

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0324 of 19 October 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer frame fixing DuoXpand

Plastic anchors for redundant non-structural systems in concrete and masonry

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

27 pages including 3 annexes which form an integral part of this assessment

330284-00-0604-v01 Edition 05/2023

ETA-21/0324 issued on 25 August 2022

European Technical Assessment ETA-21/0324

Page 2 of 27 | 19 October 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z79874.23 8.06.04-64/22

European Technical Assessment ETA-21/0324

Page 3 of 27 | 19 October 2023

English translation prepared by DIBt

Specific part

1 Technical description of the product

The fischer frame fixing DuoXpand 8 and DuoXpand 10 is a plastic anchor consisting of a plastic sleeve made of polyamide and polyoxymethylene and an accompanying specific screw of galvanised steel, of galvanised steel with an additional organic layer or of stainless steel.

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3 and C 4

3.2 Mechanical resistance and stability (BWR 4)

Essential characteristic	Performance
Resistance to steel failure under tension loading	See Annex C 1
Resistance to steel failure under shear loading	See Annex C 1
Resistance to pull-out or concrete failure under tension loading (base material group a)	See Annex C 1
Resistance in any load direction without lever arm (base material group b, c, d)	See Annexes C 9 – C 15
Edge distance and spacing (base material group a)	See Annex B 2
Edge distance and spacing (base material group b, c, d)	See Annex B 3 and B 4
Displacements under short-term and long-term loading	See Annex C 2

Z79874.23 8.06.04-64/22

European Technical Assessment ETA-21/0324

Page 4 of 27 | 19 October 2023

English translation prepared by DIBt

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance	
Durability	See Annex B1	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

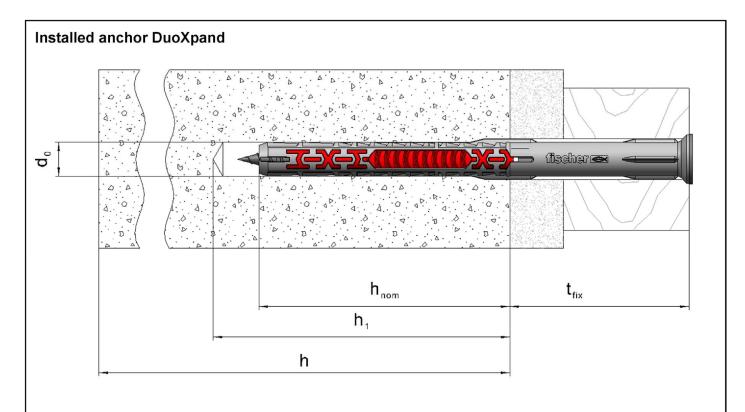
In accordance with European Assessment Document EAD 330284-00-0604 the applicable European legal act is: 97/463/EC.

The system to be applied is: 2+

Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

The following standards and documents are referred to in this European Technical Assessment:


- EOTA Technical Report TR 051, 2018-04: Recommendations for job site tests of plastic anchors and screws
- EOTA Technical Report TR 064, 2018-05, amended 01/2023: Design of plastic anchors in concrete and masonry
- EN 206:2013+A1:2016: Concrete Specification, performance, production and conformity
- EN 771-1:2011+A1:2015: Specification for masonry units Part 1: Clay masonry units
- EN 771-2:2011+A1:2015: Specification for masonry units Part 2: Calcium silicate
- EN 771-3:2011+A1:2015: Specification for masonry units Part 3: Aggregate concrete masonry units (dense and lightweight aggregates)
- EN 771-4:2011+A1:2015: Specification for masonry units Part 4: autoclaved aerated concrete masonry units
- EN 998-2:2010: Specification for mortar for masonry Part 2: Masonry mortar
- EN 1993-1-4:2006 + A1:2015: Eurocode 3: Design of steel structures Part 1-4: General rules -Supplementary rules for stainless steels
- EN 12602:2016: Prefabricated reinforced components of autoclaved aerated concrete
- EN ISO 4042:2018: Fasteners Electroplated coating systems

Issued in Berlin on 19 October 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock beglaubigt:
Head of Section Ziegler

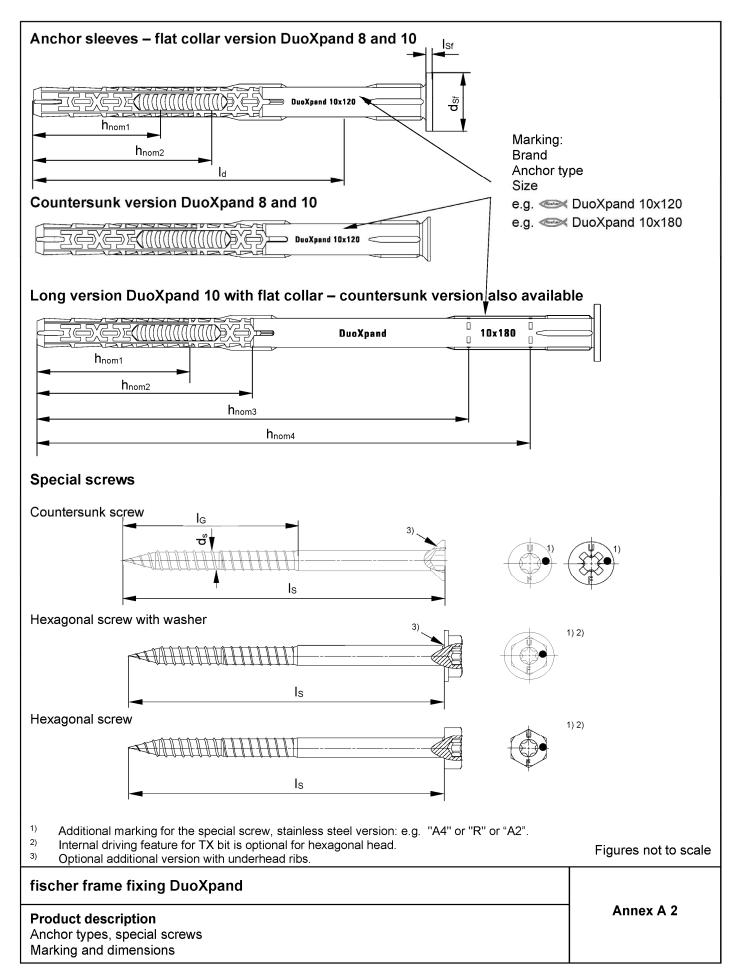
Z79874.23 8.06.04-64/22

Legend

 d_0 = Nominal drill hole diameter

 h_{nom} = Overall plastic anchor embedment depth in the base material

 h_1 = Depth of drill hole to deepest point


h = Thickness of member (base material)

t_{fix} = Thickness of fixture and / or non-load-bearing layer

Figure not to scale

fischer frame fixing DuoXpand	
Product description Installed anchor	Annex A 1

Table A3.1: Dimensions											
Anchor type			And	hor slee	ve			Sp	Special screw		
	h _{nom} [mm]	d _{nom} [mm]	t _{fix} [mm]	min. l _d [mm]	max. l _d [mm]	l _{Sf} 1) [mm]	d _{Sf} ¹⁾ [mm]	d _s [mm]	l _G [mm]	l _s [mm]	
DuoXpand 8	50	8	≥ 1	80	120	1.6	14.0	6,0	77	1.44	
ουοχραίια δ	70		21	00	120	1,6	14,0	0,0	77	l _d + d _s	
	50										
DuoXpand 10	70	10	≥ 1	80	230	2,2	18,5	7,0	77	1.44	
DuoApana 10	140 ²⁾	10		00	230	2,2	10,5	7,0		$I_d + d_s$	
	1602)										

¹⁾ Only valid for flat collar version.

Table A3.2: Materials

Name	Material				
Anchor sleeve	- Polyamide, PA6, colour grey - Polyoxymethylene, POM, colour red				
	- Galvanised steel gvz with Zn5/Ag or Zn5/An in accordance with EN ISO 4042				
Special screw	or - Galvanised steel gvz with Zn5/Ag or Zn5/An in accordance with EN ISO 4042 with additional organic layer (Zn5/Ag/T7 or Zn5/An/T7, respectively) in three layers (total layer thickness ≥ 6 μm) or - Stainless steel "A2" of corrosion resistance class CRC II in accordance with EN 1993-1-4 or - Stainless steel "A4" or "R" of corrosion resistance class CRC III in accordance with EN 1993-1-4				

fischer frame fixing DuoXpand	
Product description Dimensions and materials	Annex A 3

 $^{^{2)}}$ For base material Sepa Parpaing (see Annex C 13), additional h_{nom} available at $l_{\text{d}} \geq$ 160 mm.

Specifications of intended use

Anchorages subject to:

- Static or guasi-static loads: DuoXpand 8 and DuoXpand 10.
- · Redundant non-structural systems.
- Fire exposure for reinforced or unreinforced compacted normal weight concrete without fibres, strength classes ≥ C20/25 as per EN 206 and solid brick masonry (for dry masonry only) with mean compressive strength ≥ 35 N/mm² as per EN 771, see Annex C 3 and Annex C 4: DuoXpand 10.

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibres, strength classes ≥ C12/15 (base material group "a"), as per EN 206, see Annex C 1 and C 5.
- Solid brick masonry (base material group "b") as per EN 771-1, EN 771-2 or EN 771-3, see Annex C 5, C 9, C 10. Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength of the masonry unit.
- Hollow brick masonry (base material group "c"), as per EN 771-1, EN 771-2 or EN 771-3, see Annex C 5 C 8
 and C 10 C 14.
- Reinforced autoclaved aerated concrete (base material group "d"), as per EN 12602, and unreinforced autoclaved aerated concrete (base material group "d") as per EN 771-4, see Annex C 5 + C 15.
- Mortar strength class of the masonry ≥ M2,5 in accordance with EN 998-2. In case of fire, all joints must be completely filled with mortar.
- For other comparable base materials of the base material group "a", "b", "c" and "d" the characteristic resistance of the anchor may be determined by job site tests in accordance with EOTA TR 051.

Temperature Range:

- c: 40 °C to 50 °C (max. short term temperature + 50 °C and max long term temperature + 30 °C)
- b: 40 °C to 80 °C (max. short term temperature + 80 °C and max long term temperature + 50 °C)

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions: Special screw made of zinc coated steel or stainless steel.
- The specific screw made of galvanised steel or galvanised steel with an additional organic layer may also be used in structures subject to external atmospheric exposure, if the area of the head of the screw is protected against moisture and driving rain after mounting of the fixing unit in this way, that intrusion of moisture into the anchor shaft is prevented. Therefore, there shall be an external cladding or a ventilated rainscreen mounted in front of the head of the screw and the head of the screw itself shall be coated with a soft plastic, permanently elastic bitumen-oil-combination coating (e.g. undercoating or body cavity protection for cars).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist: Special screw made of stainless steel of corrosion resistance class CRC III.
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are to be designed in accordance with EOTA TR 064 under the responsibility of an engineer experienced in anchorages and concrete/masonry work.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the
 nature and strength of the base materials and the dimensions of the anchorage members as well as of the
 relevant tolerances. The position of the anchor is indicated on the design drawings.
- For requirements to resistance to fire local spalling of the concrete cover and cracks in masonry under fire
 exposure over 0.3 mm must be avoided.

Installation:

- Hole drilling by the drilling method in accordance with Annex C 1 for base material group "a", and in accordance with Annexes C 9 – C 15 for base material group "b", "c" and "d".
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature: 20 °C to + 40 °C.
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks.
- No ingress of water in the borehole at temperatures < 0°C.

fischer frame fixing DuoXpand	
Intended use Specifications	Annex B 1

Diameter of clearance hole in the

fixture

English translation prepared by DIBt

150

170

10,5

Table B2.1: Installation paramete	ers		
Anchor type		DuoXpand 8	DuoXpand 10
Nominal drill hole diameter	$d_0 = [mm]$	8	10
Cutting diameter of drill bit	d _{cut} ≤ [mm]	8,45	10,45
Overall plastic anchor embedment depth in the base material ¹⁾	$h_{nom1} \ge [mm]$	50	50
	$h_{nom2} \ge [mm]$	70	70
	$h_{\text{nom3}}^{2)} \geq [mm]$	-	140
	$h_{\text{nom4}}^{2)} \geq [mm]$	-	160
	h _{1,1} ≥ [mm]	60	60
Beatle of Lillians to the second solution	$h_{1,2} \geq [mm]$	80	80
Depth of drill hole to deepest point	la 2) > [450

_

8,5

≥ [mm]

≥ [mm]

≤ [mm]

 d_{f}

Table B2.2: Minimum thickness of member, edge distances and spacing in concrete – base material group "a"

1)

Anchor Type	Embed -ment depth	Concrete strength class	Minimum thickness of member	Charac- teristic edge distance	Charac- teristic spacing	Minimum edge distances and spacing ²⁾
	h _{nom} [mm]		h _{min} [mm]	C _{cr} [mm]	S _{cr} [mm]	C _{min,} S _{min} [mm]
	> 50	C12/15	90	70	90	$s_{min} = 70 \text{ for } c \ge 140$ $c_{min} = 70 \text{ for } s \ge 140$
Dus Voord 9	≥ 50	≥ C16/20	80	50	65	$s_{min} = 50 \text{ for } c \ge 100$ $c_{min} = 50 \text{ for } s \ge 100$
DuoXpand 8	≥ 70	C12/15	100	70	100	$s_{min} = 70 \text{ for } c \ge 140$ $c_{min} = 70 \text{ for } s \ge 140$
		≥ C16/20		50	70	s_{min} =50 for c ≥ 100 c_{min} =50 for s ≥ 100
	> 50	C12/15	80	70	100	s_{min} =70 for c ≥ 140 c_{min} =70 for s ≥ 140
DuoXpand 10	≥ 50	≥ C16/20	00	50	70	s_{min} =50 for c \geq 100 c_{min} =50 for s \geq 100
	≥ 70	C12/15	100	70	115	s_{min} =70 for c ≥ 140 c_{min} =70 for s ≥ 140
		≥ C16/20		50	80	s_{min} =50 for c \geq 100 c_{min} =50 for s \geq 100

¹⁾ See scheme of edge distances and spacing Annex B 3.

Fixing points with spacing a \leq s_{cr} are considered as a group with a maximum characteristic resistance N_{Rk,p} as per Table C1.2. For spacing a > s_{cr} the anchors are considered as single anchors, each with a characteristic resistance N_{Rk,p} as per Table C1.2.

fischer frame fixing DuoXpand	
Intended use Installation parameters Minimum thickness of member, edge distances and spacing for use in concrete	Annex B 2

¹⁾ For base material group "c": If the embedment depth is higher than h_{nom} given in the Table B2.1, job site tests have to be carried out in accordance with EOTA TR 051.

 $^{^{2)}}$ Only valid for Sepa Parpaing see Annex C 13 at anchor length $l_d \ge 160$ mm.

²⁾ Intermediate values by linear interpolation.

Table B3.1: Minimum thickness of member, edge distances and spacing in solid and hollow or perforated masonry – base material group "b" and "c"

,,,,,,,							
Anchor Type		_	DuoXpand 8	DuoXpand 10			
Minimum thickness of member ¹⁾	h_{min}	[mm]	115	115			
Spacing between anchor groups and / or single anchors	a _{min}	[mm]	250	250			
Single anchor							
Minimum edge distance	C _{min}	[mm]	100	100			
Anchor group							
Minimum spacing perpendicular to free edge	S _{1,min}	[mm]	100	100			
Minimum spacing parallel to free edge	S _{2,min}	[mm]	100	100			
Minimum edge distance	C _{min}	[mm]	100	100			

¹⁾ Member thickness according to Annex C 5 – C 8.

Scheme of edge distances and spacing

in concrete, solid and hollow or perforated masonry base material group "a", "b" and "c"

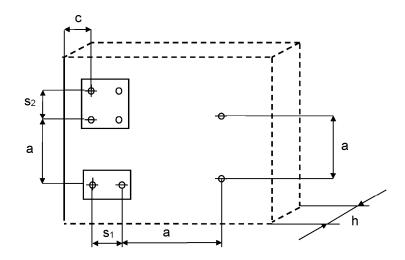


Figure not to scale

fischer frame fixing DuoXpand	
Intended use Minimum thickness of member, edge distances and spacing for use in solid, hollow or perforated masonry	Annex B 3

Table B4.1: Minimum thickness of member, edge distances and spacing in reinforced and unreinforced autoclaved aerated concrete – base material group "d"

differinoreed da	toolave	a acrate	a concrete i	ouse material	group u	
Anchor type	DuoXį	oand 8	DuoXį	oand 10		
Compressive strength ¹⁾	f _{ck} / f _{cm,decl}	[N/mm²]	≥ 2	≥ 6	≥ 2	≥ 6
Nominal embedment depth	h _{nom} ≥	[mm]	70	70	70	70
Spacing between anchor groups and / or single anchors	a _{min}	[mm]	250	250	250	250
Single anchor						
Minimum thickness of member	h _{min}	[mm]	100	100	100	100
Minimum edge distance	C _{min}	[mm]	100	100	100	100
Anchor group						
Minimum thickness of member	h _{min}	[mm]	100	175	100	175
Minimum edge distance	C _{min}	[mm]	100	100	100	100
Minimum spacing perpendicular to free edge	S _{1,min}	[mm]	100	100	100	100
Minimum spacing parallel to free edge	S _{2,min}	[mm]	100	80	100	80

¹⁾ See Table C15.1 and C15.2.

Scheme of edge distances and spacing

in reinforced and unreinforced autoclaved aerated concrete base material group "d"

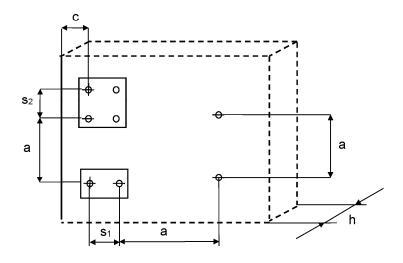
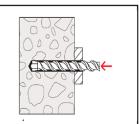
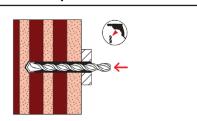
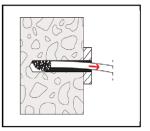


Figure not to scale

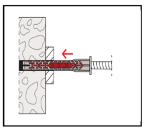

fischer frame fixing DuoXpand	
Intended use Minimum thickness of member, edge distances and spacing for use in reinforced and unreinforced autoclaved aerated concrete	Annex B 4

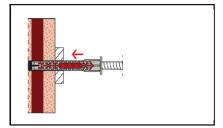

Installation instructions

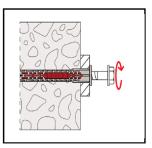
The following pictures show fixing through timber in concrete and hollow brick – Summary of all kind of masonry bricks see Annex C 5 - C 8.

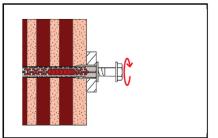

Solid bricks

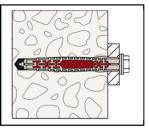
Hollow or perforated bricks

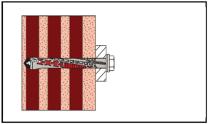



1. Drill the bore hole as per Table B2.1 using the drilling method described in the corresponding Annex C.


For application in hollow or perforated bricks, removal of bore dust is not necessary.


 For use in base material group "a" (concrete), "b" (solid bricks), "d" (autoclaved aerated concrete): Remove dust from borehole.




 Insert anchor (screw and sleeve) by using a hammer until the collar of the plastic sleeve is flush with the surface of the fixture.

4. The screw is screwed-in until the head of the screw touches the sleeve. The anchor is correctly installed, if the head of the screw fits tight on the surface and nor the anchor sleeve neither the screw cannot be turned-in any further.

5. Correctly installed anchor.

fischer frame fixing DuoXpand

Intended use

Installation instructions

Annex B 5

Table C1.1: Characteristic resistance of the screws

Failure of expansion element			DuoXp	oand 8	DuoXpand 10		
(special screw)			galvanised steel	stainless steel	galvanised steel	stainless steel	
Characteristic tension resistance	$N_{Rk,s}$	[kN]	14,8	14,3	21,7	21,7	
Partial factor	γ _{Ms} 1)	[-]	1,50	1,55	1,55	1,55	
Characteristic shear resistance	$V_{Rk,s}$	[kN]	7,4	7,1	10,8	10,8	
Partial factor	$\gamma_{\rm Ms}^{1)}$	[-]	1,25	1,29	1,29	1,29	
Characteristic bendi			of the screw				
Characteristic bending resistance	M _{Rk,s}	[Nm]	12,4	12,0	20,6	20,6	
Partial factor	γ _{Ms} ¹⁾	[-]	1,25	1,29	1,29	1,29	

¹⁾ In absence of other national regulations.

Table C1.2: Characteristic resistance due to pullout-failure for use in concrete – base material group "a"1)

Pull-out failure (plastic sleeve)	l-out failure (plastic sleeve) DuoXpand 8				DuoXpand 10	
Embedment depth h _{nom} [mm]		≥	50	70	50	70
Concrete ≥ C12/15						
Characteristic tension resistance (30/50 °C)	$N_{Rk,p}$	[kN]	3,5	4,0	3,5 / 4,02)	5,0
Characteristic tension resistance (50/80 °C)	$N_{Rk,p}$	[kN]	3,5	4,0	3,0 / 4,02)	4,5
Partial factor	γ _{Mc} ³⁾	[-]	1,8			

¹⁾ Drilling method: hammer drilling.

fischer frame fixing DuoXpand	
Performances Characteristic resistance and characteristic bending resistance of the screw Characteristic resistance for use in concrete	Annex C 1

²⁾ Valid for concrete ≥ C16/20.

³⁾ In absence of other national regulations.

Table C2.1: Displacements¹⁾ under tension and shear loading in concrete, in solid bricks and in hollow or perforated bricks

Displacements under			Tensio	n load ²⁾	Shear Ioad ²⁾		
Anchor type	h _{nom} [mm]	F [kN]	δ _{NO} [mm]	δ _№ [mm]	δ vo [mm]	δ _{V∞} [mm]	
Duc Ynand 9	50	1,4	0,46	0,92	0,60	0,90	
DuoXpand 8	70	1,6	0,45	0,90	0,63	0,95	
	50	1,6	0,59	1,18	0,68	1,02	
DucYnand 10	70	2,0	0,58	1,16	0,88	1,32	
DuoXpand 10	140 ³⁾	1,6	0,59	1,18	0,68	1,02	
	160 ³⁾	2,0	0,58	1,16	0,88	1,32	

Valid for all ranges of temperatures.

Table C2.2: Displacements¹⁾ under tension and shear loading in reinforced and unreinforced autoclaved aerated concrete

Displacements under			Tensio	n load ²⁾	load ²⁾ Shear		
Anchor type	f _{ck} / f _{cm,decl} [N/mm ²]	h _{nom} [mm]	F [kN]	δ _{NO} [mm]	δ _№ [mm]	δ vo [mm]	δ _{V∞} [mm]
Duc Ynand 9	≥ 2	70	0,11	0,13	0,26	0,22	0,33
DuoXpand 8	≥ 6	70	0,71	0,68	1,36	1,42	2,13
Duc Ynand 10	≥ 2	70	0,18	0,12	0,24	0,36	0,54
DuoXpand 10	≥ 6	70	0,32	0,66	1,32	0,64	0,96

fischer frame fixing DuoXpand	
Performances Displacements under tension and shear loading in concrete, masonry and autoclaved aerated concrete	Annex C 2

Intermediate values by linear interpolation.

Only valid for Sepa Parpaing see Annex C 13.

Valid for all ranges of temperatures. Intermediate values by linear interpolation.

Figure C3.1: Characteristic fire resistance under inclined loading, load direction α , in concrete – base material group "a" and solid brick masonry – base material group "b"

The characteristic fire resistance for each fire resistance class shall be interpolated for load direction α between 45° and 90° according to following equation:

$$F_{Rk,fi}\left(\alpha\right) = \frac{0.71 \cdot F_{Rk,fi}\left(45^{\circ}\right)}{\cos \alpha} \leq F_{Rk,fi}\left(90^{\circ}\right)$$

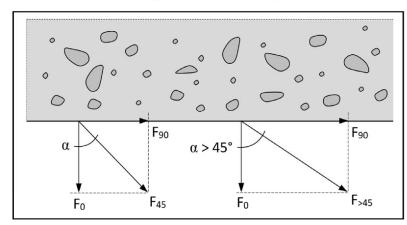


Table C3.1: Characteristic fire resistance in concrete ≥ C20/25 – base material group "a"

				DuoXp	and 10		
			R30	R60	R90	R120	
Embedment depth	h _{nom} ≥	≥ [mm]			70		
Characteristic fire resistance under inclined loading for selected load directions α							
α = 45°	F _{Rk,fi} (45°)	[kN]	0,51	0,34	0,17	_2)	
α = 60°	F _{Rk,fi} (60°)	[kN]	0,72	0,48	0,24	_2)	
α = 75°	F _{Rk,fi} (75°)	[kN]	1,39	0,93	0,46	_2)	
Partial factor	γ _{M,fi} 1)	[-]		,	1,0		
Characteristic fire resistance for she	ar load with	out lever	arm				
Characteristic shear resistance	F _{Rk,fi} (90°)	[kN]	2,30	1,80	1,30	1,05	
Partial factor	$\gamma_{M,fi}^{1)}$	[-]		•	1,0		
Characteristic fire resistance for she	ar load with	lever arm	1				
Characteristic bending resistance	M _{Rk,s,fi} 3)	[Nm]	2,41	1,89	1,37	1,10	
Partial factor	$\gamma_{M,fi}{}^{1)}$	[-]		•	1,0		
Minimum edge distances under fire exposure	C _{min,fi}	[mm]		2 x	h _{nom}		
Minimum spacing under fire exposure	S _{min,fi}	[mm]	4 x h _{nom}				

¹⁾ In absence of other national regulations.

Table C3.2: Values under fire exposure in concrete C20/25 to C50/60 in any load direction (no permanent centric tension load, only for shear load without lever arm)

Fastening of façade systems

Anchor type	Fire resistance class	Load direction α	F _{Rk,fi,90}	γ M,fi $^{1)}$
DuoXpand 10	R90	≥ 81°	0,8 k N	1,0

¹⁾ In absence of other national regulations.

fischer frame fixing DuoXpand	
Performances Characteristic fire resistance for use in concrete	Annex C 3

²⁾ No performance assessed.

 $^{^{3)}}$ Shear load with lever arm is to be limited to a maximum acting load $F_{Rk,fi}(45^{\circ})$.

Base material; bulk density [kg/dm³]; mean compressive strength [N/mm²] [Supplier Title, country] Geometry, DF or nominal size (L x W x H) [mm] drilling method				And	chor type		
Clay brick Mz; ρ ≥ 1,8; 35 as per EN 771-1 e.g. Mz Ziegelwerk Nordhausen, DE; NF (240x115x71) Hammer drilling							
Calcium silicate solid brick KS; ρ ≥ 2,0; 35 as per EN 771-2 e.g. KS Wemding, DE; NF (240x115x71) Hammer drilling		DuoXpand 10					
		·	R30	R60	R90	R120	
Embedment depth	h _{nom} ≥	: [mm]	70				
Characteristic fire resistance under	inclined lo	ading for s	elected lo	oad direct	ions α		
α = 45°	F _{Rk,fi} (45°)	[kN]	0,51	0,34	0,17	_2)	
α = 60°	F _{Rk,fi} (60°)	[kN]	0,72	0,48	0,24	_2)	
α = 75°	F _{Rk,fi} (75°)	[kN]	1,30	0,93	0,46	_2)	
Partial factor	γ _{M,fi} 1)	[-]			1,0		
Characteristic fire resistance for sh	ear load wit	thout lever	arm				
Characteristic shear resistance	F _{Rk,fi} (90°)	[kN]		1,30		1,05	
Partial factor	$\gamma_{M,fi}^{1)}$	[-]			1,0		
Characteristic fire resistance for sh	ear load wit	th lever arn	1				
Characteristic bending resistance	$\mathbf{M}_{Rk,s,fi}$	[Nm]	2,41	1,89	1,37	1,10	
Partial factor	$\gamma_{M,fi}$ 1)	[-]	1,0				
Minimum edge distances under fire exposure	C _{min,fi}	[mm]			2 x h _{nom}		
Minimum spacing under fire exposure 1) In absence of other national regulations. 2) No performance assessed.	S _{min,fi}	[mm]			4 x h _{nom}		

²⁾ No performance assessed.

fischer frame fixing DuoXpand	
Performances Characteristic fire resistance for use in solid brick masonry	Annex C 4

Table C5.1: Summary of base materials concrete group "a", solid bricks group "b" and autoclaved aerated concrete group "d" Dimensions Mean compressive Bulk Base material **Format** See $(L \times W \times H)$ strength as per Annex density p **EN 771** $[N/mm^2]$ [kg/dm³] [mm] Concrete ≥ C12/15 as per EN 206 C 1 Autoclaved aerated concrete as per EN 771-4 C 15 C 15 Reinforced autoclaved aerated concrete, AAC as per EN 12602 Clay brick Mz, as per EN 771-1, NF 240x115x71 ≥ 10 C 9 ≥ 1,8 e.g. Mz Ziegelwerk Nordhausen, DE Calcium silicate solid brick KS, C 9 NF 240x115x71 ≥ 10 ≥ 2,0 as per EN 771-2. e.g. KS Wemding, DE Calcium silicate solid brick KS. 12 DF 498x175x248 ≥ 10 ≥ 1,8 C 9 as per EN 771-2, e.g. KS Wemding, DE Lightweight solid brick VbI, 240x115x113 C 10 2 DF ≥ 2,5 ≥ 1,4 as per EN 771-3, e.g. Vbl KLB, DE

Table C5.2: Summary of hollow or perforated bricks – base material group "c"1)

Base material	Format/ Dimensions (L x W x H) [mm]	Brick drawing Mean compressive strength as per EN 771 [N/mm²] / bulk density ρ [mm] [kg/dm³]		See Annex
Perforated clay brick Hlz, as per EN 771-1, e.g. Wienerberger Hlz, DE	2 DF 240 x 115 x 113	£ 15 15 240	≥ 5,0 / ρ ≥ 0,9	C 10

¹⁾ Vertically perforation > 15 % and ≤ 50 %, cross section reduced by perforation vertically to the resting area.

Figure not to scale

fischer frame fixing DuoXpand	
Performances Summary of base materials concrete, solid bricks, autoclaved aerated concrete and hollow or perforated bricks	Annex C 5

¹⁾ Vertically perforation ≤ 15%; cross section reduced by perforation vertically to the resting area.

Base material	Format/ Dimensions (L x W x H) [mm]	Brick drawing [mm]	Mean compressive strength as per EN 771 [N/mm²] / bulk density ρ [kg/dm³]	See Annex	
Perforated clay brick Hlz, as per EN 771-1, e.g. Schlagmann, DE	3 DF 240x175x113	271 27 27 29 14 11 240	≥ 5,0 / ρ ≥ 0,9	C 10	
Perforated clay brick HLz, as per EN 771-1, e.g. Wienerberger Porotherm 30 R, FR	370x300x250	© 10 24 370	≥ 7,5 / ρ≥ 0,7	C 11	
Perforated clay brick HLz, as per EN 771-1, e.g. Doppio Uni IT Wienerberger, IT	250x120x190		≥ 5,0 / ρ ≥ 0,9	C 11	

Figures not to scale

fischer frame fixing DuoXpand	
Performances Summary of base materials hollow or perforated bricks	Annex C 6

Base material	Dimensions (L x W x H) [mm] [mm]		Mean compressive strength as per EN 771 [N/mm²] / bulk density ρ [kg/dm³]	See Annex
Perforated clay brick HLz, as per EN 771-1, e.g. Wienerberger Pth Bio Modulare, DE	8 DF 300x250x190	300	≥ 7,5 / ρ ≥ 1,0	C 11
Calcium silicate hollow brick KSL, as per EN 771-2, e.g. Bösel, DE	2 DF 240x115x113	30 25	≥ 10 / ρ ≥ 1,6	C 12
Calcium silicate hollow brick KSL, as per EN 771-2, e.g. KS Wemding, DE	3 DF 240x175x113	Ø 45 00 00 00 00 00 00 00 00 00 00 00 00 00	≥ 10 / ρ ≥ 1,4	C 12
1) Vertically perforation >	· 15 % and ≤ 50 %, o	cross section reduced by perforation vertically to the	resting area. Figures no	ot to sca
fischer frame fixing Performances Summary of base mate	-	erforated bricks	Annex	C 7

