0,10				

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{N0} = \delta_{N0-Faktor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot \tau$

 τ = einwirkende Verbundspannung unter

Zugbeanspruchung

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V$

V = einwirkende Querbeanspruchung

fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Leistungen

Verschiebungen Betonstahl und fischer Bewehrungsanker FRA

Anhang C5

²⁾ Berechnung der effektiven Verschiebung: