

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0469 of 25 July 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer injection system FIS EB II

Bonded fasteners and bonded expansion fasteners for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

36 pages including 3 annexes which form an integral part of this assessment

330499-02-0601, Edition 04/2023

ETA-21/0469 issued on 9 December 2021

European Technical Assessment ETA-21/0469 English translation prepared by DIBt

Page 2 of 36 | 25 July 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0469 English translation prepared by DIBt

Page 3 of 36 | 25 July 2023

Specific Part

1 Technical description of the product

The fischer injection system FIS EB II is a bonded fastener consisting of a cartridge with injection mortar fischer FIS EB II and a steel element according to Annex A 4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 6, B 3 to B7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 3
Displacements under short-term and long-term loading	See Annex C 7
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 8 to C 13

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 14 to C 16

3.3 Hygiene, health and the environment (BWR 3)

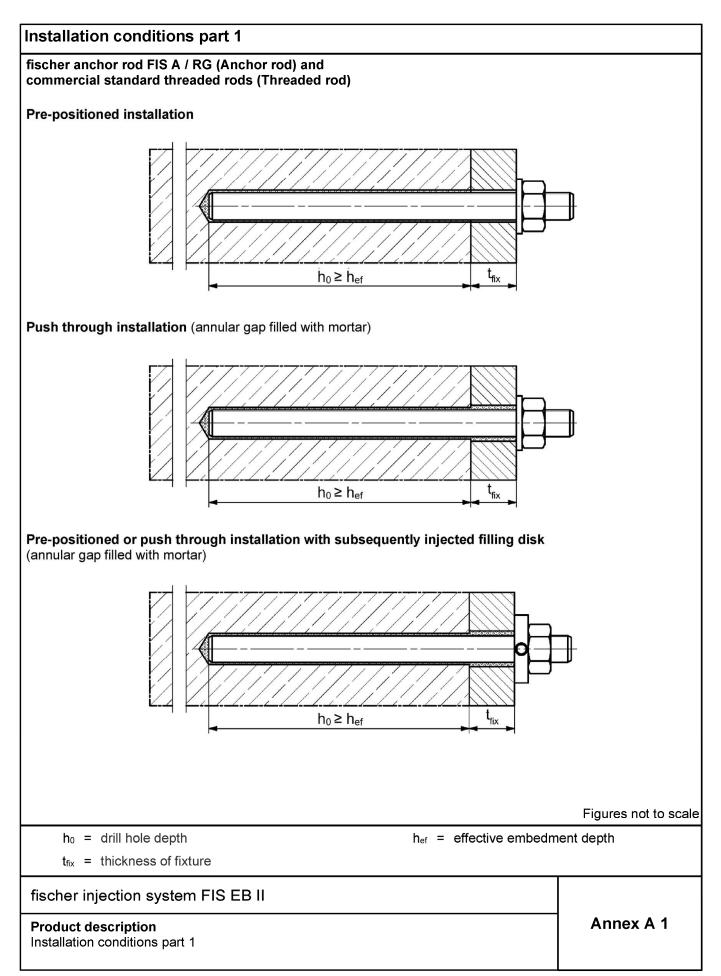
Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-21/0469 English translation prepared by DIBt

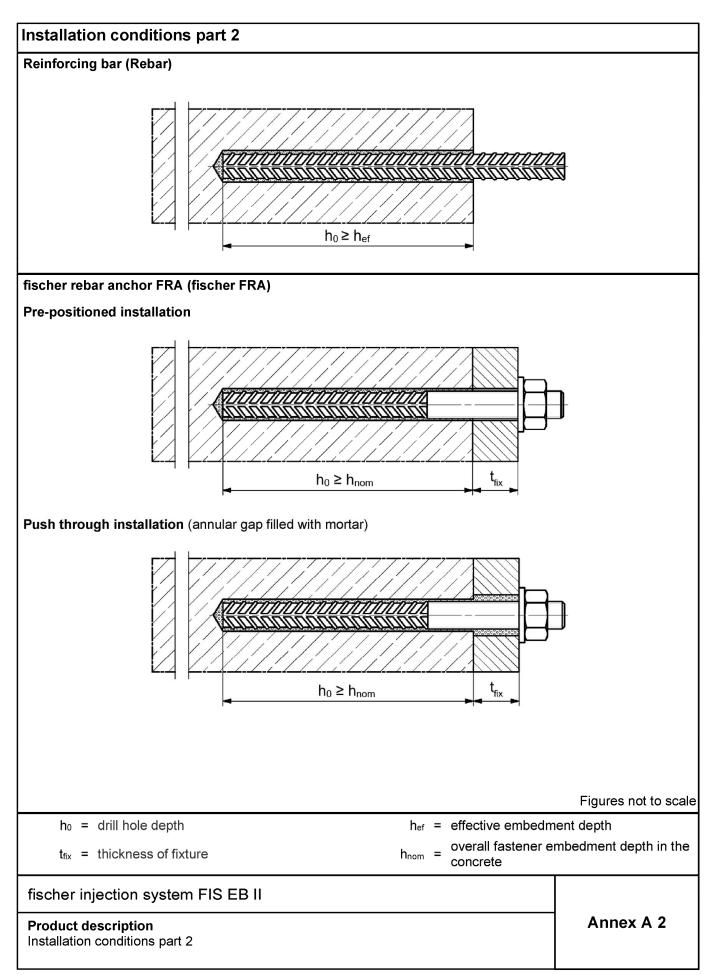
Page 4 of 36 | 25 July 2023

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 330499-02-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 25 July 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Stiller

Overview system components part 1	
Injection cartridge (shuttle cartridge) with sealing cap; Size: 390 ml, 585 ml, 1100 ml	, 1500 ml
Imprint: fischer FIS EB II, processing notes, shelf-life, piston tra scale (optional), curing times and processing times (depending temperature), hazard code, size, volume	on
Static mixer FIS MR Plus for Injection cartridge 390 ml	
Static mixer FIS UMR Injection cartridges ≥ 585 ml	
-	
Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS UMR	
	3
Cleaning brush BS	
Blow-out pump AB G Compressed-air cleaning tool	ABP
	Figures not to scale
fischer injection system FIS EB II	
Product description Overview system components part 1; cartridges / static mixer / accessories	Annex A 3

Overview system components part 2	
Anchor rod	
Size: M8, M10, M12, M16, M20, M24, M27, M30	
Washer / hexagon nut	
fischer filling disk with injection adapter	
Rebar	
Nominal diameter:	
fischer FRA, FRA HCR	
Size: M12, M16, M20, M24	
	Figures not to scale
fischer injection system FIS EB II	
Product description Overview system components part 2; steel components, injection adapter	Annex A 4

Page 9 of European Technical Assessment ETA-21/0469 of 25 July 2023

Part	Designation		Mate	erial		
1	Injection cartridge		Mortar, har	dener, filler		
		Steel	Stainless	s steel R		High corrosion istant steel HCR
	Steel grade	zinc plated	acc. to EN 10 Corrosion res CRC III EN 1993-1-4:2	istance class acc. to	Corros (EN 10088-1:2014 ion resistance class CRC V acc. to 3-1-4:2006+A1:2015
2	Anchor rod or Threaded rod	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EN or p 1 EN f _{uk}	erty class 50 or 80; ISO 3506-1:2020 property class 70 .4565; 1.4529; V 10088-1:2014 \leq 1000 N/mm ² elongation A ₅ > 12 %	
		Fracture elongation A ₅ > 8 % t	for applications \ catego		nents for s	seismic performance
3	Washer ISO 7089:2000	electroplated ≥ 5 μm, EN ISO 4042:2022 or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.4578; 1.4439; EN 10088	1.4571; 1.4362;		.4565; 1.4529; \ 10088-1:2014
4	Hexagon nut	Property class 5 or 8 acc. EN ISO 898-2:2012 electroplated ≥ 5 µm, EN ISO 4042:2022 or hot dip galvanised ≥ 40 µm EN ISO 10684:2004+AC:2009	Propert 50, 70 or EN ISO 35 1.4401; 1.44 1.4571; 1.44 EN 10088	80 acc. 06-2:2020 04; 1.4578; 39; 1.4362;	50 EN 1 1	Property class), 70 or 80 acc. ISO 3506-2:2020 .4565; 1.4529 N 10088-1:2014
5	fischer filling disk	electroplated ≥ 5 μm, EN ISO 4042:2022 or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.44 1.4571; 1.44 EN 10088	39; 1.4362;		.4565;1.4529; N 10088-1:2014
6		Bars and de-coiled rods, class f_{yk} and k according to NDP or N $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 12 \%)$		EN 1992-1-1/N	4	
U	and AC:2010, Annex C	Fracture elongation A₅ > 8 % 1			nents for s	seismic performance
7	fischer FRA	Rebar part: Bars and de-coiled rods class E f_{yk} and k according to NDP or N EN 1992-1-1:2004+AC:2010 $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 12 \%)$ Threaded part: Property class E EN ISO 3506-1:2020	ICI of 1.4565; 1.4529 acc. Corrosion resistance acc. to EN 1993-1-4			N 10088-1:2014 ass CRC III 06+A1:2015 N 10088-1:2014 ass CRC V 006+A1:2015
		Fracture elongation A₅ > 8 % t	for applications v catego		nents for s	seismic performance
fisc	her injection sys	tem FIS EB II				Annex A 5

Hammer drilling with standard drill					B II with		
with standard drill			or rod,	Reb	ar	fische	r FRA
with standard drill		Thread	led rod				
oit	B ************************************		1				
Static and quasi-static	uncracked concrete	all sizes	Tables: C1.1 C3.1	all sizes	Tables: C2.1 C3.1	all sizes	Tables C2.2 C3.1
oading, in	cracked concrete	an 31203	C4.1 C7.1		C5.1 C7.2		C6.1 C7.2
Jse	dry or wet concrete			all siz	zes		
category	water filled hole			all siz	zes		
Seismic performance	C1	C	9.3 0.1	Tabl C9. C9. C10 C10	1 3 .1	Tab CS CS C1 C1 C1).2).3 0.1
category	C2	Tab C8 C1 C1	0.1	Tabl C9. C10 C13	1 .1	C11.2 Tables: C9.2 C10.1 C13.1	
nstallation directior	1	D3	(downward a	nd horizontal a	and upwards	(e.g. overhea	ıd))
nstallation emperature			Ti	, _{min} = +5 °C to [∙]	T _{i,max} = +40 °	°C	
Resistance to fire		Tab C1 Annex		Tabl C15 Annex:	.1	Tab C1 Anne>	5.1
	Temperature range l	-40 °C	to +43 °C			erature +43 °(erature +24 °C	
Service emperature	Temperature range II	-40 °C	to +60 °C			erature +60 °C rature +43 °C)	
	Temperature range III	-40 °C	to +72 °C			erature +72 °C rature +50 °C	
¹⁾ No performanc	e assessed						
fischer injectior	n system FIS	EB II					

Specifications of intended use part 2

Base materials:

Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 5 Table 5.1.

Design:

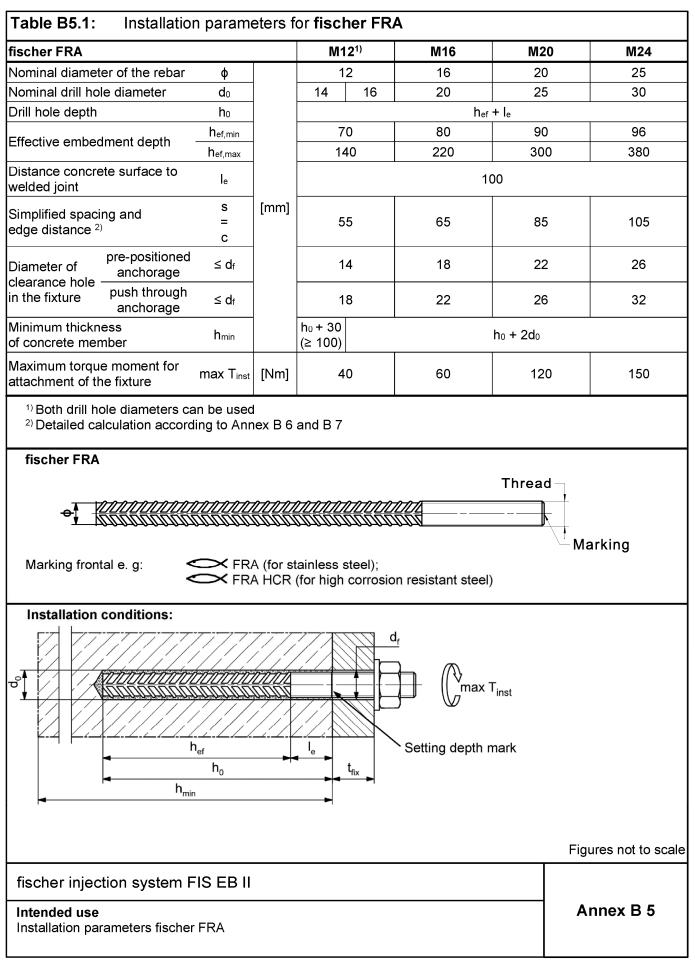
- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with: EN 1992-4:2018 and TR 082 from June 2023.

Installation:

- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening depth should be marked and adhered to installation.
- · Overhead installation is allowed (necessary equipment see installation instruction).

fischer injection system FIS EB II

Intended use Specifications part 2 Annex B 2



	Installation parame		1		1	_	_	-	_	
Anchor rods			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole di			10	12	14	18	24	28	30	35
Drill hole depth	h ₀			60	70	1	≥ h _{ef}	00	100	400
Effective embedment depth	h _{ef, m}		60	60	70	80	90	96	108	120
	h _{ef, m}	ax	160	200	240	320	400	480	540	600
Simplified spacing a distance ¹⁾	and edge s = c	[mm]	40	45	55	65	85	105	120	140
Diameter of the clearance hole of	pre-positioned d _f		9	12	14	18	22	26	30	33
the fixture	push through installation d _f		12	14	16	20	26	30	33	40
Minimum thickness member	of concrete h _{mir}			h _{ef} + 30 (≥ 100)				h _{ef} + 2d	0	,
Maximum installatic	•		10	20	40	60	120	150	200	300
¹⁾ Detailed ca	Iculation according to A	nnex B 6	and B	7						
Anchor rod				•	Thread		1			
					-) ////			B
					V \	T *	\$ 2222			معر
• •	dom place) anchor re	od:				Ma	rking			
Steel electroplated			or +	Steel ho						•
	stant steel HCR PC1) 5		•					HCR PC) 70	-
	stant steel HCR PC ¹⁾ 8	80	(Stainles	s steel l	≺ prope	rty class	s 50		~
Stainless steel R p			*							
¹⁾ PC = property cla	ur coding according to ass	DIN 976-1	. 2016							
Installation con	ditions:									
	$h_0 \ge h_{ef}$ h_{min}				– SW Setting o	\heartsuit	x T _{inst} ark			
Threaded rods.	washers and hexago	n nuts ma	→ Iv also	be used	l if the f	ollowin	g reaui	irements	s are	
fulfilled ● Materials, dim ● Inspection ce	nensions and mechanic rtificate 3.1 according t	al propert	ies acc	ording to	Annex	A 5, Tal	ole A5.1	1		
 Setting depth 	is marked							Fiqu	res not	to scal
fischer injectior	n system FIS EB II									
Intended use								Ar	nnex B	3

Nominal diameter of the reba	r	φ	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	25	26	28	30	32
Nominal drill hole diameter	d ₀	-	10 12	12 14	14 16	18	20	25	30	35	35	40	40
Drill hole depth	h ₀			:		h ₀ 2	≥ h _{ef}						
Effective	h ef,min		60	60	70	75	80	90	100	104	112	120	12
embedment depth	h _{ef,max}		160	200	240	280	320	400	500	520	560	600	64
Simplified spacing and edge distance ²⁾	s = C	[mm]	40	45	55	60	65	85	120	120	140	140	16
Minimum thickness of concrete member	\mathbf{h}_{min}			_{ef} + 30 ≥ 100)			1	h.	ef + 20	do			
 The minimum value of re The rib height must be w (φ = Nominal diameter of 	elated rib a rithin the ra	area f _{R,m} ange: 0	,05 · φ ≤ h	$\frac{1}{1}$ If il the reconstruction of the formula	JUUUU	<u>17777</u>	<u>IUU</u>				AC:2	010	
Installation conditions:		h _{min}	2////////////////////////////////////			Settir	ng de	pth n	nark				
						Settir	ng de	pth n		ïgure	es no	t to s	cal
		h _{min}				Settin	ng de	pth n		ïgure	es no	t to s	cal

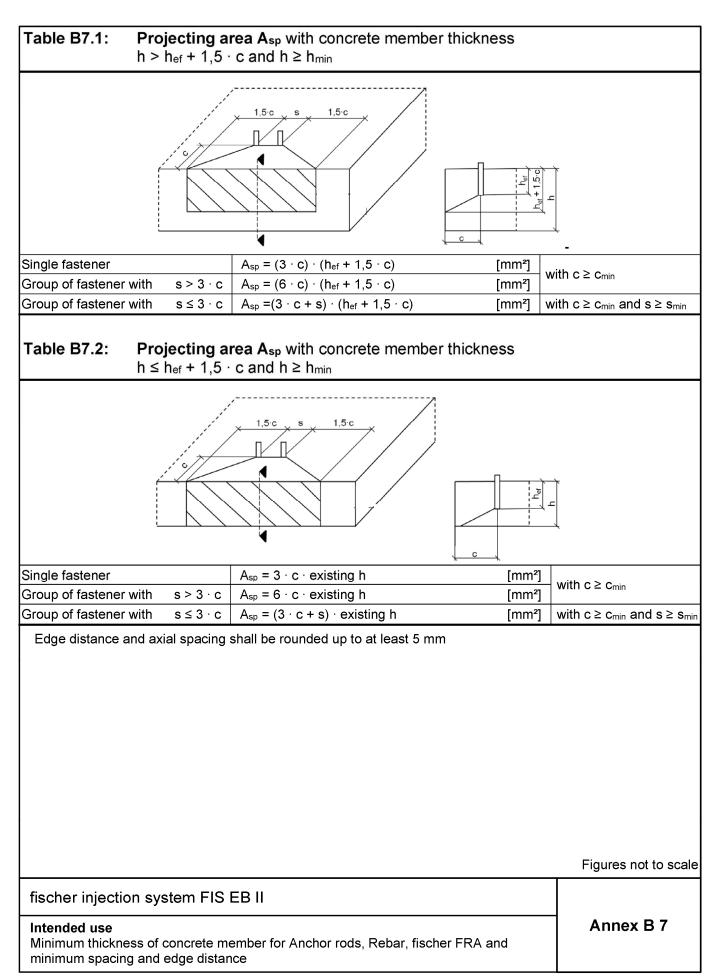
Anchor rods			M8	M10	M1	2	-	M16	M20
Rebars / fischer FRA (nominal diameter)		ф	8	10	12	2	14	16	20
Minimum edge distance				-	-				
Uncracked / cracked concrete	Cmin	[mages]	40	45	4	5	45	50	55
Spacing	S	[mm]		•	accord	ing to An	nex B 7		
Minimum spacing		,							
Uncracked / cracked concrete	Smin	[]	40	45	5	5	60	65	85
Edge distance	с	[mm]			accord	ing to An	nex B 7		
Required projecting area									
Uncracked concrete			8,0	13,0	22	0 0		04.0	20 5
Uncracked concrete		[1000]	0,0	13,0	22	,∪ ∠	23,0	24,0	38,5
Cracked concrete	− A _{sp,req}	[1000 mm²]	6,5	10,0	16		23,0 17,5	24,0 18,5	38,5 29,5
	− A _{sp,req}		,						
Cracked concrete Anchor rods Rebars / fischer FRA	— A _{sp,req}		6,5	10,0	16	5 1	17,5	18,5	29,5
Cracked concrete Anchor rods Rebars / fischer FRA (nominal diameter)	- A _{sp,req}	mm²]	6,5	-	- 16	5 1	17,5	18,5 M30	29,5
Cracked concrete Anchor rods Rebars / fischer FRA (nominal diameter)	- A _{sp,req}	• mm²] [6,5	-	- 16	5 1	17,5	18,5 M30	29,5
Cracked concrete Anchor rods Rebars / fischer FRA (nominal diameter) Minimum edge distance Uncracked / cracked concrete	- Asp,req	mm²]	6,5 M24 -	- 25	- 26 75	5 1 M27 -	17,5 - 28 80	18,5 M30 30 80	29,5 - 32
Cracked concrete Anchor rods Rebars / fischer FRA (nominal diameter) Minimum edge distance	- Asp,req	• mm²] [6,5 M24 -	- 25	- 26 75	5 1 M27 - 75	17,5 - 28 80	18,5 M30 30 80	29,5 - 32
Cracked concrete Anchor rods Rebars / fischer FRA (nominal diameter) Minimum edge distance Uncracked / cracked concrete Spacing	- Asp,req	• mm²] [6,5 M24 -	- 25	- 26 75	5 1 M27 - 75	17,5 - 28 80	18,5 M30 30 80	29,5 - 32
Cracked concrete Anchor rods Rebars / fischer FRA (nominal diameter) Minimum edge distance Uncracked / cracked concrete Spacing Minimum spacing Uncracked / cracked concrete	Cmin S	• mm²] [6,5 M24 - 60	- 25 75	- 26 75 accord 120	5 1 M27 - 75 ing to An	17,5 - 28 80 nex B 7 140	18,5 M30 30 80 140	29,5 - 32 120
Cracked concrete Anchor rods Rebars / fischer FRA (nominal diameter) Minimum edge distance Uncracked / cracked concrete Spacing Minimum spacing Uncracked / cracked concrete	Cmin Smin	• mm²] [6,5 M24 - 60	- 25 75	- 26 75 accord 120	5 1 M27 - 75 ing to An 120	17,5 - 28 80 nex B 7 140	18,5 M30 30 80 140	29,5 - 32 120
Cracked concrete Anchor rods Rebars / fischer FRA (nominal diameter) Minimum edge distance Uncracked / cracked concrete Spacing Minimum spacing Uncracked / cracked concrete Edge distance	Cmin S Smin C	• mm²] [6,5 M24 - 60	- 25 75	- 26 75 accord 120	5 1 M27 - 75 ing to An 120	17,5 - 28 80 nex B 7 140	18,5 M30 30 80 140	29,5 - 32 120

Splitting failure for minimum edge distance and spacing in dependence of the effective embedment depth $h_{\text{ef.}}$

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

 $\mathbf{A}_{sp,req} < \mathbf{A}_{sp}$

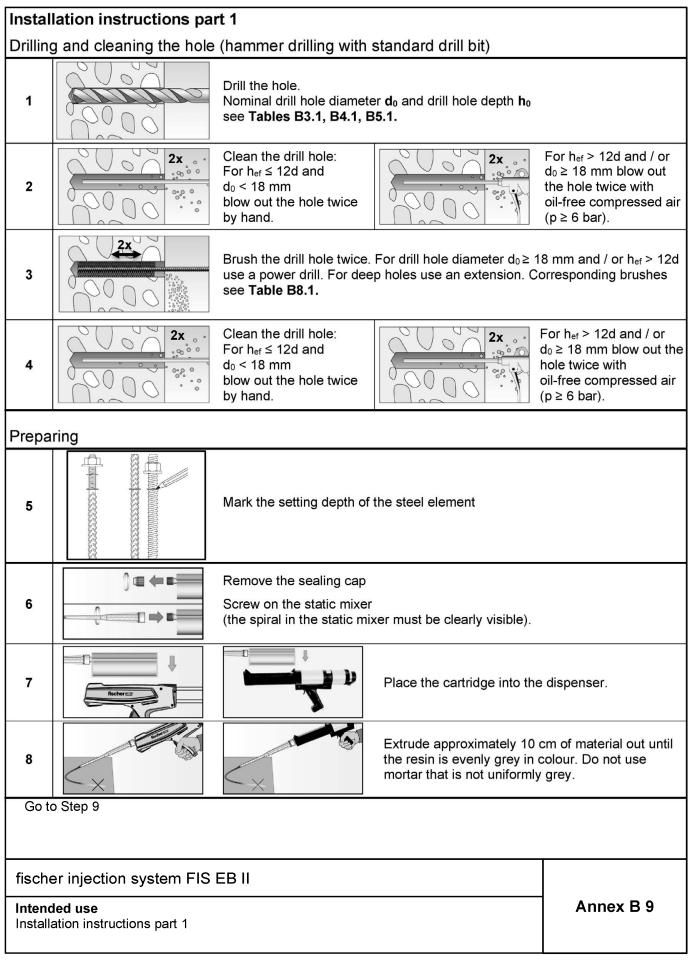
 $A_{sp,req}$ = required projecting area A_{sp} = projecting area (according to Annex B 7)

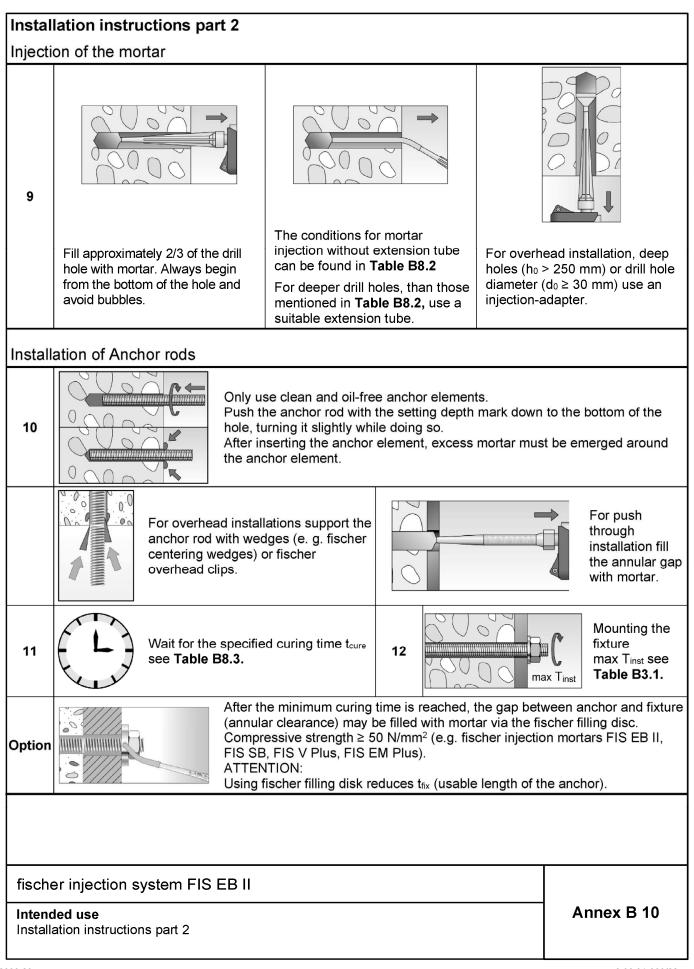

fischer injection system FIS EB II

Intended use

Minimum spacing and edge distance for Anchor rods, Rebars and fischer FRA

Annex B 6





The size of the clea															
Nominal drill hole diameter	d ₀	1() 12	2 14	4	16	18	20	24	25	2	8	30	35	40
Steel brush diameter BS	d _b [mi	mj1'	1 14	10	6	20	1	25	26	27	3	0	4	.0	42
d ^b									~~	~~	~~	~	XX		
Table B8.2:	Conditio	ons fo	r use s	static	mix	er w	ithout	an e	xtens	sion t	ube				
Nominal drill hole diameter	do			10	12	14	16	18	20	24	25	28	3 30	35	40
Drill hole depth h ₀	FIS M	R Plus	[mm]	≤ 9	90	≤ 120	≤ 140	≤ 150	≤ 160	≤ 190		1	≤ 2 ⁻	10	
by using	FIS UI	MR		-	-	≤ 90	k 160	≤ 180	≤ 190	< 2	20			≤ 250	
	Maxim (During below t	the c	uring t	ime o	of the	of the mor	e mor tar th	tar ar e con	nd m i	nimu	ım cı		ng tin	าย	1
	(During below t t	the c he list	uring t	ime o nimun	of the n terr	of the mor	e mor tar the ture)	tar ar e con	nd m i	nimu temp	i m c i berati	ure	ng tin	1e not fal	I
Temperature a anchoring base [°C] > 5 to 10	(During below t t	the c he list	uring t ed mir	ime o nimun m proc t _{work} 180 m	of the n terr essing nin	of the mor	e mor tar the ture)	tar ar e con	nd m i	nimu temp	im ci berati	ure n cur t _{cure} 96 h	ng tin may	1e not fal	1
Temperature a anchoring base [°C] > 5 to 10 > 10 to 15	(During below t t	the c he list	uring t ed mir	ime o nimun m proc twork 180 m 90 m	f the n terr essing nin in	of the mor	e mor tar the ture)	tar ar e con	nd m i	nimu temp	im co perati	ure n cur t _{cure} 96 h 60 h	ng tin may	1e not fal	1
Temperature a anchoring base [°C] > 5 to 10	(During below t t	the c he list	uring t ed mir	ime o nimun m proc t _{work} 180 m	f the n tem essing nin in in	of the mor	e mor tar the ture)	tar ar e con	nd m i	nimu temp	nimum	ure n cur t _{cure} 96 h	ng tin may	1e not fal	
Temperature a anchoring base [°C] > 5 to 10 > 10 to 15 > 15 to 20	(During below t t	the c he list	uring t ed mir	ime o nimun m proc twork 180 m 90 m 60 m	of the n terr essing nin in in in	of the mor	e mor tar the ture)	tar ar e con	nd m i	nimu temp	nimum	ure n cur t _{cure} 96 h 60 h 36 h	ng tin may	1e not fal	
Temperature a anchoring base [°C] > 5 to 10 > 10 to 15 > 15 to 20 > 20 to 30	(During below the second secon	the c he list	uring t ed mir //aximu	ime o nimun m proc twork 180 m 90 m 60 m 30 m	of the n terr essing nin in in in	of the mor	e mor tar the ture)	tar ar e con	nd m i	nimu temp	nimum	ure 1 cur t _{cure} 96 h 60 h 36 h 24 h	ng tin may	1e not fal	

Instal	llation instructions pa	rt 3						
Install	lation Rebars and fische	er FRA						
10		fischer FRA with the depth mark. Recommendation:	e settin	e rebars or fischer FRA. Pusi g depth mark into the filled h the rebar or the fischer FRA	ole up to the setting			
11		e specified curing e Table B8.3	12	max T _{inst}	Mounting the fixture max T _{inst} see Table B5.1			
fisch	er injection system FIS	EB II						
	ded use lation instructions part 3				Annex B 11			

Page 21 of European Technical Assessment ETA-21/0469 of 25 July 2023

Anch	or rod / Threaded ro	bc			M8	M10	M12	M16	M20	M24	M27	M30
Char	acteristic resistance	e to st	eel fa	ailure	under tensio	on loading ³)				-	
S			4.8		14,6 (13,2)	23,2 (21,4)	33,7	62,8	98,0	141,2	183,6	224,4
istic N _{Rk}	Steel zinc plated	_	5.8			29,0 (26,8)	42,1	78,5	122,5	176,5	229,5	280,5
ce l		erty ss	8.8			46,4 (42,8)	67,4	125,6	196,0	282,4	367,2	448,8
aracteri stance	Stainless steel R	Property class	50	[kN]	18,3	29,0	42,1	78,5	122,5	176,5	229,5	280,5
Characteristic resistance N _{Rk} ,	and high corrosion	Ē	70		25,6	40,6	59,0	109,9	171,5	247,1	321,3	392,7
ပစ္	resistant steel HCR		80		29,2	46,4	67,4	125,6	196,0	282,4	367,2	448,8
Parti	al factors ¹⁾					· · · · · · · · · · · · · · · · · · ·			1		1	
			4.8					1,50				
for	Steel zinc plated	-	5.8					1,50				
ا ^ه fac		Property class	8.8					1,50				
artial factor ^{YMs}	Stainless steel R	ropert class	50	[-]				2,86				
Par	and high corrosion	ፈ	70			1	,87 / fis	cher HC	R: 1,50			
	resistant steel HCR		80					1,60				
Char	acteristic resistance	e to st	eel fa	ailure	under shea	r loading ³⁾						
with	out lever arm											
S			4.8		8,7 (7,9)	13,9 (12,8)	20,2	37,6	58,8	84,7	110,1	134,6
'istic V ^{0_{Rk,s}}	Steel zinc plated	_	5.8		10,9 (9,9)		25,2	47,1	73,5	105,9	137,7	168,3
		ert) ss	8.8	FL N 17		23,2 (21,4)	33,7	62,8	98,0	141,2	183,6	224,4
Characteristic resistance V ⁰ _{Rk}	Stainless steel R	Property class	50	[kN]	9,1	14,5	21,0	39,2	61,2	88,2	114,7	140,2
Cha sist	and high corrosion	ፈ	70		12,8	20,3	29,5	54,9	85,7	123,5	160,6	196,3
0 ē	resistant steel HCR		80		14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4
Ducti	lity factor		k 7	[-]				1,0				
with	lever arm											
y x			4.8		14,9 (12,9)	29,9 (26,5)	52,3	132,9	259,6	448,8	665,7	899,5
ristic M ⁰ _{Rk,s}	Steel zinc plated	Y	5.8		18,7 (16,1)	37,3 (33,2)	65,4	166,2	324,6	561,0	832,2	1124,4
Characteristic ssistance M ⁰ _{Rk}		Property class	8.8	[Nm]	29,9 (25,9)	59,8 (53,1)	104,6	265,9	519,3		1331,5	
tan	Stainless steel R	5 S	50	[INII]	18,7	37,3	65,4	166,2	324,6	561,0	832,2	1124,4
Chara ssistai	and high corrosion		70		26,2	52,3	91,5	232,6	454,4	785,4	1165	1574,
Ψ	resistant steel HCR		80		29,9	59,8	104,6	265,9	519,3	897,6	1331,5	1799,0
Parti	al factors ¹⁾				-							
			4.8					1,25				
Partial factor ^{%Ms}	Steel zinc plated	Ā	5.8					1,25				
al fai _{YMs}		Property class	8.8	[-]				1,25				
irtia ∠	Stainless steel R	0 0 0 0	50					2,38				
Б	and high corrosion		70			1,	56 / fisc	her HC	R: 1,25 ²	2)		
	resistant steel HCR		80					1,33				
²⁾ O W ³⁾ V	absence of other national admissible for high ith fyk/fuk \leq 0,8 and fuk \leq alues in brackets are variable rods according	corros 800 N alid for	ion re /mm² unde	esistar [:] (e.g. a ersizec	anchor rods). I threaded ro	ds with small	er stress	s area A	₅ for hot	dip galv	anized	
	her injection syste	-										

Table C2.1:CharacterRebars	ristic resis	tance	e to s	teel 1	failur	e unc	ler te	nsior	n and	shea	ar Ioa	ding	of
Nominal diameter of the reba	r	φ	8	10	12	14	16	20	25	26	28	30	32
Characteristic resistance to s	teel failure	unde	r tens	ion Ic	ading								
Characteristic resistance	N _{Rk,s}	[kN]					ŀ	$s \cdot f_{uk}$	2)				
Characteristic resistance to s	steel failure	unde	r shea	ar loa	ding								
Without lever arm													
Characteristic resistance	$V^0_{Rk,s}$	[kN]					k 6 ¹⁾	$\cdot \mathrel{A_s} \cdot$	f uk ²⁾				
Ductility factor	k 7	[-]						1,0					
With lever arm													
Characteristic resistance	M ⁰ Rk,s	[Nm]					1,2	· W _{el} ·	f uk ²⁾				
$k_6 = 0,6$ for fasteners m = 0,5 for fasteners m = 0,5 for fasteners m ²⁾ f _{uk} respectively shall be ta Table C2.2: Character fischer F	ade of carb ade of stain aken from th ristic resis	on ste less s le spe	el with teel cificat	י 500 י ions o	< f _{uk} ≤ f the re	1000 ebar.			n ans	shea	ır loa	ding o	of
fischer FRA				M12		N	116		M2	20		M24	
Characteristic resistance to s	teel failure	unde	r tens	ion lo	ading								
Characteristic resistance	N _{Rk,s}	[kN]		62,1			0,5		172	2,7		263,0)
Partial factor ¹⁾					1								
Partial factor	γMs	[-]						1,4					
Characteristic resistance to s	teel failure	unde	r shea	ar loa	ding								
Without lever arm													
Characteristic resistance	V^0 Rk,s	[kN]		33,7		6	2,8		98	,0		141,2	2
Ductility factor	k 7	[-]						1,0					
With lever arm													
Characteristic resistance	M ⁰ Rk,s	[Nm]		104,8		26	6,3		519	9,2		898,0)
Partial factor ¹⁾													
Partial factor	γMs	[-]						1,25					
¹⁾ In absence of other nationa	I regulations	5.											
fischer injection system F Performance Characteristic resistance to st fischer FRA		nder te	ensior	n and :	shear I	oadin	g of R	ebars	and		Anne	x C 2	2

Size								Α	ll siz	zes			
Tension loading													
Installation factor	γinst	[-]					Se	e ann	ex (C 4 to C	6		
Factors for the compressive s	trength o	f conc	rete >	C2()/25								
				Unc	racke	d	concre	te		(Cracked	concret	е
	C25/30				1,	0	5				1,	02	
Increasing factor ψ_c for	C30/37				1,	,09	9				1,	05	
cracked or uncracked	C35/45				1,	12	2				1,	06	
concrete	C40/50	[-]			1,	,16	6				1,	08	
$\tau_{Rk(X,Y)} = \psi_{c} \cdot \tau_{Rk(C20/25)}$	C45/55				1,	,19	9				1,	09	
	C50/60				1,	,2 ⁻	1				1,	11	
Splitting failure													
Edge $h / h_{ef} \ge 2$.,0								1,0 ŀ	lef			
Edge 2,0 > h / h _{e f} > 1	,3 C _{cr,sp}	[mm]						4,6	h _{ef} -	1,8 h			
h / $h_{ef} \le 1$,3							2	,26	h _{ef}			
Spacing	S cr,sp							2	2 C cr,	sp			
Concrete cone failure													
Uncracked concrete	k ucr,N	[-]							11,0)			
Cracked concrete	k cr,N	[_]							7,7				
Edge distance	C cr,N	[mm]							1,5 ł	lef			
Spacing	S cr,N	[]							2 C cr	,N			
Factors for sustained tension	loading												
Temperature range		[-]	24	4 °C	/ 43 °	С		43 °	C / 6	30 °C	5	50 °C / 7	2 °C
Factor	Ψ^0 sus	[-]		0	,66				0,6	1		0,60	
Shear loading		<u> </u>									-		
Installation factor	γinst	[-]							1,0				
Concrete pry-out failure	1								,				
Factor for pry-out failure	k ₈	[-]							2,0				
Concrete edge failure									,				
Effective length of fastener for shear loading	lf	[mm]					4 mm: 4 mm:				300 mm))	
Effective diameter of the faster	ner d _{nom}												
Size			M8		M10		M12	M16	3	M20	M24	M27	M
Anchor rods and Threaded rods	d _{nom}	[mm]	8		10		12	16		20	24	27	3
fischer FRA	d _{nom}		_1)		_1)		12	16		20	25	_1)	-
Size (nominal diameter of the rel	bar)	φ	8	10	12	2	14	16	20	25	26	28 3	
Rebar	d _{nom}	[mm]	8	10	12	2	14	16	20	25	26	28 3	0
¹⁾ Anchor type not part of the a	issessme	nt			ľ		•					•	
fischer injection system FI	S EB II												
Performance											Δ	nnex (3

Ancho	cteristic re or rods an cked or c	d Threa	ded ro	ods in h	•				l ure for	
Anchor rod / Threaded ro	d		M8	M10	M12	M16	M20	M24	M27	M30
Combined pullout and co		e failure								
Calculation diameter	d	[mm]	8	10	12	16	20	24	27	30
Uncracked concrete	-			-	-	-	_	-	_	
Characteristic bond resis	tance in ur	ncracked	concret	e C20/2	5					
Hammer-drilling with stand	ard drill bit (dry or wet	concre	te)						
Tem I: 24 °C / 43 °C)		14,0	14,0	14,0	14,0	14,0	13,0	12,0	12,0
perature II: 43 °C / 60 °C	$\tau_{\rm Rk,ucr}$	[N/mm ²]	14,0	13,0	13,0	12,0	11,0	10,0	8,5	8,5
range III: 50 °C / 72 °C	<u> </u>		9,0	9,0	9,0	9,0	9,0	8,5	8,0	7,5
Hammer-drilling with stand	ard drill bit (water fille	d hole)			1	1	1	1	1
TemI: 24 °C / 43 °C)		14,0	14,0	14,0	14,0	14,0	12,0	12,0	12,0
perature II: 43 °C / 60 °C	\sim $\tau_{\rm Rk,ucr}$	[N/mm ²]	12,0	11,0	11,0	10,0	9,5	8,5	8,5	8,5
range III: 50 °C / 72 °C			9,0	9,0	9,0	8,5	8,0	7,5	7,0	6,5
Installation factors			,	,	,	,		· ·	,	
Dry or wet concrete						1	,2			
Water filled hole	γinst	[-]				1	,4			
Cracked concrete										
Characteristic bond resis	tance in cr	acked co	ncrete (C20/25						
Hammer-drilling with stand	ard drill bit (dry or wet	concre	<u>te)</u>						
Tem I: 24 °C / 43 °C	<u>) </u>		7,0	7,0	7,0	6,5	6,0	6,0	5,5	5,5
perature II: 43 °C / 60 °C	τ _{Rk,cr}	[N/mm ²]	6,5	6,5	6,5	6,0	6,0	6,0	5,5	5,5
range III: 50 °C / 72 °C	>		6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0
Hammer-drilling with stand	ard drill bit (water fille	d hole)	1	1	1	1	1	1	
I: 24 °C / 43 °C)		7,0	7,0	7,0	6,5	6,0	6,0	5,5	5,5
perature II: 43 °C / 60 °C	$\tau_{\rm Rk,cr}$	[N/mm ²]	5,5	5,5	5,5	5,0	4,5	4,5	4,0	4,0
range III: 50 °C / 72 °C			5,5	5,5	5,5	5,0	4,0	4,0	4,0	4,0
Installation factors			,	,	,	,		,	,	
Dry or wet concrete						1	,2			
Water filled hole	— γinst	[-]				1	,4			
fischer injection system	m FIS EB	11							nnov (` /
Performance								A	nnex C	,4

Characteristic resistance to combined pull-out and concrete failure for Anchor rod and Threaded rods

Page 25 of European Technical Assessment ETA-21/0469 of 25 July 2023

Rebars		φ	8	10	12	14	16	20	25	26	28	30	32
Combined pullout and conc	rete cor	e failure							_		-		
Calculation diameter	d	[mm]	8	10	12	14	16	20	25	26	28	30	32
Uncracked concrete	-	•					-					•	
Characteristic bond resista	nce in ui	ncracked	conci	rete C	20/25								
Hammer-drilling with standard	drill bit (dry or we	t conc	<u>rete)</u>			I	I			-		
Tem I: 24 °C / 43 °C			14,0	14,0	14,0	13,0	13,0	12,0	11,0	11,0	11,0	11,0	11,0
perature II: 43 °C / 60 °C	$ au_{Rk,ucr}$	[N/mm ²]	14,0	13,0	13,0	12,0	11,0	10,0	10,0	9,0	8,5	8,0	8,0
range III: 50 °C / 72 °C	-		9,0	9,0	9,0	9,0	9,0	9,0	8,5	8,5	8,0	8,0	7,5
Hammer-drilling with standard	drill bit	water fille	d hole	<u>;)</u>			1	1					
TemI: 24 °C / 43 °C			14,0	14,0	14,0	12,0	12,0	12,0	11,0	11,0	11,0	11,0	11,0
perature II: 43 °C / 60 °C	- τ _{Rk.ucr}	[N/mm ²]	11,0	11,0	10,0	9,5	9,5	9,0	8,5	8,5	8,5	7,5	7,5
range III: 50 °C / 72 °C	-		9,0	9,0	9,0	8,5	8,0	7,5	7,0	6,5	6,5	6,0	6,0
Installation factors			,	,	,	,	,	,	,	,	,	,	,
Dry or wet concrete								1,2					
Water filled hole	- γinst	[-]						1,4					
Cracked concrete			1										
Characteristic bond resista	nce in cı	acked co	ncret	e C20/	25								
Hammer-drilling with standard	drill bit (dry or we	t conc	<u>rete)</u>				-					-
Tem I: 24 °C / 43 °C			7,0	7,0	7,0	6,5	6,5	6,0	6,0	5,5	5,5	5,5	5,5
perature II: 43 °C / 60 °C	· τ _{Rk,cr}	[N/mm ²]	6,5	6,5	6,5	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0
range III: 50 °C / 72 °C	-		6,0	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0	5,0	4,5
Hammer-drilling with standard	drill bit (water fille	d hole	<u></u>									
L: 24 °C / 43 °C			7,0	7,0	7,0	7,0	6,5	6,0	6,0	5,5	5,5	5,5	5,5
perature II: 43 °C / 60 °C	$ au_{Rk,cr}$	[N/mm ²]	5,5	5,5	5,5	5,0	5,0	4,5	4,0	4,0	4,0	4,0	3,5
range III: 50 °C / 72 °C	-		5,5	5,5	5,5	5,0	5,0	4,0	4,0	4,0	4,0	4,0	3,5
Installation factors			-,-	-,-	-,-	-,-	-,-	-,-	-,-	.,-	-,-		-,-
Dry or wet concrete								1,2					
Water filled hole	· γinst	[-]						1,4					
		I						.,.					
fischer injection system Performance	FIS EB	II										x C 5	

	RA			M12	M16	M20	M24
Combine	d pullout and conc	rete con	e failure			•	
Calculatio	n diameter	d	[mm]	12	16	20	25
Uncracke	d concrete						
Characte	ristic bond resista	nce in ui	ncracked	concrete C20/2	5		
Hammer-o	drilling with standard	l drill bit (dry or wet	<u>concrete)</u>	I	I	1
Tem	l: 24 °C / 43 °C	_		14,0	13,0	12,0	11,0
•	II: 43 °C / 60 °C	$ au_{Rk,ucr}$	[N/mm ²]	13,0	11,0	10,0	10,0
range –	III: 50 °C / 72 °C			9,0	9,0	9,0	8,5
Hammer-o	drilling with standard	l drill bit (water fille	<u>d hole)</u>	-		-
Tem	l: 24 °C / 43 °C			14,0	12,0	12,0	11,0
perature	II: 43 °C / 60 °C	- τ _{Rk,ucr}	[N/mm ²]	10,0	9,5	9,0	8,5
range –	III: 50 °C / 72 °C	-		9,0	8,0	7,5	7,0
Installatio	on factors				1	1	
Dry or wet	t concrete		1		1	,2	
Water fille	d hole	- γinst	[-]		1	,4	
Cracked of	concrete	-					
	ristic bond resista						
Hammer-o	drilling with standard	drill bit (dry or wet	<u>concrete)</u>			1
Tem	l: 24 °C / 43 °C	_		7,0	6,5	6,0	6,0
•	II: 43 °C / 60 °C	$ au_{Rk,cr}$	[N/mm ²]	6,5	6,0	6,0	5,5
range –	III: 50 °C / 72 °C			6,0	5,5	5,5	5,5
Hammer-o	drilling with standard	l drill bit (water fille	<u>d hole)</u>	-		
Tem	l: 24 °C / 43 °C	_		7,0	6,5	6,0	6,0
perature	II: 43 °C / 60 °C	$ au_{Rk,cr}$	[N/mm ²]	5,5	5,0	4,5	4,0
range –	III: 50 °C / 72 °C	-		5,5	5,0	4,0	4,0
Installatio			1		1	1	
Dry or wet	t concrete	- 0/: 1	[-]		1	,2	
Water fille	d hole	- γinst			1	,4	

Characteristic resistance for combined pull-out and concrete failure for fischer FRA

	rod	M8	I	110	M12	M1	6	M20	M24	M2	27	M30
Displace	ement-Factors	for tens	ion load	ding ¹⁾		•	÷			•	÷	
Jncrack	ed or cracked	concret	e; Temp	perature	e range I,	, II, III						
N0-Factor	[mm/(N/mm ²)]	0,08	0	,08	0,09	0,10	0 0	D,11	0,12	0,1	12	0,13
N∞-Factor	[0,11	0	,12	0,13	0,1	5 (0,16	0,17	0,1	8	0,19
	ement-Factors											
	ed or cracked		· · ·				-					
0V0-Factor	[mm/kN]	0,19		,15	0,13	0,10		0,08	0,07	0,0		0,05
0V∞-Factor		0,28		,22	0,19	0,14		0,11	0,10	0,0)9	0,08
1) Calcu	ulation of effecti	ve displa	acement					f effectiv	e displa	cement:		
δ _{N0} =	δ N0-Factor \cdot $ au$					δvo =	δV0-Factor	٠V				
δ _{N∞} =	[:] δ _{N∞-Factor} · τ					δ _{V∞} =	= δ∨∞-Facto	or · V				
τ=	acting bond st	rength u	nder ten	sion loa	ding	V = a	acting sh	near load	ing			
Nominal of the re	diameter bar φ	8	10	12	14	16	20	25	26	28	30	32
ischer F	RA	_1)	_1)	M12	_1)	M16	M20	M24	_1)	_1)	_1)	_1)
								11/24		- "	- ·	
Displace	ement-Factors	for tens	ion load	ding ²⁾	-		11/20	11/24				
-	ement-Factors ed or cracked			-	e range I,		14120	11/24	• *		•	
-	ed or cracked			-	range I , 0,10		0,11	0,12	0,12	0,13	0,13	0,13
Jncrack		concret	e; Temp	perature		, 11, 111						
Jncrack DN0-Factor DN∞-Factor	ed or cracked	concret 0,08 0,11	e; Temp 0,08 0,12	0,09 0,13	0,10	, II, III 0,10	0,11	0,12	0,12	0,13	0,13	0,13
Jncrack Ď№-Factor Ď№-Factor Displace	ed or cracked [mm/(N/mm ²)]	concret 0,08 0,11 for shea	e; Temp 0,08 0,12 ar loadin e; Temp	0,09 0,13 0 g ³⁾	0,10 0,14 range I,	, II, III 0,10 0,15	0,11 0,16	0,12	0,12	0,13	0,13	0,13
Jncrack Ď№-Factor Ď№-Factor Displace	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked	concret 0,08 0,11 for shea concret 0,19	e; Temp 0,08 0,12 ar loadin e; Temp 0,15	0,09 0,13 19 ³⁾ Derature 0,13	0,10 0,14 e range I, 0,11	, II, III 0,10 0,15 , II, III 0,10	0,11 0,16 0,08	0,12 0,18 0,06	0,12 0,18 0,06	0,13 0,19 0,06	0,13 0,19 0,05	0,13
Jncrack Š№-Factor Š№-Factor Displace Jncrack	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked	concret 0,08 0,11 for shea concret	e; Temp 0,08 0,12 ar loadin e; Temp	0,09 0,13 0 g ³⁾	0,10 0,14 range I,	, II, III 0,10 0,15 , II, III	0,11 0,16	0,12 0,18	0,12 0,18	0,13 0,19	0,13 0,19	0,13
Jncrack N0-Factor N∞-Factor Displace Jncrack N0-Factor N∞-Factor ¹⁾ Anch	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked [mm/kN] or type not part	concret 0,08 0,11 for shea concret 0,19 0,28 of the a	e; Temp 0,08 0,12 ar loadiu e; Temp 0,15 0,22 ssessme	Derature 0,09 0,13 ng ³⁾ Derature 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,19	0,10 0,14 e range I, 0,11	, II, III 0,10 0,15 , II, III 0,10 0,14	0,11 0,16 0,08 0,11	0,12 0,18 0,06 0,09	0,12 0,18 0,06 0,09	0,13 0,19 0,06 0,08	0,13 0,19 0,05	0,13
Jncrack DN0-Factor Displace Jncrack DV0-Factor DV∞-Factor 1) Anch 2) Calcu	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked [mm/kN] or type not part ulation of effecti	concret 0,08 0,11 for shea concret 0,19 0,28 of the a	e; Temp 0,08 0,12 ar loadiu e; Temp 0,15 0,22 ssessme	Derature 0,09 0,13 ng ³⁾ Derature 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,19	0,10 0,14 e range I, 0,11	, II, III 0,10 0,15 , II, III 0,10 0,14 ³⁾ Calce	0,11 0,16 0,08 0,11 ulation o	0,12 0,18 0,06 0,09 f effectiv	0,12 0,18 0,06 0,09	0,13 0,19 0,06 0,08	0,13 0,19 0,05	0,13
Jncrack δN0-Factor Displace Jncrack δV0-Factor ¹⁾ Anch ²⁾ Calcu δ _{N0} =	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked [mm/kN] or type not part ulation of effecti δ _{N0-Factor} · τ	concret 0,08 0,11 for shea concret 0,19 0,28 of the a	e; Temp 0,08 0,12 ar loadiu e; Temp 0,15 0,22 ssessme	Derature 0,09 0,13 ng ³⁾ Derature 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,19	0,10 0,14 e range I, 0,11	, II, III 0,10 0,15 , II, III 0,10 0,14 ³⁾ Calcu δ _{V0} =	0,11 0,16 0,08 0,11 ulation o	0,12 0,18 0,06 0,09 f effectiv	0,12 0,18 0,06 0,09	0,13 0,19 0,06 0,08	0,13 0,19 0,05	0,13
Jncrack δN_0 -Factor δN_∞ -Factor Displace Jncrack δV_0 -Factor ¹⁾ Anch ²⁾ Calcu $\delta N_0 =$ $\delta N_\infty =$	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked [mm/kN] or type not part ulation of effecti $\delta_{N0-Factor} \cdot \tau$ $\delta_{N\infty-Factor} \cdot \tau$	concret 0,08 0,11 for shea concret 0,19 0,28 of the a ve displa	e; Temp 0,08 0,12 ar loadiu re; Temp 0,15 0,22 ssessme acement	0,09 0,13 ng ³⁾ oerature 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,19	0,10 0,14 e range I 0,11 0,16	$\begin{array}{c} , \mbox{ II, III} \\ 0,10 \\ 0,15 \\ , \mbox{ II, III} \\ 0,10 \\ 0,14 \\ \end{array}$	0,11 0,16 0,08 0,11 ulation o 5 V0-Factor = δV∞-Factor	0,12 0,18 0,06 0,09 f effectiv r · V	0,12 0,18 0,06 0,09 e displac	0,13 0,19 0,06 0,08	0,13 0,19 0,05	0,13
Jncrack δN_0 -Factor δN_∞ -Factor Displace Jncrack δV_0 -Factor ¹⁾ Anch ²⁾ Calcu $\delta N_0 =$ $\delta N_\infty =$	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked [mm/kN] or type not part ulation of effecti δ _{N0-Factor} · τ	concret 0,08 0,11 for shea concret 0,19 0,28 of the a ve displa	e; Temp 0,08 0,12 ar loadiu re; Temp 0,15 0,22 ssessme acement	0,09 0,13 ng ³⁾ oerature 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,19	0,10 0,14 e range I 0,11 0,16	$\begin{array}{c} , \mbox{ II, III} \\ 0,10 \\ 0,15 \\ , \mbox{ II, III} \\ 0,10 \\ 0,14 \\ \end{array}$	0,11 0,16 0,08 0,11 ulation o 5 V0-Factor = δV∞-Factor	0,12 0,18 0,06 0,09 f effectiv	0,12 0,18 0,06 0,09 e displac	0,13 0,19 0,06 0,08	0,13 0,19 0,05	0,13
Jncrack δN_0 -Factor δN_∞ -Factor Displace Jncrack δV_0 -Factor ¹⁾ Anch ²⁾ Calcu $\delta N_0 =$ $\delta N_\infty =$	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked [mm/kN] or type not part ulation of effecti $\delta_{N0-Factor} \cdot \tau$ $\delta_{N\infty-Factor} \cdot \tau$	concret 0,08 0,11 for shea concret 0,19 0,28 of the a ve displa	e; Temp 0,08 0,12 ar loadiu re; Temp 0,15 0,22 ssessme acement	0,09 0,13 ng ³⁾ oerature 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,19	0,10 0,14 e range I 0,11 0,16	$\begin{array}{c} , \mbox{ II, III} \\ 0,10 \\ 0,15 \\ , \mbox{ II, III} \\ 0,10 \\ 0,14 \\ \end{array}$	0,11 0,16 0,08 0,11 ulation o 5 V0-Factor = δV∞-Factor	0,12 0,18 0,06 0,09 f effectiv r · V	0,12 0,18 0,06 0,09 e displac	0,13 0,19 0,06 0,08	0,13 0,19 0,05	0,13
Jncrack δN_0 -Factor δN_∞ -Factor Displace Jncrack δV_0 -Factor ¹⁾ Anch ²⁾ Calcu $\delta N_0 =$ $\delta N_\infty =$	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked [mm/kN] or type not part ulation of effecti $\delta_{N0-Factor} \cdot \tau$ $\delta_{N\infty-Factor} \cdot \tau$	concret 0,08 0,11 for shea concret 0,19 0,28 of the a ve displa	e; Temp 0,08 0,12 ar loadiu re; Temp 0,15 0,22 ssessme acement	0,09 0,13 ng ³⁾ oerature 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,19	0,10 0,14 e range I 0,11 0,16	$\begin{array}{c} , \mbox{ II, III} \\ 0,10 \\ 0,15 \\ , \mbox{ II, III} \\ 0,10 \\ 0,14 \\ \end{array}$	0,11 0,16 0,08 0,11 ulation o 5 V0-Factor = δV∞-Factor	0,12 0,18 0,06 0,09 f effectiv r · V	0,12 0,18 0,06 0,09 e displac	0,13 0,19 0,06 0,08	0,13 0,19 0,05	0,13
Jncrack δN_0 -Factor δN_∞ -Factor Displace Jncrack δV_0 -Factor ¹⁾ Anch ²⁾ Calcu $\delta N_0 =$ $\delta N_\infty =$	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked [mm/kN] or type not part ulation of effecti $\delta_{N0-Factor} \cdot \tau$ $\delta_{N\infty-Factor} \cdot \tau$	concret 0,08 0,11 for shea concret 0,19 0,28 of the a ve displa	e; Temp 0,08 0,12 ar loadiu re; Temp 0,15 0,22 ssessme acement	0,09 0,13 ng ³⁾ oerature 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,19	0,10 0,14 e range I 0,11 0,16	$\begin{array}{c} , \mbox{ II, III} \\ 0,10 \\ 0,15 \\ , \mbox{ II, III} \\ 0,10 \\ 0,14 \\ \end{array}$	0,11 0,16 0,08 0,11 ulation o 5 V0-Factor = δV∞-Factor	0,12 0,18 0,06 0,09 f effectiv r · V	0,12 0,18 0,06 0,09 e displac	0,13 0,19 0,06 0,08	0,13 0,19 0,05	0,13
Jncrack δN_0 -Factor δN_∞ -Factor Displace Jncrack δV_0 -Factor ¹⁾ Anch ²⁾ Calcu $\delta N_0 =$ $\delta N_\infty =$	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked [mm/kN] or type not part ulation of effecti $\delta_{N0-Factor} \cdot \tau$ $\delta_{N\infty-Factor} \cdot \tau$	concret 0,08 0,11 for shea concret 0,19 0,28 of the a ve displa	e; Temp 0,08 0,12 ar loadiu re; Temp 0,15 0,22 ssessme acement	0,09 0,13 ng ³⁾ oerature 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,19	0,10 0,14 e range I 0,11 0,16	$\begin{array}{c} , \mbox{ II, III} \\ 0,10 \\ 0,15 \\ , \mbox{ II, III} \\ 0,10 \\ 0,14 \\ \end{array}$	0,11 0,16 0,08 0,11 ulation o 5 V0-Factor = δV∞-Factor	0,12 0,18 0,06 0,09 f effectiv r · V	0,12 0,18 0,06 0,09 e displac	0,13 0,19 0,06 0,08	0,13 0,19 0,05	0,13
Jncrack δN_0 -Factor δN_∞ -Factor Displace Jncrack δV_0 -Factor ¹⁾ Anch ²⁾ Calcu $\delta N_0 =$ $\delta N_\infty =$	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked [mm/kN] or type not part ulation of effecti $\delta_{N0-Factor} \cdot \tau$ $\delta_{N\infty-Factor} \cdot \tau$	concret 0,08 0,11 for shea concret 0,19 0,28 of the a ve displa	e; Temp 0,08 0,12 ar loadiu re; Temp 0,15 0,22 ssessme acement	0,09 0,13 ng ³⁾ oerature 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,19	0,10 0,14 e range I 0,11 0,16	$\begin{array}{c} , \mbox{ II, III} \\ 0,10 \\ 0,15 \\ , \mbox{ II, III} \\ 0,10 \\ 0,14 \\ \end{array}$	0,11 0,16 0,08 0,11 ulation o 5 V0-Factor = δV∞-Factor	0,12 0,18 0,06 0,09 f effectiv r · V	0,12 0,18 0,06 0,09 e displac	0,13 0,19 0,06 0,08	0,13 0,19 0,05	0,13
Jncrack δN_0 -Factor δN_∞ -Factor Displace Jncrack δV_0 -Factor ¹⁾ Anch ²⁾ Calcu $\delta N_0 =$ $\delta N_\infty =$	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked [mm/kN] or type not part ulation of effecti $\delta_{N0-Factor} \cdot \tau$ $\delta_{N\infty-Factor} \cdot \tau$	concret 0,08 0,11 for shea concret 0,19 0,28 of the a ve displa	e; Temp 0,08 0,12 ar loadiu re; Temp 0,15 0,22 ssessme acement	0,09 0,13 ng ³⁾ oerature 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,19	0,10 0,14 e range I 0,11 0,16	$\begin{array}{c} , \mbox{ II, III} \\ 0,10 \\ 0,15 \\ , \mbox{ II, III} \\ 0,10 \\ 0,14 \\ \end{array}$	0,11 0,16 0,08 0,11 ulation o 5 V0-Factor = δV∞-Factor	0,12 0,18 0,06 0,09 f effectiv r · V	0,12 0,18 0,06 0,09 e displac	0,13 0,19 0,06 0,08	0,13 0,19 0,05	0,13
Jncrack δN_0 -Factor δN_{∞} -Factor Displace Jncrack δV_0 -Factor ¹⁾ Anch ²⁾ Calcu $\delta N_0 =$ $\delta N_\infty =$ $\tau =$	ed or cracked [mm/(N/mm ²)] ement-Factors ed or cracked [mm/kN] or type not part ulation of effecti $\delta_{N0-Factor} \cdot \tau$ $\delta_{N\infty-Factor} \cdot \tau$	concret 0,08 0,11 for shea concret 0,19 0,28 of the a ve displa	e; Temp 0,08 0,12 ar loadin e; Temp 0,15 0,22 ssessme acement	0,09 0,09 0,13 1g ³⁾ 0erature 0,13 0,13 0,19 ent sion loa	0,10 0,14 e range I 0,11 0,16	$\begin{array}{c} , \mbox{ II, III} \\ 0,10 \\ 0,15 \\ , \mbox{ II, III} \\ 0,10 \\ 0,14 \\ \end{array}$	0,11 0,16 0,08 0,11 ulation o 5 V0-Factor = δV∞-Factor	0,12 0,18 0,06 0,09 f effectiv r · V	0,12 0,18 0,06 0,09 e displac	0,13 0,19 0,06 0,08	0,13 0,19 0,05	0,13

Displacements for Anchor rods, Threaded rods, Rebars and fischer FRA

Table C8.1: Characteristics resistance to steel failure under tension / shear loading of Anchor rods and Threaded rods under seismic action performance category C1 or C2 M12 M14 M20 Anchor rod / Threaded rod M16 M22 M24 M27 M30 Characteristic resistance to steel failure under tension loading¹⁾ Anchor rods and Threaded rods, performance category C1 224,4 4.8 33,7 46,0 62,8 98,0 121,2 141,2 183,6 ę sistance N_{Rk,s,C1} 5.8 Steel zinc plated 42,1 57,5 78,5 122,5 151,5 176,5 229,5 280,5 Characteristic 8.8 67,4 92.0 125,6 196,0 242,4 367,2 448.8 282,4 Property [kN] 50 42,1 class 57,5 78,5 122,5 | 151,5 | 176,5 | 229,5 280,5 Stainless steel R and high corrosion 70 59.0 80,5 109,9 171,5 212,1 247,1 321,3 392,7 resistant steel HCR 80 67,4 92,0 125,6 196,0 242,4 282,4 367,2 448,8 Anchor rods and Threaded rods, performance category C2 _2) _2) _2) _2) 88,2 141,2 4.8 30,3 56,5 ę sistance N_{Rk,s,C2} 37,9 _2) 110,2 _2) 176,5 _2) _2) Steel zinc plated 5.8 70,6 Characteristic _2) _2) 176,4 _2) 282,4 _2) 8.8 60,6 113,0 Property [-] _2) _2) _2) _2) class 37,9 176,5 50 70,6 110,2 Stainless steel R and 70 53,1 _2) 154,3 _2) 247,1 _2) _2) high corrosion 98.9 resistant steel HCR _2) _2) _2) _2) 80 60,6 113,0 176,4 282,4 Characteristic resistance to steel failure under shear loading without lever arm¹⁾ Anchor rods, performance category C1 4.8 20,2 27,6 37,6 58,8 72,7 84,7 110,1 134,6 sistance V⁰Rk,s,C1 ģ 25,2 Steel zinc plated 5.8 34,5 47,1 73,5 90,9 105,9 137,7 168,3 Characteristic 33,7 46.0 62.8 98,0 121,2 141,2 183,6 224,4 8.8 Property [kN] class 50 21,0 28,7 39.2 61,2 75.7 88,2 114,7 140,2 Stainless steel R and 70 29,5 40,2 54,9 85,7 106,0 123,5 160,6 196.3 high corrosion resistant steel HCR 80 46,0 62,8 98,0 121,2 224,4 33,7 141,2 183,6 Threaded rods, performance category C1 4.8 14,1 19,3 26,3 41,1 50,9 59,3 77,1 94,2 : V⁰Rk,s,C1 ģ 5.8 17,7 24,1 32,9 51,4 63,6 74,1 96,3 117,8 Steel zinc plated Characteristic 8.8 23,6 32,2 43,9 68,6 84,8 98,8 128,5 157,0 Property [kN] sistance class 50 14,7 53,0 80,3 20,1 27,4 42,8 61,7 98,1 Stainless steel R and high corrosion 70 20.6 28,1 38.4 60.0 74,2 86,4 112,4 137,4 resistant steel HCR 80 23,6 32,2 43,9 68,6 84,8 98,8 128,5 157,0 Anchor rods and Threaded rods, performance category C2 _2) _2) _2) _2) 13,3 28,2 45,2 77,0 4.8 $V^{0}_{Rk,s,C2}$ Characteristic re-_2) _2) _2) _2) Steel zinc plated 5.8 16,6 35,3 56,5 96,3

_2)

_2)

_2)

_2)

47,1

29,4

41,2

47,1

75,4

47,1

66,0

75,4

22,2

13,9

19,4

22.2

¹⁾ Partial factors for performance category C1 or C2 see **table C10.1**;

Property

class

8.8

50

70

80

[-]

for anchor rods the factor for steel ductility is 1,0 ²⁾ No performance assessed

Stainless steel R and

resistant steel HCR

high corrosion

fischer injection system FIS EB II

Performance

sistance

Characteristic resistance to steel failure for Anchor rods and Threaded rods under seismic action (performance category C1 / C2)

Annex C 8

_2)

_2)

_2)

_2)

128,4

80,3

112,4

128,4

_2)

_2)

_2)

_2)

_2)

_2)

_2)

_2)

Table C9.1:	Characterist of Rebars (E		nce t	o stee	l failui	e unde	r tensi	on / sh	ear loa	ding	
	under seism		perfo	ormanc	e cate	gory C 1	l or C2	2			
Nominal diameter	of the rebar		ф	12	14	16	20	25	26	28	30
Characteristic res	sistance to stee	el failure u	nder t	ension	loading	1 ¹⁾					
Rebar B500B acc	. to DIN 488-2:2	2009-08, p	erform	nance c	ategory	v C1					
Characteristic resis	stance	N _{Rk,s,C1}	[kN]	61,0	83,1	108,5	169,5	265,1	286,2	332,6	381,2
Rebar B500B acc	. to DIN 488-2:2	2009-08, p	erform	nance c	ategory	/ C2					
Characteristic resis	stance	N _{Rk,s,C2}	[kN]	54,9	_2)	97,6	152,6	_2)	_2)	_2)	_2)
Characteristic res	sistance to stee	el failure u	nder s	shear lo	ading,	without	lever a	rm ¹⁾			
Rebar B500B acc			_		ategory						
Characteristic resis		V ⁰ Rk,s,C1	[kN]	,	29,1	37,9	59,3	92,7	100,1	116,4	133,4
Rebar B500B acc						1			0		0)
Characteristic resis	stance	$V^0_{Rk,s,C2}$	[kN]	20,1	_2)	40,7	65,2	_2)	_2)	_2)	_2)
²⁾ No performand	Characterist of fischer Fl under seism	RA							ear loa	ding	
fischer FRA				М	12	M	16	м	20	М	24
Characteristic res	sistance to stee	el failure u	nder t	ension	loading	a ¹⁾				-	
fischer FRA, perf						9					
Characteristic resis	•	N _{Rk,s,C1}	[kN]	62	2,1	11	0,5	17	2,7	26	3,0
fischer FRA, perfe	ormance catego	ory C2			-	1	-				
Characteristic resis	stance	N _{Rk,s,C2}	[kN]	55	5,8	99),4	15	5,4	_	2)
Characteristic res	sistance to stee	el failure u	nders	shear lo	ading,	without	lever a	rm ¹⁾		-	
fischer FRA, perf	ormance categ	ory C1									
Characteristic resis	stance	$V^0_{Rk,s,C1}$	[kN]	33	3,7	62	2,8	98	3,0	14	1,2
fischer FRA, perf	ormance catego	-									
Characteristic resis	stance	$V^0_{Rk,s,C2}$	[kN]	22	2,2	47	',1	75	5,4	-	2)
¹⁾ Partial factors ²⁾ No performand		category	C1 or t	C2 see 1	table C [^]	10.1					
fischer injectio Performance Characteristic res fischer FRA unde	sistance to steel	failure und					Rebars a	and	A	nnex C	9

Steel zinc platedM12M16M20M24 -3^3 $\frac{50}{00}$ Stainless steel R and high corrosion resistant steel HCR $\frac{5.8}{50}$ Rebar $1,50$ $1,50$ $\frac{50}{120}$ $\frac{5.8}{100}$ $1,60$ $1,60$ $\frac{50}{120}$ $\frac{5.8}{100}$ $1,60$ $\frac{50}{120}$ $1,60$ $1,60$ $\frac{50}{120}$ $1,40$ $\frac{50}{120}$ $1,25$ $\frac{50}{120}$ $1,25$ $\frac{50}{120}$ $1,25$ $\frac{50}{120}$ $1,25$ $\frac{50}{120}$ $1,25$ $\frac{50}{120}$ $1,56$ $\frac{50}{120}$ $1,56$ $\frac{50}{120}$ $1,56$ $\frac{50}{120}$ $1,50$ $\frac{50}{100}$ $1,50$ </th <th></th> <th>nor rod / Threaded rod</th> <th></th> <th></th> <th></th> <th>M12</th> <th>M</th> <th>16</th> <th>M20</th> <th>M24</th> <th>IV</th> <th>127</th> <th>M30</th>		nor rod / Threaded rod				M12	M	16	M20	M24	IV	127	M30		
Steel zinc plated Property 4.8 Stainless steel R and high corrosion resistant steel HCR 9700 Rebar B500B fischer FRA 1,80 1,80 Steel zinc plated 4.8 1,80 1,80 Rebar B500B fischer FRA 1,40 1,40 itear loading, steel failure ¹) Steel zinc plated 4.8 1,25 Stainless steel R and reg resistant steel HCR Rebar B500B fischer FRA 1,25 Stainless steel R and reg resistant steel HCR Rebar B500B fischer FRA I 1,25 1,50 1,33 Rebar B500B fischer FRA I 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 <t< th=""><th></th><th></th><th>bar</th><th></th><th>φ</th><th></th><th></th><th></th><th></th><th></th><th></th><th>28</th><th></th></t<>			bar		φ							28			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			4			M12	M	16	M20	M24		_3)	_3)		
Steel zinc plated Property 5.0 Stainless steel R and high corrosion resistant steel HCR 0 1,50 Rebar B500B 1,40 fischer FRA 1,40 hear loading, steel failure* 4.8 1,25 Stainless steel R and high corrosion resistant steel HCR 6.8 1,25 Stainless steel R and resistant steel HCR 6.8 1,25 Stainless steel R and resistant steel HCR 6.8 1,25 Stainless steel R and resistant steel HCR 6.0 1,33 Rebar B500B 1,50 Ficher FRA 1,50 '1 In absence of other national regulations 1,50 '2 Only admissible for high corrosion resistant steel HCR, with fydik 0.9 and fix 4.8 do0 N/mm? 1,50 '1 In absence of other national regulations 1,50 '2 Anchor type not part of the assessment Anchor type not part of the assessment	ens	ion loading, steel failu	re ¹⁾			[
Image: Stainless steel R and high corrosion resistant steel HCR Property diss 8.8 / 50 / 70 / 1.87 / fischer HCR: 1,50 Rebar B500B 1,40 Rebar B500B 1,40 fischer FRA 1,40 ibear loading, steel failure ¹⁰ Image: Steel Stainless steel R and resistant steel HCR 1,25 Stainless steel R and resistant steel HCR Stainless steel R and resistant steel HCR 1,25 Rebar B500B 1,25 Stainless steel R and resistant steel HCR 50 / 70 / 80 1,50 / fischer HCR: 1,25 ²) Rebar B500B 1,50 fischer FRA 1,50 10 absence of other national regulations 1,50 10 nabsence of the assessment		-													
Rebar B500B fischer FRA hear loading, steel failure ¹⁾ 4.8 Steel zinc plated 4.8 Property 8.8 high corosion 50 resistant steel HCR 80 Rebar B500B fischer FRA 1,56 / fischer HCR: 1,25 ²) resistant steel HCR 80 Rebar B500B fischer FRA 1,33 1,50 1,50 1,50 1,50 1,50 1 nabsence of other national regulations 2) Only admissible for high corrosion resistant steel HCR, with f _y /fux ≤ 0.8 and f _{ux} ≤ 800 N/mm² (e.g. anchor rods) 3) Anchor type not part of the assessment	Ms	Steel zinc plated													
Rebar B500B fischer FRA hear loading, steel failure ¹⁾ 4.8 Steel zinc plated 4.8 Property 8.8 high corosion 50 resistant steel HCR 80 Rebar B500B fischer FRA 1,56 / fischer HCR: 1,25 ²) resistant steel HCR 80 Rebar B500B fischer FRA 1,33 1,50 1,50 1,50 1,50 1,50 1 nabsence of other national regulations 2) Only admissible for high corrosion resistant steel HCR, with f _y /fux ≤ 0.8 and f _{ux} ≤ 800 N/mm² (e.g. anchor rods) 3) Anchor type not part of the assessment	or γ														
RebarB500B1,40fischerFRA1,40hear loading, steel failure? 4.8 1,25Steel zinc plated 4.8 1,25Stainless steel R and high corrosion resistant steel HCR 50 1,36RebarB500B1,56 / fischer HCR: 1,25?)RebarB500B1,50fischerFRA1,50*) In absence of other national regulations1,50*) Only admissible for high corrosion resistant steel HCR, with fyvffuk < 0.8 and fuk < 800 N/mm² (e.g. anchor rods)	fact		class		[-]										
RebarB500B1,40fischerFRA1,40hear loading, steel failure? 4.8 1,25Steel zinc plated 4.8 1,25Stainless steel R and high corrosion resistant steel HCR 50 1,36RebarB500B1,56 / fischer HCR: 1,25?)RebarB500B1,50fischerFRA1,50*) In absence of other national regulations1,50*) Only admissible for high corrosion resistant steel HCR, with fyvffuk < 0.8 and fuk < 800 N/mm² (e.g. anchor rods)	m high corrosion 70 ₩ resistant steel HCR 80							1,8			,50				
fischer FRA 1,40 hear loading, steel failure ¹ 4.8 1,25 Steel zinc plated Froperty 8.8 1,25 Stainless steel R and high corrosion resistant steel HCR Property 8.8 1,25 Rebar B500B 1,36 1,33 Property 8.0 1,33 Rebar B500B 1,50 1 nabsence of other national regulations 2 Only admissible for high corrosion resistant steel HCR, with fyk/fuk ≤ 0,8 and fuk ≤ 800 N/mm² (e.g. anchor rods) 3) Anchor type not part of the assessment	Par														
Steel zinc plated Property 4.8 5.8 8.8 bigh corrosion resistant steel HCR 1,25 1,25 Rebar class 50 70 80 1,56 / fischer HCR: 1,25 ²) Rebar B500B 1,50 fischer FRA 1,50 '1 In absence of other national regulations 2' Only dwflisk < 0,8 and fisk < 800 N/mm² (e.g. anchor rods)			1,40												
Steel zinc plated Property Stainless steel R and high corrosion resistant steel HCR 70 70				FRA					1,	40					
Steel zinc platedProperty class $\overline{5.8}$ $\overline{60}$ $\overline{70}$ $1,25$ $1,25$ Stainless steel R and high corrosion resistant steel HCR $\overline{60}$ $\overline{70}$ $1,56$ / fischer HCR: $1,25^2$)RebarB500B $1,50$ fischerFRA $1,50$ 1 In absence of other national regulations 2^2 Only admissible for high corrosion resistant steel HCR, with fys/fisk $\leq 0,8$ and fisk ≤ 800 N/mm² (e.g. anchor rods) 2^3 Anchor type not part of the assessment	hea	r loading, steel failure ¹)			-									
Stainless steel R and high corrosion resistant steel HCR Rad 1,25 Rebar B500B 1,56 / fischer HCR: 1,25 ²) ************************************															
Rebar B500B 1,50 fischer FRA 1,50 ¹) In absence of other national regulations 2) Only admissible for high corrosion resistant steel HCR, with fyk/fuk ≤ 0,8 and fuk ≤ 800 N/mm² (e.g. anchor rods) 3) Anchor type not part of the assessment	٨s	Steel zinc plated													
Rebar B500B 1,50 fischer FRA 1,50 ¹) In absence of other national regulations 2) Only admissible for high corrosion resistant steel HCR, with fyk/fuk ≤ 0,8 and fuk ≤ 800 N/mm² (e.g. anchor rods) 3) Anchor type not part of the assessment ³) Anchor type not part of the assessment 5) 5)	or y _h														
Rebar B500B 1,50 fischer FRA 1,50 ¹ In absence of other national regulations 2) Only admissible for high corrosion resistant steel HCR, with fyk/fuk ≤ 0,8 and fuk ≤ 800 N/mm² (e.g. anchor rods) 3) Anchor type not part of the assessment	acto	Stainless steel R and	class	50	[-]										
Rebar B500B 1,50 fischer FRA 1,50 ¹) In absence of other national regulations 2) Only admissible for high corrosion resistant steel HCR, with fyk/fuk ≤ 0,8 and fuk ≤ 800 N/mm² (e.g. anchor rods) 3) Anchor type not part of the assessment ³) Anchor type not part of the assessment 5) 5)	tial f			70				1,56	3 / fische	r HCR: 1	:R: 1,25 ²⁾				
fischer FRA 1,50 ¹⁾ In absence of other national regulations 2) Only admissible for high corrosion resistant steel HCR, with fyk/fuk ≤ 0,8 and fuk ≤ 800 N/mm² (e.g. anchor rods) 3) Anchor type not part of the assessment	Part			80					1,	33					
 ¹⁾ In absence of other national regulations ²⁾ Only admissible for high corrosion resistant steel HCR, with fyk/fuk ≤ 0,8 and fuk ≤ 800 N/mm² (e.g. anchor rods) ³⁾ Anchor type not part of the assessment 		Rebar		B500B					1,	50					
 ²⁾ Only admissible for high corrosion resistant steel HCR, with fyl/fuk ≤ 0,8 and fuk ≤ 800 N/mm² (e.g. anchor rods) ³⁾ Anchor type not part of the assessment 		fischer		FRA					1,	50					
	v	with $f_{yk}/f_{uk} \le 0,8$ and $f_{uk} \le 8$	800 N/mm²	(e.g. a											
fischer injection system FIS EB II															

Partial factors for Anchor rods, Threaded rods, Rebars and fischer FRA under seismic action performance category C1 or C2

Table C11.1: Characteristics resistance for combined pull-out and concrete failure for Anchor rods and Threaded rods in hammer drilled holes under seismic action performance category C1 Anchor rod / Threaded rod M12 M16 M20 M24 M27 M30 Characteristic bond resistance, combined pull-out and concrete cone failure Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete) I: 24 °C / 43 °C 6,5 5,6 5,0 5,5 5,5 5,5 Tem-II: 43 °C / 60 °C τ_{Rk,C1} perature [N/mm²] 6,5 5,6 5,0 5,5 5,5 5,5 range III: 50 °C / 72 °C 5,7 5,5 5,0 5.0 5,0 5,0 Hammer-drilling with standard drill bit or hollow drill bit (water filled hole) I: 24 °C / 43 °C 6,5 5,0 4,7 4,7 4,7 4,7 Tem-II: 43 °C / 60 °C τ_{Rk,C1} [N/mm²] 6,5 5,0 4,7 4,7 4,7 4,7 perature range III: 50 °C / 72 °C 5.7 5,5 5.0 5.0 5,0 5,0 Installation factors Tension loading Dry or wet concrete 1,2 [-] γinst Water filled hole 1,4

Table C11.2:Characteristics resistance for combined pull-out and concrete failure for
Rebars and fischer FRA in hammer drilled holes under seismic action
performance category C1

Nominal	diameter of the reb	ar	φ	12	14	16	20	25	26	28	30
fischer F	RA			M12	_1)	M16	M20	M24	_1)	_1)	_1)
Characte	ristic bond resista	nce, com	bined pul	ll-out an	d conci	rete con	e failure	•	-	<u>.</u>	
Hammer	-drilling with standa	ard drill l	oit or holl	ow drill	bit (dry	or wet c	oncrete)			
Tem-	l: 24 °C / 43 °C			6,5	6,0	6,0	6,0	5,5	5,5	5,5	5,5
perature	II: 43 °C / 60 °C	- τrk,C1	[N/mm ²]	6,5	6,0	6,0	6,0	5,5	5,5	5,5	5,5
range	III: 50 °C / 72 °C	_		5,7	5,5	5,5	5,0	5,0	5,0	5,0	5,0
Hammer-	-drilling with standa	ard drill I	bit or holl	ow drill	bit (wat	er filled	hole)				
Tem-	l: 24 °C / 43 °C			6,5	6,0	5,0	4,7	4,7	4,7	4,7	4,7
perature	II: 43 °C / 60 °C	- τRk,C1	[N/mm ²]	6,5	6,0	5,0	4,7	4,7	4,7	4,7	4,7
range	III: 50 °C / 72 °C	_		5,7	5,5	5,5	4,7	4,7	4,7	4,7	4,7
Installatio	on factors									•	
Tension	loading										
Dry or we	et concrete		r 1				1	,2			
Water fille	ed hole	– γinst	[-]				1	,4			
¹⁾ Anch	or type not part of th	e assess	ment								
											
fischer	injection system	FIS EB	3 H								

Performance

Characteristics resistance under seismic action (performance category C1) for Anchor rods, Threaded rods, Rebars and fischer FRA

Table C12.1:Characteristics resistance for combined pull-out and concrete failure for
Anchor rods and Threaded rods in hammer drilled holes under seismic
action performance category C2

				<u> </u>			
Anchor ro	od / Threaded rod			M12	M16	M20	M24
Characte	ristic bond resistance	e, com	bined pu	ll-out and conc	ete cone failure	•	
Hammer-	drilling with standard	l drill k	oit or holl	ow drill bit (dry	or wet concrete	<u>)</u>	
Tem-	l: 24 °C / 43 °C			3,5	5,0	3,5	3,5
perature	II: 43 °C / 60 °C	TRk,C2	[N/mm ²]	3,5	5,0	3,5	3,5
range	III: 50 °C / 72 °C			2,7	3,8	2,6	2,9
Hammer-	drilling with standard	l drill k	oit or holl	ow drill bit (wat	er filled hole)		
Tem-	l: 24 °C / 43 °C			3,5	5,6	3,8	3,0
perature	II: 43 °C / 60 °C	TRk,C2	[N/mm ²]	3,5	5,2	3,6	3,0
range	III: 50 °C / 72 °C			2,7	3,8	2,6	2,8
Installatio	on factors						
Tension l	oading						
Dry or wet	concrete	Vinet	[-]		1	,2	
Water fille	d hole	γinst	[_]		1	,4	
Displacer	nent-Factors for tens	ion lo	ading ¹⁾		-		
δ N,(DLS)-Facto	or		(N/mm²)]	0,06	0,11	0,08	0,12
δ N,(ULS)-Facto	or		(((((((((((((((((((((((((((((((((((((((0,13	0,14	0,09	0,18
Displacer	nent-Factors for shea	ar load	ling ²⁾				
δ V,(DLS)-Facto	or	r~	ım/kN]	0,18	0,10	0,07	0,06
δ V,(ULS)-Facto	or			0,25	0,14	0,11	0,09
1) Calcula	ation of effective displa	cemer	nt:	2) C	alculation of effe	ctive displacemer	nt:

 $\delta_{V,C2(DLS)} = \delta_{V,(DLS)-Factor} \cdot V$

$$\begin{split} \delta_{\text{N,C2(DLS)}} &= \delta_{\text{N,(DLS)-Factor}} \cdot \tau \\ \delta_{\text{N,C2(ULS)}} &= \delta_{\text{N,(ULS)-Factor}} \cdot \tau \end{split}$$

 τ = acting bond strength under tension loading

 $\delta_{V,C2(ULS)} = \delta_{V,(ULS)-Factor} \cdot V$ V = acting shear loading

fischer injection system FIS EB II

Performance

Characteristics resistance under seismic action (performance category C2) for Anchor rods, Threaded rods.

Table C13.1: Characteristics resistance for combined pull-out and concrete failure for Rebars and fischer FRA in hammer drilled holes under seismic action performance category C2

Nominal diameter of the r	ebar	φ	12	16	20			
fischer FRA		•	M12	M16	M20			
Characteristic bond resist	tance, com	bined pul	I-out and concrete c	one failure	<u></u>			
Hammer-drilling with stan	dard drill b	oit or hollo	ow drill bit (dry or we	et concrete)				
TemI:24 °C / 43	°C		3,5	5,0	3,5			
perature II: 43 °C / 60	°C TRk,C2	[N/mm ²]	3,5	5,0	3,5			
range III: 50 °C / 72	°C		2,7	3,8	2,6			
Hammer-drilling with stan	dard drill b	oit or hollo	ow drill bit (water fill	ed hole)				
TemI: _24 °C / 43 ′	°C		3,5	5,6	3,8			
perature II: 43 °C / 60 °	°C TRK,C2	[N/mm ²]	3,5	5,2	3,6			
range III: 50 °C / 72 °	°C		2,7	3,8	2,6			
Installation factors				•				
Tension loading								
Dry or wet concrete		r 1		1,2				
Water filled hole	—γinst	[-]		1,4				
Displacement-Factors for	tension loa	ading ¹⁾		-	-			
δ N,(DLS)-Factor	[mm/	(N/mm²)]	0,06	0,11	0,08			
δ N,(ULS)-Factor		(19/11/17)]	0,13	0,14	0,09			
Displacement-Factors for	shear load	ing ²⁾						
δV,(DLS)-Factor	[m	m/kN]	0,18	0,10	0,07			
δ V,(ULS)-Factor		וואאואן	0,25	0,14	0,11			
¹⁾ Calculation of effective of		.1.	²⁾ Calculation of effective displacement:					

 $\delta_{\text{N,C2(DLS)}} = \delta_{\text{N,(DLS)-Factor}} \cdot \tau$

 $\delta_{V,C2(DLS)} = \delta_{V,(DLS)\text{-Factor}} \cdot V$

 $\delta_{V,C2(ULS)} = \delta_{V,(ULS)-Factor} \cdot V$

 $\delta_{N,C2(ULS)} = \delta_{N,(ULS)-Factor} \cdot \tau$

 τ = acting bond strength under tension loading

V = acting shear loading

fischer injection system FIS EB II

Performance

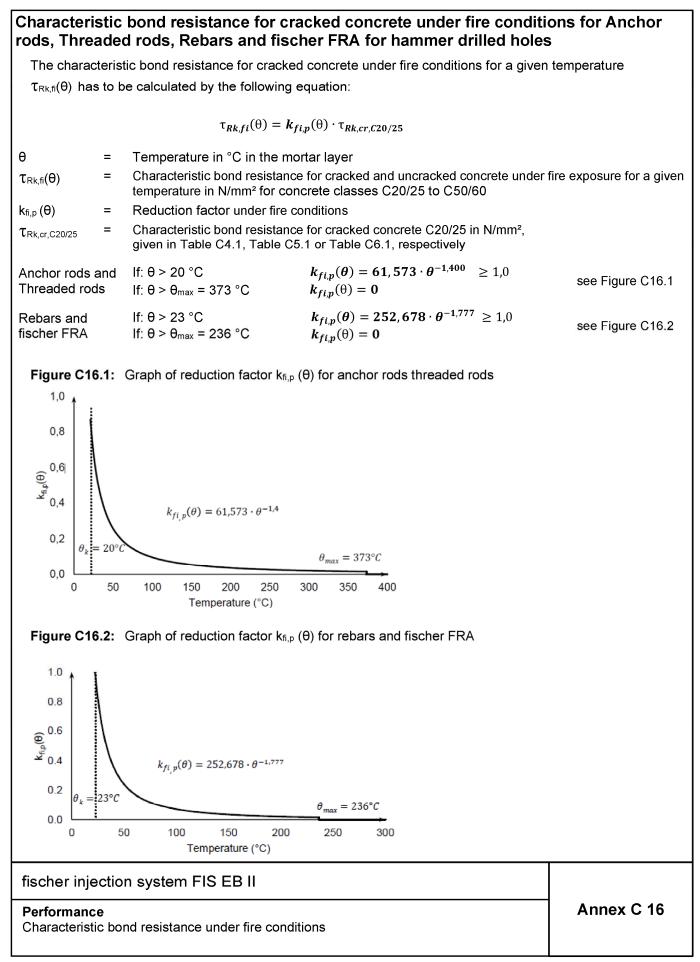
Characteristics resistance under seismic action (performance category C2) for Rebar and fischer FRA.

Table C14.1: Fire resistance to steel failure under tension and shear loading of Anchor rods and Threaded rods Fire resistance to steel failure under tension and shear loading Anchor rod / Threaded rod R30 **R60** V_{Rk,s,fi,30} $M^{0}_{Rk,s,fi,30}$ M⁰Rk,s,fi,60 N_{Rk,s,fi,30} N_{Rk,s,fi,60} V_{Rk,s,fi,60} Steel zinc plated [kN] [kN] [kN] [Nm] [kN] [Nm] Μ8 0,4 0,4 0,4 0,3 0,3 0,3 M10 0,9 0.9 1,1 0,8 0,8 1,0 M12 1,7 1,7 2,6 1,3 1,3 2,0 3,1 3,1 6,7 2,4 2,4 5,0 M16 M20 4,9 4,9 13,0 3,7 3,7 9,7 M24 7,1 7,1 22,5 5,3 5,3 16,8 9,2 9,2 M27 33,3 6,9 6,9 25,0 M30 11.2 11.2 45.0 8.4 8.4 33.7 Anchor rod / Threaded rod **R90** R120 M⁰Rk,s,fi,120 M^0 Rk,s,fi,90 VRk,s,fi,120 NRk,s,fi,90 V_{Rk,s,fi,90} NRk,s,fi,120 Steel zinc plated [kN] [kN] [Nm] [kN] [kN] [Nm] 0,3 0,3 0,2 0,2 0,2 Μ8 0,3 0,6 0,6 0.7 0.5 0.5 0.6 M10 1,1 1,7 0,8 1,3 M12 1,1 0,8 M16 2.0 2.0 4,3 1,6 1,6 3,3 3,2 8,4 2,5 M20 3,2 2,5 6,5 M24 4,6 4,6 14,6 3,5 3,5 11,2 M27 6,0 6,0 21,6 4,6 4,6 16,6 7,3 7,3 29.2 5,6 5,6 22,5 M30 Anchor rod / Threaded rod **R30** R60 M^0 Rk,s,fi,30 Stainless steel R and $N_{\mathsf{Rk},\mathsf{s},\mathsf{fi},\mathsf{30}}$ V_{Rk,s,fi,30} $N_{\text{Rk},\text{s},\text{fi},60}$ $V_{\mathsf{Rk},\mathsf{s},\mathsf{fi},60}$ $M^{0}_{Rk,s,fi,60}$ high corrosion resistant steel HCR [kN] [kN] [Nm] [kN] [kN] [Nm] 0,6 0,6 0,6 M8 0,7 0,7 0,7 M10 1,5 1,5 1,9 1,2 1,2 1,5 2,5 2,5 3,9 2,1 2,1 3,3 M12 4,7 4,7 10,0 3,9 3,9 8,3 M16 M20 7,4 7,4 19,5 6,1 6,1 16,2 10,6 10,6 33,7 8,8 8,8 28,1 M24 M27 13,8 13,8 49,9 11,5 11,5 41,6 M30 16,8 16,8 67,5 14,0 14,0 56,2 Anchor rod / Threaded rod **R90** R120 M⁰Rk,s,fi,90 M⁰Rk,s,fi,120 Stainless steel R $N_{\mathsf{Rk},\mathsf{s},\mathsf{fi},90}$ $N_{\text{Rk},\text{s},\text{fi},120}$ V_{Rk,s,fi,90} V_{Rk,s,fi,120} [Nm] [Nm] and high corrosion resistant steel HCR [kN] [kN] [kN] [kN] M8 0,4 0,4 0,4 0,4 0,4 0,4 0,9 0,9 1,2 0,8 0,8 1,0 M10 1,7 2,1 M12 1,7 2,6 1,3 1,3 3,1 M16 3,1 6.7 2.5 2.5 5,3 M20 4.9 4.9 13.0 3.9 3.9 10.4 7,1 7,1 22,5 5,6 M24 5,6 18,0 9,2 9,2 33,3 7,3 7,3 26,6 M27 45,0 9,0 9,0 36,0 M30 11,2 11,2

fischer injection system FIS EB II

Performance

Fire resistance to steel failure under tension and shear loading of Anchor rods and Threaded rods


Table C15.1:Fire resistance to steel failure under tension and shear loading of Rebars and fischer FRA						
Fire resistance to steel failure under	tension and	l shear load	ling			
Rebar	R30			R60		
Bars and de-coiled rods	N _{Rk,s,fi,30} [kN]	V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	N _{Rk,s,fi,60} [kN]	V _{Rk,s,fi,60} [kN]	M ⁰ _{Rk,s,fi,60} [Nm]
φ8	0,5	0,5	0,6	0,5	0,5	0,5
φ 10	1,2	1,2	1,8	1,0	1,0	1,5
φ 12	2,3	2,3	4,1	1,7	1,7	3,0
φ ¹⁴	3,1	3,1	6,5	2,3	2,3	4,9
φ ¹⁶	4,0	4,0	9,6	3,0	3,0	7,2
φ ²⁰	6,3	6,3	18,8	4,7	4,7	14,1
φ 25	9,8	9,8	36,8	7,4	7,4	27,6
φ 26	10,6	10,6	41,4	8,0	8,0	31,1
φ 28	12,3	12,3	51,8	9,2	9,2	38,8
φ 30	14,1	14,1	63,6	10,6	10,6	47,7
φ 32	16,1	16,1	77,2	12,1	12,1	57,9
Rebar	R90			R120		
Bars and de-coiled rods	N _{Rk,s,fi,90} [kN]	V _{Rk,s,fi,90} [kN]	M ^o _{Rk,s,fi,90} [Nm]	N _{Rk,s,fi,120} [kN]	V _{Rk,s,fi,120} [kN]	M ⁰ Rk,s,fi,120 [Nm]
φ 8	0,4	0,4	0,4	0,3	0,3	0,3
φ 10	0,4	0,4	1,2	0,5	0,5	0,9
φ 12	1,5	1,5	2,6	1,1	1,1	2,0
φ 12	2,0	2,0	4,2	1,1	1,1	3,2
φ 16	2,0	2,0	6,3	2,0	2,0	4,8
φ 20	4,1	4,1	12,2	3,1	3,1	9,4
φ 25	6,4	6,4	23,9	4,9	4,9	18,4
φ 26	6,9	6,9	26,9	4, 9 5,3	<u>4,9</u> 5,3	20,7
φ 28	8,0	8,0	33,6	6,2	6,2	25,9
φ 30	9,2	9,2	41,4	7,1	7,1	31,8
		9,2 10,5		8,0	8,0	
φ 32 fischer FRA	10,5 10,5 50,2 R30			8,0 8,0 38,6 R60		
			B 40			
Stainless steel R and high corrosion resistant steel HCR	N _{Rk,s,fi,30} [kN]	V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	N _{Rk,s,fi,60} [kN]	V _{Rk,s,fi,60} [kN]	M ⁰ _{Rk,s,fi,60} [Nm]
M12	2,5	2,5	3,9	2,1	2,1	3,3
M16	4,7	4,7	10,0	3,9	3,9	8,3
M20	7,4	7,4	19,5	6,1	6,1	16,2
M24	10,6	10,6	33,7	8,8	8,8	28,1
fischer FRA	R90		R120			
Stainless steel R and high corrosion resistant steel HCR	N _{Rk,s,fi,90} [kN]	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	N _{Rk,s,fi,120} [kN]	V _{Rk,s,fi,120} [kN]	M ⁰ _{Rk,s,fi,120} [Nm]
M12	1,7	1,7	2,6	1,3	1,3	2,1
M16	3,1	3,1	6,7	2,5	2,5	5,3
M20						
	4,9	4,9	13,0	3,9	3,9	10,4

fischer injection system FIS EB II

Performance

Fire resistance to steel failure under tension and shear loading of Rebars an fischer FRA