Base material	Format/ Dimensions (L x W x H)	perforated bricks – base material gro	Mean compressive strength	See Annex
	[mm]	[mm]	as per EN 771 [N/mm²] / bulk density ρ [kg/dm³]	
Hollow brick lightweight concrete Hbl, as per EN 771-3, e.g. Knobel, DE	16DF 495x240x248	497 90 187 08 08 08 08 08 08 40 40 40 40 40 40 40 40 40 40	≥ 2,5 / ρ ≥ 0,7	C 12
Hollow brick lightweight concrete Hbl, as per EN 771-3, e.g. Sepa Parpaing, FR	500x200x200	29 16 500	≥ 2,5 / ρ ≥ 1,0	C 13
Hollow brick lightweight concrete Hbl, as per EN 771-3, e.g. Indelasa, ES	500x200x200	500	≥ 2,5 / ρ≥ 1,0	C 14
Hollow brick lightweight concrete Hbl, as per EN 771-3, e.g. Knobel, DE	500x240x240	0 1 55 500	≥ 2,5 / ρ ≥ 0,9	C 14

 $^{^{1)}}$ Vertically perforation > 15 % and \leq 50 %, cross section reduced by perforation vertically to the resting area.

Figures not to scale

fischer frame fixing DuoXpand	
Performances Summary of base materials hollow or perforated bricks	Annex C 8

Table C9.1: Characteristic resistance F_{Rk} in [kN] for use in solid masonry base material group "b"

Base material; bulk density [kg/dm³]	Mean compressive		aracteristic r ature range		F _{Rk} [kN] and 50/80 °C		
[Supplier Title, country] Geometry, DF or nominal size	strength as per EN 771/ Minimum	DuoXp	and 8	Duo	DuoXpand 10		
(L x W x H) [mm]		h _{nom} [mm]					
and drilling method	compressive strength single brick ⁹⁾ [N/mm²]	≥ 50	≥ 70	≥ 50	≥ 70		
	12,5/10,0	1,5	1,5	0,9 / 1,5 ⁷⁾	0,9 / 2,0 ⁷⁾		
Clay brick Mz; ρ ≥ 1,8	15,0/12,0	2,0	2,0	1,2 / 2,0 ⁷⁾	1,2 / 2,0 ⁷⁾		
as per EN 771-1	20,0/16,0	2,5	2,5	1,5 / 2,5 ⁷⁾	1,5 / 3,0 ⁷⁾		
e.g. Mz Ziegelwerk Nordhausen, DE NF (240x115x71)	25,0/20,0	3,0	3,5	2,0 / 3,0 ⁷⁾	2,0 / 3,5 ⁷⁾		
Hammer drilling	35,0/28,0	4,5	5,0	3,0 / 4,5 ⁷⁾	3,0 / 5,0 ⁷⁾		
	37,3/-	4,5	5,0	3,0 / 4,5 ⁷⁾	3,0 / 5,5 ⁷⁾		
Clay brick Mz; ρ ≥ 1,8	10,0/8,0	1,5	2,0	1,5	2,0 / 2,52)		
as per EN 771-1 e.g. Mz Ziegelwerk Nordhausen, DE	12,5/10,0	2,0	2,5	2,0	2,5 / 3,0 ²⁾ / 3,5 ⁵⁾		
NF (240x115x71)	15,0/12,0	2,5	3,0	2,5	3,0 / 4,0 ²⁾		
Rotary drilling	18,5/-	3,0	3,5	3,0	4,0 / 4,5 ²⁾ / 5,0 ³⁾		
	10,0/8,0	1,2 / 1,5 ¹⁾	1,5	1,5	1,5 / 2,0 ⁶⁾		
Calcium silicate solid brick KS; ρ ≥ 2,0	12,5/10,0	1,5	2,0	2,0	2,0 / 2,5 ²⁾		
as per EN 771-2	15,0/12,0	2,0	2,5	2,5	2,5 / 3,0 ²⁾		
e.g. KS Wemding, DE	20,0/16,0	2,5	3,0 / 3,5 ⁴⁾	3,0 / 3,52)	3,5 / 4,0 ²⁾		
NF (240x115x71) Hammer drilling	25,0/20,0	3,5	4,0	4,0 / 4,5 ⁴⁾	4,0 / 4,5 ⁶⁾ / 5,0 ²⁾		
	30,0/-	4,0	4,5 / 5,0 ²⁾	4,5 / 5,0 ²⁾	5,0 / 5,5 ⁶⁾ / 6,0 ²⁾		
	10,0/8,0	1,5	2,0	2,0	2,0 / 2,5 ⁶⁾		
Calcium silicate solid brick KS; ρ ≥ 1,8	12,5/10,0	2,0	2,5	2,5	2,5 / 3,0 ⁶⁾		
as per EN 771-2 e.g. KS Wemding, DE 12 DF (498x175x248) Hammer drilling	15,0/12,0	2,5	3,0	3,0	3,0 / 3,5 ⁶⁾ / 4,0 ²⁾		
	20,0/16,0	3,5	3,5	3,5	4,0 / 4,5 ⁶⁾ / 5,0 ²⁾		
	25,0/20,0	4,5	4,5	4,5	5,0 / 6,0 ⁶⁾ / 6,5 ²⁾		
	26,5/-	4,5	5,0	5,0	5,5 / 6,0 ⁶⁾ / 6,5 ²⁾		
Partial factor	γ _{Mm} ⁸⁾ [-]	2,5					

- 1) Only valid for temperature range "c" (30/50 °C).
- Only valid for c_{1min} 120 mm and c_{2min} 180 mm.
- $^{3)}$ Only valid for $c_{1min}\ 130\ mm$ and $c_{2min}\ 195\ mm$.
- 4) Only valid for c_{1min} 120 mm and c_{2min} 180 mm for temperature range "c" (30/50 °C).
- ⁵⁾ Only valid for c_{1min} 130 mm and c_{2min} 195 mm for temperature range "c" (30/50 °C).
- $^{6)}$ Only valid for $c_{1min} \ 110 \ mm$ and $c_{2min} \ 165 \ mm$.
- 7) Only valid for s_{2,min} 250 mm.
- 8) In absence of other national regulations.
- 9) The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

fischer frame fixing DuoXpand	
Performances Characteristic resistance for use in solid masonry	Annex C 9

2 DF (240x115x113)

3 DF (240x175x113)

14 11

Rotary drilling

Partial factor

Perforated clay brick HIz; $\rho \ge 0.9$

Rotary drilling

as per EN 771-1 e.g. Schlagmann, DE

Table C10.1: Characteristic resistance F _{Rk} in [kN] for use in solid and in hollow or perforated masonry - base material group "b" and "c"						
Base material; bulk density [kg/dm³]	Mean Characteristic resistance compressive Temperature range 30/50 °C					
[Supplier Title, country] Geometry, DF or nominal size	strength as per EN 771/	DuoXp	oand 8	DuoXpand 10		
(L x W x H) [mm] and drilling method	Minimum compressive		h _{nom} [mm] ¹⁾		
and drilling method	strength single brick ⁴⁾ [N/mm ²]	50	70	50	70	
Lightweight solid brick Vbl; ρ ≥ 1,4 as per EN 771-3	2,5/2,0	0,4	0,6	0,3	0,6 / 0,75 ²⁾	
e.g. Vbl KLB, DE 2 DF (240x115x113) Rotary drilling	5,0/4,0	0,75 / 0,92)	1,2	0,6 / 0,75 ²⁾	1,2 / 1,5 ²⁾	
Perforated clay brick Hlz; ρ ≥ 0,9 as per EN 771-1 e.g. Wienerberger Hlz, DE	5,0/4,0	0,5	0,4	0,4	0,4	
£ 15 15 240	7,5/6,0	0,75	0,6	0,6	0,6	
	10,0/8,0	0,9	0,75	0,9	0,75	

1)	The lowest resistance of two consecutive embedment depths may be used for the intermediate embedment depths.
	Exception for "Lightweight solid brick Vbl": here ≥ h _{nom} is valid.

[-]

10,9/-

5,0/4,0

7,5/6,0

10,0/8,0

12,5/12,0

15,0/10,0

16,2/-

 $\gamma_{\text{Mm}}^{3)}$

0,9

0,3

0,4

0,6

0,75

0,9

0,9

0,75

 $0,5 / 0,6^{2}$

 $0,75 / 0,9^{2}$

 $0,9/1,2^{2}$

 $1,2 / 1,5^{2}$

1,5

 $1,5 / 2,0^{2)}$

2,5

0,9

0,3

 $0,4 / 0,5^{2}$

0,6

0,75

0.9

0,9

0,9

 $0,5 / 0,6^{2}$

 $0,75 / 0,9^{2}$

1,2

 $1,2 / 1,5^{2}$

 $1,5 / 2,0^{2}$

 $1,5 / 2,0^{2}$

fischer frame fixing DuoXpand	
Performances Characteristic resistance for use in solid masonry, hollow or perforated masonry	Annex C 10

²⁾ Only valid for temperature range "c" (30/50 °C).

³⁾ In absence of other national regulations.

⁴⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Table C11.1: Characteristic resistance F_{Rk} in [kN] for use in hollow or perforated masonry base material group "c"

base material group						
Base material; bulk density [kg/dm³]	Mean compressive strength as				[k N] 50/80 °C	
[Supplier Title, country] Geometry, DF or nominal size	per EN 771/ Minimum	DuoXp	oand 8	DuoXp	oand 10	
(L x W x H) [mm]	compressive	h _{nom} [mm] ¹⁾				
and drilling method	strength single brick ⁴⁾ [N/mm²]	50	70	50	70	
Perforated clay brick HLz; ρ ≥ 0,7 as per EN 771-1	7,5/6,0	0,3	0,3	0,3	0,3	
e.g. Wienerberger Porotherm 30 R, FR	10,0/8,0	0,4	0,4	0,4	0,4	
	12,5/10,0	0,5	0,5	0,5	0,5 / 0,62)	
© 0 24 370	15,0/12,0	0,6	0,6	0,6	0,6	
370x300x250 Rotary drilling	17,6/-	0,75	0,75	0,75	0,75	
Perforated clay brick HLz; ρ ≥ 0,9	5,0/4,0	0,4	0,4	0,5	0,5	
as per EN 771-1 e.g. Doppio Uni IT Wienerberger, IT	7,5/6,0	0,6	0,5	0,75	0,75	
	10,0/8,0	0,75	0,75	0,9	0,9	
[]OOOOO	12,5/10,0	0,9	0,9	1,2	1,2	
10 250	15,0/12,0	1,2	1,2	1,5	1,5	
250x120x190 Rotary drilling	18,7/-	1,5	1,2	2,0	2,0	
Perforated clay brick HLz; ρ ≥ 1,0 as per EN 771-1	7,5/6,0	0,75	0,75	0,75	0,75	
e.g. Wienerberger Pth Bio Modulare,	10,0/8,0	0,9	0,9	0,9	0,9	
10 15 30 35	12,5/10,0	1,2	1,2	1,2	1,2	
050	15,0/12,0	1,5	1,5	1,5	1,5	
21	20,0/16,0	2,0	2,0	2,0	2,0	
8 DF (300x250x190) Rotary drilling	23,6/-	2,5	2,5	2,5	2,5	
Partial factor	γ _{Mm} ³⁾ [-]		2	,5		
8 DF (300x250x190) Rotary drilling	15,0/12,0 20,0/16,0 23,6/- γ _{Mm} ³⁾ [-]	1,5 2,0 2,5	1,5 2,0 2,5	1,5 2,0 2,5	1, \$ 2, (2, \$	

¹⁾ The lowest resistance of two consecutive embedment depths may be used for the intermediate embedment depths.

The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

fischer frame fixing DuoXpand	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 11

²⁾ Only valid for temperature range "c" (30/50 °C).

3) In absence of other national regulations.

Table C12.1: Characteristic resistance F_{Rk} in [kN] for use in hollow or perforated masonry - base material group "c"

base material group "c	base material group "e					
Base material; bulk density [kg/dm³]	Mean compressive strength as					
[Supplier Title, country]	per EN 771/ Minimum compressive	· · · · · · · · · · · · · · · · · · ·			and 10	
Geometry, DF or nominal size (L x W x H) [mm]		h _{nom} [mm] ¹⁾				
and drilling method	strength single brick ⁴⁾ [N/mm ²]	50	70	50	70	
Calcium silicate hollow brick KSL; ρ ≥ 1,6	10,0/8,0	0,75 / 0,9 ²⁾	0,9	0,9 / 1,22)	1,2	
as per EN 771-2 e.g. Bösel, DE	12,5/10,0	0,9 / 1,22)	1,2	1,2 / 1,5 ²⁾	1,5	
	15,0/12,0	1,2 / 1,5 ²⁾	1,5	1,5	2,0	
30 23.8	20,0/16,0	1,5 / 2,0 ²⁾	2,0	2,0 / 2,52)	2,5	
240	25,0/20,0	2,0	2,5	2,5 / 3,02)	3,0	
2 DF (≥ 240x115x113) Hammer drilling	25,7/-	2,0 / 2,52)	2,5	2,5 / 3,0 ²⁾	3,5	
Calcium silicate hollow brick KSL; p ≥ 1,4	10,0/8,0	0,9	0,75 / 0,9 ²⁾	0,6 / 0,752)	0,9 / 1,22)	
as per EN 771-2 e.g. KS Wemding, DE	12,5/10,0	1,2	0,9 / 1,22)	0,75 / 0,9 ²⁾	1,2 / 1,5 ²⁾	
E & 45 00 00 00 00 00 00 00 00 00 00 00 00 00	15,0/12,0	1,2 / 1,5 ²⁾	1,2 / 1,5 ²⁾	0,9 / 1,22)	1,5	
35 %	20,0/16,0	1,5 / 2,0 ²⁾	1,5 / 2,0 ²⁾	1,2 / 1,5 ²⁾	2,0	
3 DF (240x175x113) Hammer drilling	21,4/-	1,5 / 2,0 ²⁾	1,5 / 2,0 ²⁾	1,2 / 1,5 ²⁾	2,0 / 2,52)	
Hollow brick lightweight concrete Hbl; ρ ≥ 0,7 as per EN 771-3 e.g. Knobel, DE	2,5/2,0	0,5 / 0,6 ²⁾	0,5 / 0,6 ²⁾	0,75	0,75	
16 DF (495x240x248) Rotary drilling	5,0/4,0	0,9 / 1,2 ²⁾	0,9 / 1,22)	1,5	1,5	
Partial factor	γ _{Mm} ³⁾ [-]		2,	5		
1) The lowest resistance of two consecutive		may be used for	the intermedia	to ombodment	dontho	

