

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-22/0035 of 23 May 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S

Anchor Channels

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischer manufacturing plants

32 pages including 3 annexes which form an integral part of this assessment

EAD 330008-04-0601, Edition 07/2024

ETA-22/0035 issued on 1 December 2023

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de Z001611.25

European Technical Assessment ETA-22/0035

English translation prepared by DIBt

Page 2 of 32 | 23 May 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 32 | 23 May 2025

Specific Part

1 Technical description of the product

The fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S is a system consisting of a C-shaped channel profile of steel and at least two metal anchors non-detachably fixed on the channel back and fischer Serrated Channel Bolts.

The anchor channel is embedded surface-flush in the concrete. fischer Serrated Channel Bolts with appropriate hexagonal nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasistatic tension loading	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1
 Resistance to steel failure of the connection between anchors and channel 	$N_{Rk,s,c}$ see Annex C1
 Resistance to steel failure of channel lips and subsequently pull-out of channel bolt 	$N_{Rk,s,l}^{0}$; $s_{l,N}$ see Annex C1
- Resistance to steel failure of channel bolt	$N_{Rk,s}$ see Annex C6
Resistance to steel failure by exceeding the bending strength of the channel	s_{max} see Annex A5 $M_{Rk,s,flex}$ see Annex C1
Maximum installation torque to avoid damage during installation	$T_{inst,g}$; $T_{inst,s}$ see Annex B4
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C2
- Resistance to concrete cone failure	h_{ef} see Annex B3
	$k_{cr,N}$; $k_{ucr,N}$ see Annex C2
- Minimum edge distances, spacing and member	s_{min} see Annex A5
thickness to avoid concrete splitting during installation	c_{min} ; h_{min} see Annex B3
 Characteristic edge distance and spacing to avoid splitting of concrete under load 	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C2
 Resistance to blowout failure - bearing area of anchor head 	A _h see Annex A4

Page 4 of 32 | 23 May 2025

Essential characteristic	Performance			
Characteristic resistance under static and quasi- static shear loading				
- Resistance to steel failure of channel bolt under shear loading without lever arm	$V_{Rk,s}$ see Annex C6			
- Resistance to steel failure by bending of the channel bolt under shear load with lever arm	$M_{Rk,s}^{\ 0}$ see Annex C7			
- Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction)	$V_{Rk,s,l,y}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C4			
Resistance to steel failure of connection between channel lips and channel bolt (shear load in longitudinal channel axis)	$V_{Rk,s,l,x}$ see Annex C5			
- Factor for sensitivity to installation (longitudinal shear)	γ_{inst} see Annex C5			
- Resistance to steel failure of the anchor (longitudinal shear)	$V_{Rk,s,a,x}$ see Annex C4			
- Resistance to steel failure of connection between anchor and channel (longitudinal shear)	$V_{Rk,s,c,x}$ see Annex C4			
- Resistance to concrete pry-out failure	k_8 see Annex C5			
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C5			
Characteristic resistance under combined static and quasi-static tension and shear loading				
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C6			
Characteristic resistance under fatigue tension loading				
- Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, assessment method A1, A2)	No Performance assessed			
- Fatigue limit resistance to steel failure of the whole system (assessment method B)	No Performance assessed			
- Fatigue resistance to steel failure of the whole system (linearized function, assessment method C)	$\Delta N_{Rk,s,lo,n}$; $N_{lok,s,n}$ (n = 10 ⁴ to n = ∞) see Annex C8			
- Fatigue resistance to concrete related failure (exponential function, assessment method A1, A2)	No Performance assessed			
- Fatigue limit resistance to concrete related failure (assessment method B)	No Performance assessed			
- Fatigue resistance to concrete related failure (linearized function, assessment method C)	$\Delta N_{Rk,c,E,n}$; $\Delta N_{Rk,p,E,n}$ $(n=10^4 \text{ to } n=\infty)$ see Annex C9			

Page 5 of 32 | 23 May 2025

Characteristic resistance under seismic loading (seismic performance category C1)	
- Resistance to steel failure under seismic tension loading (seismic performance category C1)	$N_{Rk,s,a,eq}$; $N_{Rk,s,c,eq}$; $N^0_{Rk,s,l,eq}$; $M_{Rk,s,flex,eq}$ see Annex C10 $N_{Rk,s,eq}$ see Annex C12
- Resistance to steel failure under seismic shear loading for shear load in transverse direction (seismic performance category C1)	$V^0_{Rk,s,l,y,eq}$; $V_{Rk,s,c,y,eq}$; $V_{Rk,s,a,y,eq}$ see Annex C11 $V_{Rk,s,eq}$ see Annex C12
- Resistance to steel failure under seismic shear loading for shear load in longitudinal channel axis (seismic performance category C1)	$V_{Rk,s,l,x,eq}$; $V_{Rk,s,a,x,eq}$; $V_{Rk,s,c,x,eq}$ see Annex C11
Characteristic resistance under static and quasi- static tension and/or shear loading	
- Displacements	$\begin{array}{l} \delta_{N0} \; ; \; \delta_{N^{\infty}} \; \text{see Annex C3} \\ \delta_{V,y,0} \; ; \; \delta_{V,y,^{\infty}} \; ; \; \delta_{V,x,0} \; ; \; \delta_{V,x,^{\infty}} \\ \text{see Annex C6} \end{array}$

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Characteristic resistance to fire	See Annex C13 and C14

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

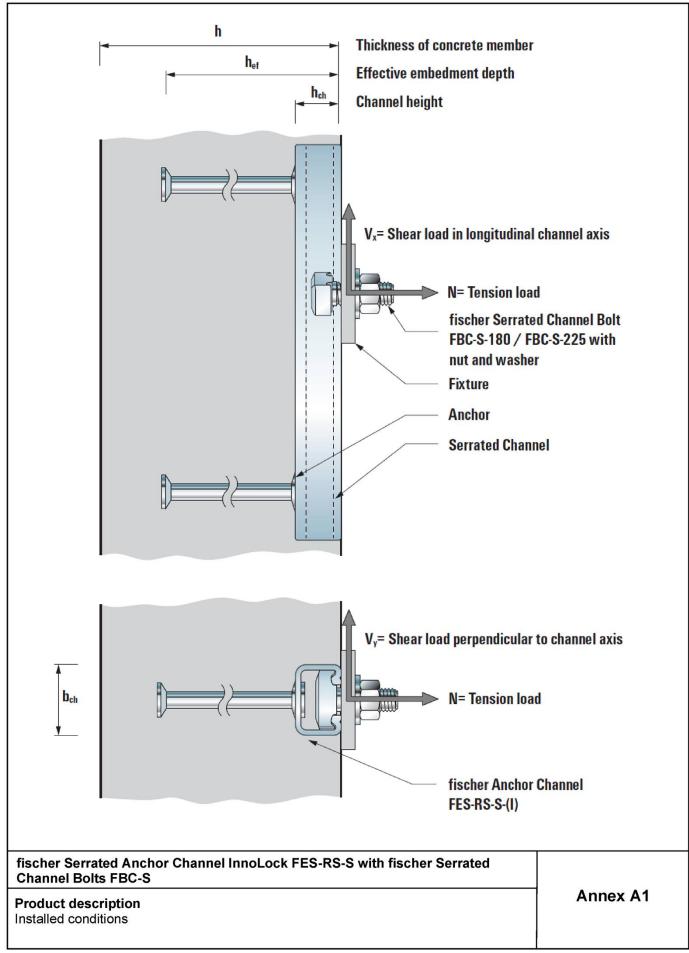
In accordance with EAD No. 330008-04-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

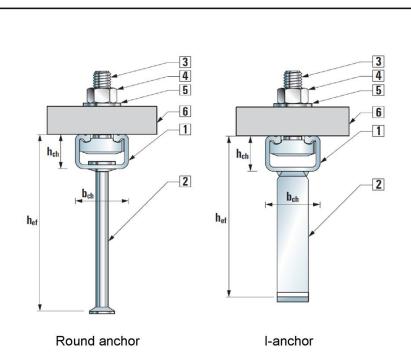
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 23 May 2025 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock

Head of Section


beglaubigt:

Müller

fischer Anchor Channel FES-RS-S

- 1 Serrated channel profile
- 2 Anchor
- 3 Serrated channel bolt
- 4 Hexagonal nut
- 5 Washer
- 6 Fixture

Marking of the fischer anchor channel FES-RS-S:

e. q.: 700

= Identifying mark of the manufacturer

= Additional marking for I-anchors No marking for round anchors

700 = Size of the anchor channel (e.g. 700,

600, 500)

Marking of the fischer channel bolt FBC-S:

e. g.: 8.8 225 / 8.8 180

= Identifying mark of the manufacturer

8.8 = Strength grade = Stainless steel A4-70

225, 180 = Width of anchor channel opening dch

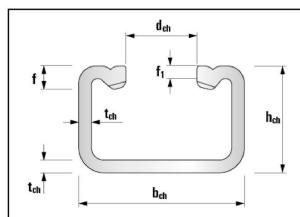
= Coating electro-plated No marking for hot-dip galvanised

Stamped into back of channel

Optional: printed on channel web or channel lips

RS = Roll-shaped, S = Serrated

No marking for material acc. Table A7.1 (Channel profile)


fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated **Channel Bolts FBC-S**

Product description

Product and marking

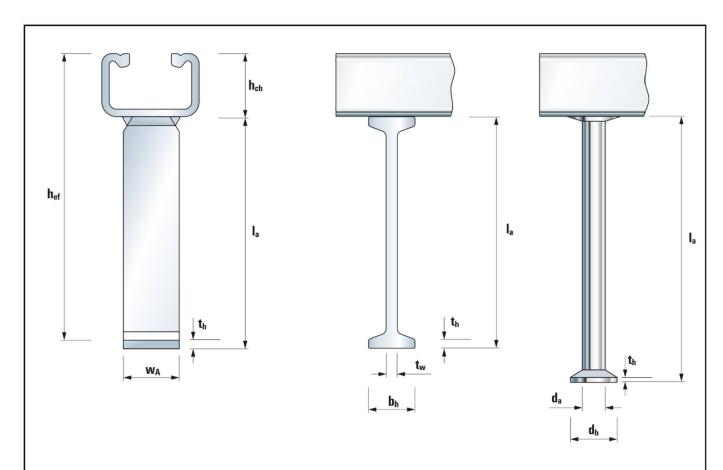
Annex A2

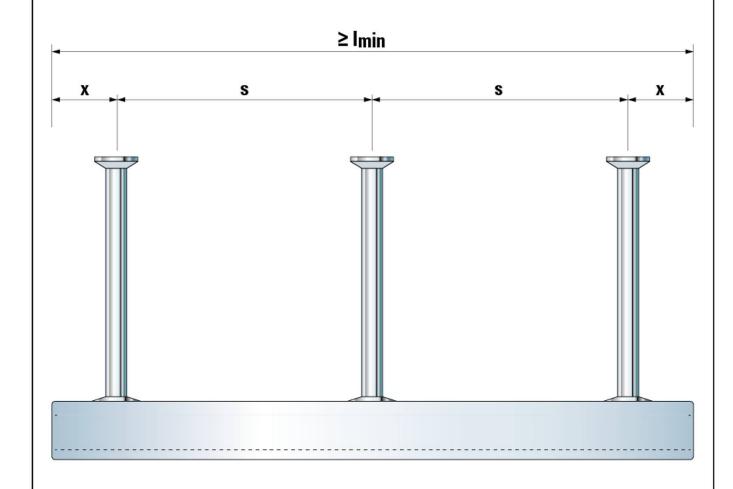
Serrated anchor channel FES-RS-S-(I)-

Table A3.1: Dimensions of channel profile

Anchor channel FES-RS-S-(I)-	b _{ch} [mm]	h _{ch} [mm]	t _{ch} [mm]	d _{ch} [mm]	f [mm]	f₁ [mm]	ly [mm⁴]
500	40,0	27,5	2,6	18,0	5,6	2,6	28.420
600	50,5	29,0	3,0	22,5	6,0	3,0	41.862
700	52,5	34,0	4,0	22,5	7,0	4,0	79.168

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Product description Dimensions of channels	Annex A3




Table A4.1: Dimensions of anchor (welded I-anchor or forged round anchor)

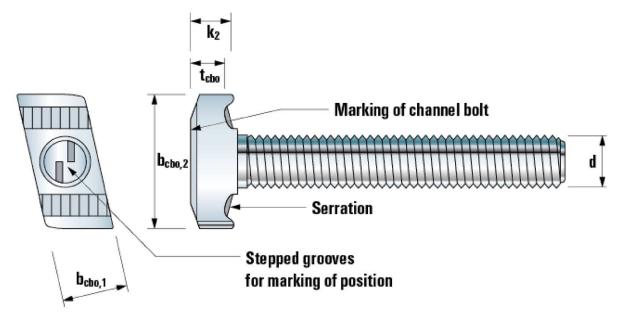
Anchor channel		l-anchor						Ro	und anc	hor	
FES-RS-S-(I)-	I _{a,min} [mm]	t _{w,min} [mm]	b _{h,min} [mm]	t _h [mm]	W _{A,min} [mm]	A _{h,min} [mm²]	l _{a,min} [mm]	da [mm]	d _h [mm]	t _h [mm]	A _h [mm²]
500	89	5	20	5	25	375	85,0	9,6	22,0	2,5	308
600	125	6	25	5	30	570	123,5	11,0	24,3	2,5	368
700	125	6	25	5	30	570	144,0	12,8	26,0	3,0	402

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Product description Dimensions of anchors	Annex A4

Table A5.1: Anchor posi	tion						
Anchor channel FES-RS-S-(I)-	Anchor type	S _{min} [mm]	s _{max} [mm]	X _{min} [mm]	X _{max} [mm]	I _{min} [mm]	I _{max} [mm]
500	Round			35	40	150	5.700
600	or	80	250	30	35	140	6.070
700	welded I			30	35	140	0.070

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Product description Anchor position and channel length	Annex A5

450


Table A6.1:	Strength grade and Coating		
Channel bolt		Carbon steel 1)	Stainless steel 1)
Strength grade		8.8	A4-70
f _{uk} [N/mm²]		800 / 830	700

640 / 660 2)

F3) or Electroplated

fyk [N/mm²]

Coating

Serrated channel bolt FBC-S-225 / FBC-S-180

Table A6.2: Dimensions of fischer channel bolt FBC and matching fischer anchor channels FES

Anchor channel FES-RS-S-(I)-	Channel bolt FBC-S	Material	d [mm]	b _{cbo,1} [mm]	b _{cbo,2} [mm]	t _{cbo} [mm]	k ₂ [mm]
500	180	8.8	10 12 16	16,5	33,9	9,3	10,6
600	225	8.8,	12 16	21,0	43,0	10,7	15,0
700	223	A4-70	20	21,0	43,0	10,7	15,0

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Product description Serrated channel bolts	Annex A6

¹⁾ Material properties according to Annex A7.

²⁾ Material properties according to EN ISO 898-1:2013.

³⁾ Hot-dip galvanised.

Table A7.1: Materials and propertie

		Carbon steel		Stainless steel
Component	Mechanical properties	Co	ating	Mechanical properties
1	2	2a	2b	3
Channel profile	1.0976 acc. to EN 10149:2013	Hot-dip galvanised ≥ 55 µm acc. to EN ISO 1461:2022	Hot-dip galvanised ≥ 55 µm acc. to EN ISO 1461:2022	_ 2)
Round anchor	1.5525 acc. to EN 10263:2017	Hot-dip galvanised ≥ 55 µm acc. to EN ISO 1461:2022	Hot-dip galvanised ≥ 55 µm acc. to EN ISO 1461:2022	_ 2)
l-anchor	1.0045, 1.0976 acc. to EN 10149:2013	Hot-dip galvanised ≥ 55 µm acc. to EN ISO 1461:2022	Hot-dip galvanised ≥ 55 µm acc. to EN ISO 1461:2022	_ 2)
Channel bolt	Strength grade 8.8 acc. to EN ISO 898-1:2013	Electroplated acc. to EN ISO 4042:2022	Hot-dip galvanised ≥ 50 μm acc. to EN ISO 10684:2004 + AC:2009	Steel grade 70 acc. to EN ISO 3506-1:2020
Plain washer ¹⁾ acc. to EN ISO 7089:2000 and EN ISO 7093-1:2000	Hardness class A ≥ 200 HV	Electroplated acc. to EN ISO 4042:2022	Hot-dip galvanised ≥ 50 µm acc. to EN ISO 10684:2004 + AC:2009	Hardness class A ≥ 200 HV 1.4401, 1.4404, 1.4571, 1.4578 acc. to EN 10088-1:2023
Hexagonal nut acc. to EN ISO 4032:2023	Property class 8 acc. to EN ISO 898-2:2022	Electroplated acc. to EN ISO 4042:2022	Hot-dip galvanised ≥ 50 µm acc. to ISO 10684:2004 + AC:2009	Property class 70 or 80 acc. to EN ISO 3506-2:2023 1.4401, 1.4404, 1.4571, 1.4578

Not in the scope of delivery.Product not available.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Product description Materials	Annex A7

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel.
- Fatigue cyclic tension loads (anchor channels and channel bolts according to Annex C8).
- Seismic tension, seismic shear perpendicular to the longitudinal axis of the channel and seismic shear in the direction of the longitudinal axis of the channel (seismic performance category C1) (anchor channels and channel bolts according to Annex C10).
- Fire exposure for concrete strength class C20/25 to C50/60 for tension and shear perpendicular to the longitudinal axis (anchor channels and channel bolts according to Annex C13).

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibres according to EN 206:2013+A2:2021.
- Strength classes C12/15 to C90/105 according to EN 206:2013+A2:2021.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
 (anchor channels and channel bolts according to Annex A7, Table A7.1, column 2a, 2b and 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchens, bathrooms and laundries in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A7, Table A7.1, column 2b and 3).
- According to EN 1993-1-4:2006 +A1:2015 +A2:2020 relating to corrosion resistance class CRC III
 (anchor channels, channel bolts, washers and nuts made of stainless steel number 1.4401, 1.4404,
 1.4571 and 1.4578 according to Table A7.1, column 3).

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as seismic loading (performance category C1) and fire
 exposure the anchor channels are designed in accordance with EN 1992-4:2018 and EOTA TR 047
 "Design of Anchor Channels", May 2021.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 50 "Calculation method for the performance of Anchor channels under Fatigue Cyclic Loading", October 2023.
- The characteristic resistances are calculated with the minimum effective embedment depth.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Intended Use Specifications, part 1	Annex B1

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A5, Table A5.1 are generated including end spacing x and minimum channel length I_{min} and only to be used in dry internal conditions.
- Installation in accordance with the installation instruction given in Annexes B5 and B6.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no
 movement of the channels will occur during the time of laying the reinforcement and of placing and
 compacting the concrete.
- The concrete around the head of the anchors is properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A7 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B6) rectangular to the channel axis.
- The required installation torque given in Annex B4 must be applied and must not be exceeded.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Intended Use	Annex B2
Specifications, part 2	

Installation parameters

 Table B3.1:
 Installation parameters

Anchor channel FES-RS-S-		500	I-500	600	I-600	700	I-700	
Minimum effective embedment depth	h _{ef,min}		110	112	150	154	175	154
Minimum edge distance	Cmin	[mm]	50	50	75	75	75	75
Minimum thickness of concrete member	h _{min} 1)		113	117	153	159	178	178

¹⁾ For corrosion protection $h_{min} = h_{ef} + t_h + c_{nom}$; c_{nom} acc. to EN 1992-1-1:2004 + AC:2010.

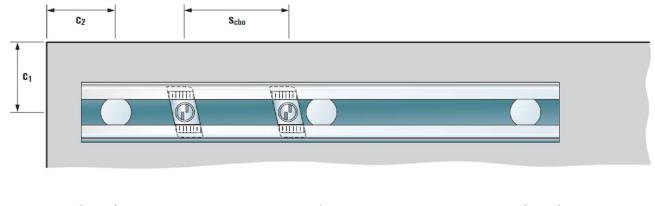


Table B3.2: Minimum spacing for channel bolts

Channel bolt FBC-S-		8	M10	M12	M16	M20
Minimum spacing between channel bolts	Scbo,min	[mm]	50	60	80	100

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated
Channel Bolts FBC-S

Intended Use
Installation parameters for fischer anchor channels FES-RS-S and channel bolt
FBC-S spacing

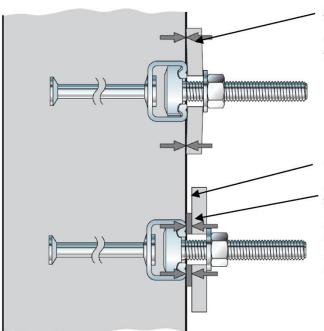

Annex B3

Table B4.1:	Installation torque	Tinst
	7	

	•						
final an analas	Garden de annal halt			T _{inst} 1)			
fischer anchor channel	fischer channel bolt	Thread diameter	General T _{inst,g}		Steel – steel contact		
EEC DC C (I)	ES-RS-S-(I)- FBC-S				T _{inst,s}		
FES-NS-S-(I)-			8.8	A4-70	8.8	A4-70	
		M10	35	-	35 - 40	s - 0	
500	180	M12	55	-	55 - 70	-	
		M16	75	-	75 - 150	-	
600		M12	80	-	80 - 100	-	
225	M16	100	120	100 - 200	120 - 130		
700		10	130	120	100 200	120 100	
700		M20	120	H	120 - 360	-	

¹⁾ Max. T_{inst} must not be exceeded.

General:

The fixture is in contact with the channel profile and the concrete surface by tightening with T_{inst,g}.

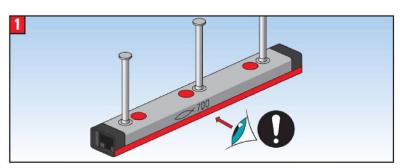
Gap

Steel-to-steel contact:

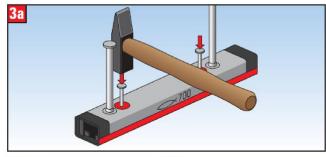
The fixture is not in contact with the concrete surface. The fixture is fastened to the anchor channel by a suitable steel part (e.g. washer) by tightening with T_{inst,s}.

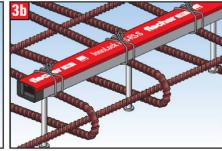
 $(T_{inst,s} \ge T_{inst,g})$

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated
Channel Bolts FBC-S

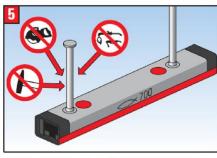

Intended Use

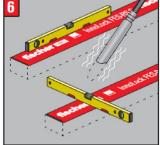

Installation parameters for fischer channel bolts FBC-S

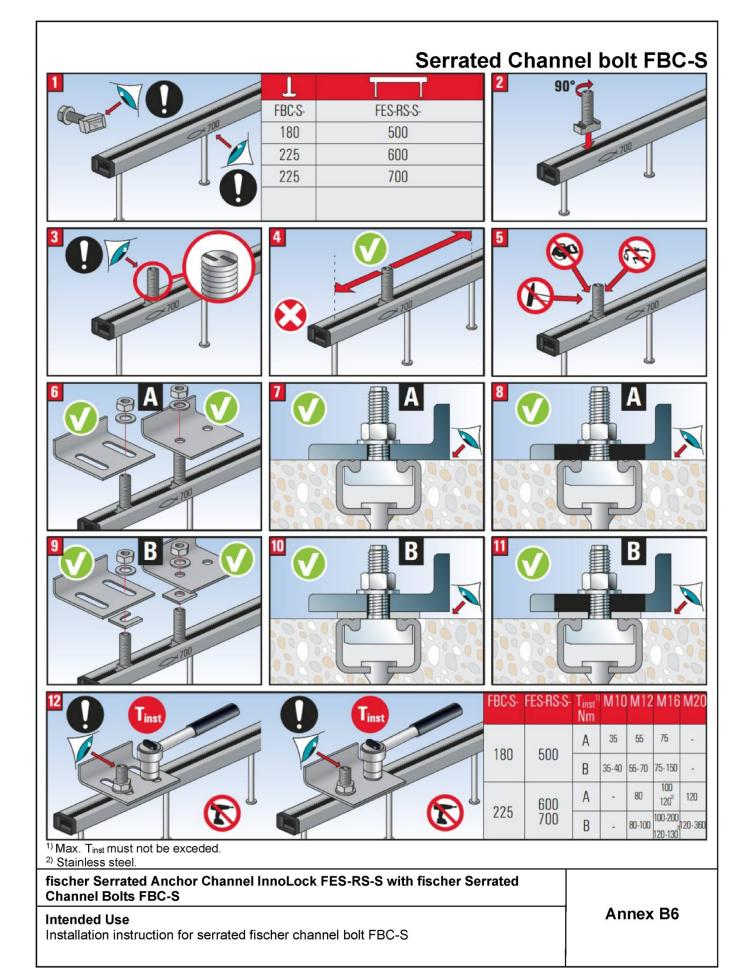

Annex B4



Anchor channel FES-RS-S






fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S

Intended Use

Installation instruction for fischer anchor channel FES-RS-S

Annex B5

Table C1.1:	Characteristic resistances under tension load -
	steel failure of anchor channels

Anchor channel FES-RS-S-			500	I-500	600	1-600	700	I-700
Steel failure: Anchor								
Characteristic resistance	N _{Rk,s,a}	[kN]	43,4	44,5	55,2	57,0	73,3	81,0
Partial factor	γ м s ¹⁾	[-]			1	,8		
Steel failure: Connection between	anchor and	d chann	el					
Characteristic resistance	N _{Rk,s,c}	[kN]	43,3	44,5	55,2	57,0	73,0	80,0
Partial factor	γ м s ¹⁾	[-]			1	,8		
Steel failure: Local flexure of the	hannel lips	5						
Characteristic spacing of channel bolts for N _{Rk,s,I}	SI,N	[mm]] 80 101		01	105		
Characteristic resistance	N ⁰ Rk,s,I	[kN]	[kN] 43,8		64,0		80,0	
Partial factor	γ _{Ms} 1)	[-]	1,8					

¹⁾ In absence of other national regulations.

Table C1.2: Characteristic flexural resistance of the channel

Anchor channel FES-RS-S-	500	600	700		
Steel failure: Flexure of channel					
Characteristic flexural resistance of channel	M _{Rk,s,flex}	[Nm]	1572	2581	3749
Partial factor	γMs,flex ¹⁾	[-]		1,15	

¹⁾ In absence of other national regulations.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Characteristic resistances of anchor channels under tension load – steel failure of anchor channel	Annex C1

Anchor channel FES-RS-S-			500	1-500	600	1-600	700	I-700
Concrete failure: Pull-out failure								
Characteristic resistance in cracked concrete C12/15	N _{Rk,p}	[kN]	27,7	33,7	33,1	51,3	36,2	51,3
Characteristic resistance in uncracked concrete C12/15	N _{Rk,p}	[kN]	38,7	47,2	46,4	71,8	50,7	71,8
Increasing factor of $N_{Rk,p}$ = $N_{Rk,p}$ (C12/15)* ψ_c	C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 C55/67 ≥C60/75	ψշ[-]	1,33 1,67 2,08 2,50 2,92 3,33 3,75 4,17 4,58 5,00					
Partial factor	γ _{Mp} = γ _{Mc} 1)	[-]			1	,5		
Concrete failure: Concrete cone failure								
Product factor k ₁	k _{cr,N}	[-]	8,3	8,3	8,6	8,6	8,9	8,7
Floudel factor ki	k _{ucr,N}	[-]	11,8	11,8	12,3	12,4	12,6	12,5
Partial factor	γ _{Mc} 1)	[-]	1,5					
Concrete failure: Concrete splitting failure								
Characteristic edge distance	C cr,sp	[mm]	330	334	450	462	525	462
Characteristic spacing	Scr,sp	[mm]	660	669	900	942	1050	942
Partial factor	$\gamma_{MSp} = \gamma_{Mc}^{1)}$	[-]			1	,5		

¹⁾ In absence of other national regulations.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Characteristic resistances under tension load – concrete failure	Annex C2

Table C3.1: Displacements under tension load									
Anchor channel FES-RS-S-(I)- 500 600 700									
Tension load	N	[kN]	17,9	21,4	31,4				
Short-term displacement 1)	δνο	[mm]	2,3	2,1	2,1				
Long-term displacement 1)	δn∞	[mm]	4,5	4,2	4,2				

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Displacement under tension load	Annex C3

Table C4.1: Characteristic steel failure of			shear I	oad –				
Anchor channel FES-RS-S-			500	I-500	600	I-600	700	I-700
Steel failure: Anchor		•		•				
Characteristic registeres	V _{Rk,s,a,y}	FL-N 17	74,2	74,2	98,5	98,5	120,0	120,0
Characteristic resistance	V _{Rk,s,a,x}	[kN]	26,1	35,3	34,2	50,7	44,0	48,6
Partial factor	γMs ¹⁾	[-]			1	,8		
Steel failure: Connection between	en anchor and	chann	el					
Characteristic resistance	$V_{Rk,s,c,y}$	[kN]	74,2	74,2	98,5	98,5	120,0	120,0
Characteristic resistance	V _{Rk,s,c,x}	[KIN]	26,0	26,7	33,1	34,9	43,8	48,0
Partial factor	γMs ¹⁾	[-]			1	,8		
Steel failure: Local flexure of the	e channel lips	;						
Characteristic spacing of channel bolts for V _{Rk,s,l}	S _{I,} ∨	[mm]	80 101		10	05		
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	50,5		5 77,7		92	2,0
Partial factor	γ _{Ms} 1)	[-]			1	,8	•	

¹⁾ In absence of other national regulations.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Characteristic resistance of anchor channel under shear load – steel failure of anchor channel	Annex C4

Table C5.1: Characteristic resistance for shear load in direction of the longitudinal axis of the channel – steel failure

Anchor channel FES-RS	-S-(I)-	500	600	700						
Steel failure: Connection between channel lips and serrated channel bolt										
		[kN]	FBC-S-180-M10-8.8	15,6	_2)	_2)				
			FBC-S-180-M12-8.8	17,3	_2)	_2)				
	V _{Rk,s,l,x}		FBC-S-180-M16-8.8	17,3	_2)	_2)				
Characteristic resistance			FBC-S-225-M12-8.8	_2)	17,6	_2)				
			FBC-S-225-M16-8.8	_2)	17,6	22,5				
			FBC-S-225-M16-A4-70	_2)	16,3	16,3				
			FBC-S-225-M20-8.8	_2)	17,6	22,5				
Installation factor	γ _{inst} 1) [-]		8.8	1,0	M12: 1,4 M16: 1,0 M20: 1,0	1,2				
			A4-70	_2)	1,4	1,4				

¹⁾ In absence of other national regulations.

Table C5.2: Characteristic resistance of the anchor channel under shear load – concrete failure

Anchor channel	FES-RS-S-(I)-		500	600	700		
Concrete failure	: Pry-out failure						
Product factor		k ₈	[-]	2,0	2,0	2,0	
Partial factor		γ _{Mc} 1)	[-]	1,5			
Concrete failure	: Concrete edge failure	•					
Product factor	Cracked concrete	k cr,V	[-]	7,4	7,5	7,5	
k 12	Uncracked concrete	k _{ucr,V}	[-]	10,4	10,5	10,5	
Partial factor			[-]		1,5		

¹⁾ In absence of other national regulations.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Characteristic resistance of anchor channel under shear load.	Annex C5

²⁾ No performance assessed.

Anchor channel FES-RS-S-(I)-		500	600	700	
Shear load perpenticular to the longitudinal axis of the channel	Vy	[kN]	34,1	30,5	36,5
Short-term displacement 1)	δν,y,0	[mm]	2,7	2,5	2,9
Long-term displacement 1)	δν,y,∞	[mm]	4,0	3,7	4,4
Shear load in direction of the longitudinal axis of the channel	Vx	[kN]	11,4	7,0	6,6
Short-term displacement 2)	δν,x,0	[mm]	8,0	0,9	1,2
Long-term displacement 2)	δ∨,χ,∞	[mm]	1,2	1,3	1,8

Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

Table C6.2: Characteristic resistances under tension and shear load – steel failure of channel bolts

Channel bolt FBC-S-2)				M10	M12	M16	M20		
Steel failure:									
Characteristic resistance	N _{Rk,s}	[LVI]	8.8	46,4	67,4	125,6	170,0		
Characteristic resistance	J INRK,S	[kN]	A4-70	_3)	_3)	109,9	_3)		
Partial factor	1)	r 1	8.8	1,5					
Partial factor	γMs ¹⁾	[-]	A4-70	1,87					
Characteristic registers	V	FIZA II	8.8	23,2	33,7	62,8	98,0		
Characteristic resistance	V Rk,s	V _{Rk,s} [kN]	A4-70	_3)	_3)	65,9	_3)		
Dorticl footor	1)	F 1	8.8		1,25				
Partial factor	γMs ¹⁾	[-]	A4-70	1,56					

¹⁾ In absence of other national regulations.

Table C6.3: Characteristic resistances under combined tension and shear load

Anchor channel FES-RS-S-(I)-	500	600	700					
Steel failure: Local flexure of channel lips and flexure of channel								
Product factor	k ₁₃	[-]	acc. to EN 1992-4:2018, 7.4.3.1					
Steel failure: Anchor and connection between anchor and channel								
Product factor	K14	[-]	acc. to E	N 1992-4:2018	3, 7.4.3.1			

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Characteristic resistance of channel bolts under tension and shear load, displacements under shear load, combined tension and shear load.	Annex C6

²⁾ Displacements of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete.

²⁾ Material according to Annex A7, Table A7.1.

³⁾ No performance assessed.

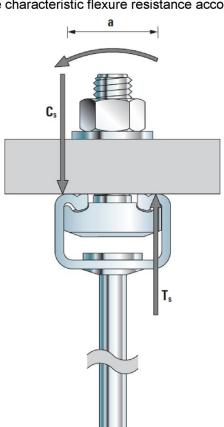


Table C7.1: Characteristic resistances under shear load with lever arm – steel failure of channel bolts

Channel bolt thread diameter 2)	M10	M12	M16	M20									
Steel failure:													
Characteristic flexural resistance	M ⁰ Rk,s	s [Nm]	FBC-S-	8.8	59,8	104,8	266,4	519,3					
Characteristic nexural resistance	IVI*Rk,s	נואוון	FBC-3-	A4-70	_3)	_3)	233,0	_3)					
Destini feetes	1)	1) FBC-S- 8.8				1,25							
Partial factor	γMs ¹⁾	[-]		A4-70		1,	56						
								FBC-S-180	8.8	24,0	25,3	27,3	_3)
Internal lever arm	а	[mm]	FBC-S-225	8.8	_3)	29,8	31,8	34,2					
			FBC-3-223	A4-70	_3)	_3)	31,8	_3)					

¹⁾ In absence of other national regulations.

The characteristic flexure resistance according to Table C7.1 is limited as follows:

 $M^0_{Rk,s} \le 0,5 \cdot N^0_{Rk,s,l} \cdot a$ ($N^0_{Rk,s,l}$ according to Table C1.1)

 $M^{0}_{Rk,s} \le 0,5 \cdot N_{Rk,s} \cdot a$ (N_{Rk,s} according to Table C6.2)

a = Internal lever arm according to Table C7.1

 T_s = Tension force acting on the channel lips

C_s = Compression force acting on the channel lips

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Characteristic flexural resistances under shear load of channel bolts	Annex C7

²⁾ Materials according to Annex A7, Table A7.1.

³⁾ No performance assessed.

Table C8.1: Combination of anchor channels and channel bolts under fatigue tension load (Design method I or II for assessment method C according to EOTA TR050, October 2023)

Anchor channel FES-RS-S-	Channel bolt	Diameter	Steel grade	Corrosion protection
600	FBC-S-225	M16	8.8	G ¹⁾
700	FBC-3-223	M20	0.0	F ²⁾

¹⁾ Electroplated.

Table C8.2: Characteristic resistances under fatigue tension load – steel failure with n load cycles without static preload (N_{ed} = 0) (Design method I according to EOTA TR050, October 2023)

Anchor channel FES-RS-S-		600	700
Steel failure:	n	$\Delta N_{Rk,s,}$	o,n [kN]
Characteristic resistances under fatigue tension load without static preload	≤ 10⁴	18,9	29,4
	≤ 10 ⁵	9,5	13,9
	≤ 10 ⁶	4,8	6,6
	≤ 2·10 ⁶	3,9	5,2
	≤ 5.106	3.0	2.0
	≥ 5.106	3,0	3,9

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Characteristic resistances under fatigue tension load according to assessment method C	Annex C8

²⁾ Hot-dip galvanised.

Table C9.1: Reduction factor $\eta_{c,fat}$ with n load cycles without static preload (N_{ed} = 0) (Design method I or II for assessment method C according to EOTA TR050, October 2023)

Pull-out failure Concrete cone failure		$\eta_{k,c,fat} = \eta_{k,p,fat}[-]$								
						Slok				
Reduction factor for	n	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
$\Delta N_{Rk,p,E,n} = \eta_{k,c,fat} \cdot N_{Rk,p}$	≤ 10⁴	0,725	0,668	0,600	0,527	0,450	0,370	0,288	0,205	0,120
$\Delta N_{Rk,c,E,n} = \eta_{k,p,fat} \cdot N_{Rk,c} $ 2.10	2⋅10⁴	0,704	0,650	0,585	0,514	0,439	0,360	0,279	0,197	0,114
$S_{lok} = 2,25 \cdot N_{Elok} / N_{Rk,c(p)^{1}}$	5⋅10⁴	0,677	0,627	0,566	0,497	0,424	0,347	0,268	0,188	0,106
Σίοκ 2,20 14Είοκ 714(κ,ε(ρ)	1⋅10⁵	0,656	0,610	0,551	0,484	0,412	0,337	0,260	0,181	0,100
	2·10 ⁵	0,636	0,592	0,536	0,471	0,401	0,328	0,251	0,174	0,094
With: N _{Rk,p} according to Annex C2	5⋅10⁵	0,608	0,569	0,516	0,454	0,386	0,315	0,240	0,164	0,087
NRK,p according to Affilex C2	1·10 ⁶	0,588	0,551	0,501	0,441	0,375	0,305	0,232	0,157	0,081
N _{Rk,c} calculated according to	2·10 ⁶	0,567	0,534	0,486	0,428	0,364	0,295	0,223	0,150	0,075
EN 1992-4:2018 and EOTA TR047, May 2021	5⋅10 ⁶	0,539	0,511	0,466	0,411	0,349	0,282	0,212	0,140	0,067
	1·10 ⁷	0,519	0,493	0,451	0,398	0,337	0,272	0,204	0,133	0,061
	2·10 ⁷	0,498	0,476	0,436	0,385	0,326	0,262	0,195	0,126	0,055
	5⋅10 ⁷	0,471	0,453	0,416	0,367	0,311	0,250	0,184	0,116	0,047
	≥ 108	0,450	0,435	0,401	0,354	0,300	0,240	0,176	0,109	0,041

¹⁾ N_{Elok} characteristic lower cycle load.

Table C9.2: Characteristic resistances under fatigue load with n → ∞ load cycles without static preload (N_{ed} = 0) (Design method II according to EOTA TR050, October 2023)

Anchor channel FES-RS-S-		600	700		
Steel failure:	n	$\Delta N_{Rk,s,0,n}[kN]$			
ΔN _{Rk,s,0,∞}	[kN]	3,0 3,9			
Concrete cone and pull-out failure					
ης,fat	[-]	0,5			

In absence of other national regulations, the following partial safety factors γ_M and $\gamma_{M,fat}$ are recommended for design method I according to TR050, October 2023:

 γ_{M} according to Annex C1 $\gamma_{M,fat} = 1,35$

In absence of other national regulations, the following partial safety factor $\gamma_{M,fat}$ is recommended for design method II according to EOTA TR 050, October 2023:

 $\gamma_{M,fat} = 1,35$

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Characteristic resistances under fatigue tension load according to assessment method C	Annex C9

Table C10.1: Combination of anchor channels and channel bolts under seismic load (performance category C1)

Anchor channel FES-RS-S-	Channel bolt	Diameter	Steel grade	Corrosion protection
600	FBC-S-225	M16	8.8	G ¹⁾
700	. 20 0 220	M20	0.0	F ²⁾

¹⁾ Electroplated.

Table C10.2: Characteristic resistances under seismic tension load – steel failure of anchor channels (performance category C1)

Anchor channel FES-RS-S-	600	I-600	700	I-700		
Steel failure: Anchor						
Characteristic resistance	N _{Rk,s,a,eq}	[kN]	55,2	57,0	73,3	81,0
Partial factor	γMs,eq ¹⁾	[-]		1,	8	
Steel failure: Connection between	anchor and	channe				
Characteristic resistance	N _{Rk,s,c,eq}	[kN]	55,2	57,0	73,0	80,0
Partial factor	γ _{Ms,eq} 1) [-] 1,8					
Steel failure: Local flexure of the o	hannel lips					
Characteristic resistance	N ⁰ Rk,s,l,eq [kN] 64,0 80,0					0,0
Partial factor	γMs,eq ¹⁾	[-]	1,8			

¹⁾ In absence of other national regulations.

Table C10.3: Characteristic flexural resistance of the channel under seismic tension load (performance category C1)

Anchor channel FES-RS-S-		600	700	
Steel failure: Flexure of channel				
Characteristic flexural resistance of channel	MRk,s,flex,eq	[Nm]	2581	3749
Partial factor	γMs,flex,eq ¹⁾	[-]	1,	15

¹⁾ In absence of other national regulations.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Characteristic resistance of anchor channels under seismic tension load (performance category C1)	Annex C10

²⁾ Hot-dip galvanised.

Table C11.1: Characteristic resistances for seismic shear load – steel failure of anchor channels (performance category C1)

Anchor channel FES-RS-S-			600	I-600	700	I-700
Steel failure: Anchor						
Characteristic registeres	$V_{Rk,s,a,y,eq}$	[LAND	98,5	98,5	120,0	120,0
Characteristic resistance	V _{Rk,s,a,x,eq}	[kN]	34,2	50,7	44,0	48,6
Partial factor	γMs,eq ¹⁾	[-]	1,8			
Steel failure: Connection be		and cha	nnel			
Characteristic resistance	V _{Rk,s,c,y,eq}	TLANT.	98,5	98,5	120,0	120,0
Characteristic resistance	V _{Rk,s,c,x,eq}	[kN] -	33,1	34,9	43,8	48,0
Partial factor	γMs,eq ¹⁾	[-]	1,8			
Steel failure: Local flexure of		ips				
Characteristic resistance	V ⁰ Rk,s,l,y,eq	[kN]	77,7 92,0			
Partial factor	γMs,eq ¹⁾	[-]	1,8			

¹⁾ In absence of other national regulations.

Table C11.2: Characteristic resistance for seismic shear load in direction of the longitudinal axis of the channel – steel failure (performance category C1)

Anchor channel FES-RS-S-(I	600	700					
Steel failure: Connection between channel lips and serrated channel bolt							
			FBC-S-225-M12-8.8	_2)	_2)		
Characteristic resistance	$V_{Rk,s,l,x,eq}$	[kN]	FBC-S-225-M16-8.8	17,6	22,5		
			FBC-S-225-M20-8.8	17,6	22,5		
Installation factor	γInst,eq ¹)	[-]		M16: 1,0 M20: 1,0	1,2		

¹⁾ In absence of other national regulations.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Char. resistance of anchor channels under seismic shear load and seismic shear load in direction of the longitudinal axis of the channel (performance category C1)	Annex C11

²⁾ No performance assessed.

Table C12.1: Characteristic resistance under seismic tension and seismic shear load – steel failure of channel bolts (performance category C1)

Channel bolt FBC-S-225	M12	M16	M20					
Steel failure:								
Characteristic resistance	$N_{Rk,s,eq}$	[kN]	8.8	_2)	125,6	170,0		
Partial factor	γMs,eq ¹⁾	[-]	8.8		1,5			
Characteristic resistance	V _{Rk,s,eq}	[kN]	8.8	_2)	62,8	98,0		
Partial factor	γMs,eq ¹⁾	[-]	8.8		1,25			

¹⁾ In absence of other national regulations.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Characteristic resistance of channel bolts under seismic tension and seismic shear load (performance category C1)	Annex C12

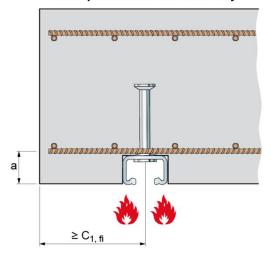
²⁾ No performance assessed.

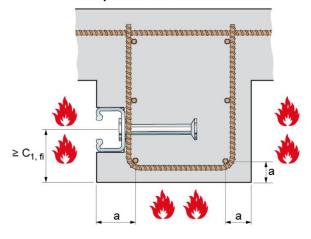
Table C13.1:	Characteristic	resistances	under fire ex	posure – steel failure
--------------	----------------	-------------	---------------	------------------------

Channel bolt						M12	M16	M20			
Steel failure: Anchor, connection between anchor and channel, local bending of channel lip											
Characteristic resistance under fire exposure	NRk,s,fi =VRk,s,y,fi	[kN]	FES-RS-S(-I)- 500	R30	_2)	_2)	_2)	_2)			
				R60	_2)	_2)	_2)	_2)			
				R90	_2)	_2)	_2)	_2)			
				R120	_2)	_2)	_2)	_2)			
			FES-RS-S-(I)- 600	R30	_2)	2,5	4,8	12,0			
				R60	_2)	2,0	4,2	8,7			
				R90	_2)	1,4	3,5	5,2			
				R120	_2)	1,2	3,1	3,4			
			FES-RS-S-(I)- 700	R30	_2)	2,5	4,8	12,0			
				R60	_2)	2,0	4,2	8,7			
				R90	_2)	1,4	3,5	5,2			
				R120	_2)	1,2	3,1	3,4			
Partial factor	γMs,fi ¹⁾	[-]		1,0							

¹⁾ In absence of other national regulations.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S	
Performances Characteristic resistance of anchor channel and channel bolt under fire exposure.	Annex C13


²⁾ No performance assessed.


Table C14.1: Minimum axis distance of reinforcement

Anchor channel FES-RS-S-(I)-			500	600	700
Min. axis distance	R30		35	35	50
	R60	o [mm]	35	35	50
	R90	a [mm]	45	45	50
	R120		60	60	65

Fire exposure from one side only

Fire exposure from more than one side

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S

Performances

Characteristic resistance of anchor channel and channel bolt under fire exposure

Annex C14