¹⁾ The lowest resistance of two consecutive embedment depths may be used for the intermediate embedment depths.

The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

fischer frame fixing DuoXpand	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 12

²⁾ Only valid for temperature range "c" (30/50 °C).

3) In absence of other national regulations.

Table C13.1: Characteristic resistance F_{Rk} in [kN] for use in hollow or perforated masonry base material group "c"

	•						
Base material; bulk density [kg/dm³]	Mean compressive				resistance F 30/50 °C a		°C
[Supplier Title, country] Geometry, DF or nominal size (L x W x H) [mm]	strength as per EN 771/ Minimum	DuoXpa	and 8		DuoXpa	and 10	
and drilling method	compressive strength		h _{nom} [mm] ¹⁾				
	single brick ⁵⁾ [N/mm²]	50	70	50	70	140	160
Hollow brick lightweight concrete Hbl; ρ ≥ 1,0 as per EN 771-3	2,5/2,0	0,3 / 0,4²)	3)	0,5	0,5	3)	0,3
e.g. Sepa Parpaing, FR	5,0/4,0	0,75	0,5	0,9	0,9	0,5	0,5
500x200x200 Rotary drilling	6,9/-	0,9 / 1,2 ²⁾	0,6	1,5	1,5	0,6	0,75
Hollow brick lightweight concrete Hbl; ρ ≥ 1,0 as per EN 771-3 e.g. Sepa Parpaing, FR	2,5/2,0	3)	3)	3)	0,3	3)	3)
S. Separarpamy, Tr	5,0/4,0	0,3	3)	0,3 / 0,42)	0,6	3)	0,3 / 0,4 ²⁾
500x200x200 Hammer drilling		0,4 / 0,5 ²⁾	3)	0,4 / 0,5 ²⁾	0,75 / 0,9 ²⁾	3)	0,4 / 0,6 ²⁾
Partial factor	$\gamma_{\text{Mm}}^{4)}$ [-] 2,5						

The lowest resistance of two consecutive embedment depths may be used for the intermediate embedment depths.

fischer frame fixing DuoXpand	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 13

²⁾ Only valid for temperature range "c" (30/50 °C).

³⁾ No performance assessed.

⁴⁾ In absence of other national regulations.

The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Table C14.1: Characteristic resistance F_{Rk} in [kN] for use in hollow or perforated masonry base material group "c"

Base material; bulk density [kg/dm³]	Mean compressive		Characteristic resistance F _{Rk} [kN] Temperature range 30/50 °C and 50/80 °C			
[Supplier Title, country] Geometry, DF or nominal size	strength as per EN 771/ Minimum	DuoX	oand 8	DuoXpand 10		
$(L \times W \times H)$ [mm]	compressive		h _{nom}	h _{nom} [mm] ¹⁾		
and drilling method	strength single brick ⁴⁾ [N/mm²]	50	70	50	70	
Hollow brick lightweight concrete Hbl; $\rho \ge 1,0$ as per EN 771-3 e.g. Indelasa, ES	2,5/2,0	0,6	0,5	0,4	0,6	
500x200x200 Rotary drilling	4,8/-	1,2	0,9	0,75	0,9 / 1,22)	
Hollow brick lightweight concrete Hbl; ρ ≥ 0,9 as per EN 771-3 e.g. Knobel, DE	2,5/2,0	0,9	0,75 / 0,92)	0,9	0,6	
017	5,0/4,0	1,5 / 2,0 ²⁾	1,5 / 2,0 ²⁾	2,0	1,5	
500x240x240 Rotary drilling	6,2/-	2,0 / 2,5 ²⁾	2,0 / 2,5 ²⁾	2,5	1,5	
Partial factor	γ _{Mm} ³⁾ [-]		2	2,5		

¹⁾ The lowest resistance of two consecutive embedment depths may be used for the intermediate embedment depths.

fischer frame fixing DuoXpand	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 14

²⁾ Only valid for temperature range "c" (30/50 °C).

³⁾ In absence of other national regulations.

⁴⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Table C15.1: Characteristic resistance F_{Rk} in [kN] for use in unreinforced autoclaved aerated concrete - base material group "d"

Base material Size (L x W x H) [mm]	Mean compressive strength		sistance F _{Rk} [kN] 0/50 °C and 50/80 °C	
and drilling method	as per EN 771-4	DuoXpand 8	DuoXpand 10	
	f _{cm,decl}	h _{nom} [mm]		
	[N/mm²]	≥ 70		
Autoclaved aerated concrete	2,8	0,3	0,4 / 0,51)	
as per EN 771-4 e.g. (500x120x300)	4,0	0,75	0,6	
e.g. (500x250x300)	5,0	0,9 / 1,2 ¹⁾	0,75	
Hammer drilling	6,9	1,5 / 2,0 ¹⁾	0,9	
Partial factor	γ _{ΜΑΑ} ς ²⁾ [-]	2,0		

¹⁾ Only valid for temperature range "c" (30/50 °C).

Table C15.2: Characteristic resistance F_{Rk} in [kN] for use in reinforced autoclaved aerated concrete - base material group "d"

Base material minimum member	Compressive strength f_{ck} [N/mm²]	Characteristic re Temperature range 3	
thickness h _{min}	(compressive strength	DuoXpand 8	DuoXpand 10
and drilling method	class) as per EN 12602	h _{nom} [mm]
	·	≥ .	70
Reinforced autoclaved aerated concrete AAC	≥ 2,0 (AAC 2)	2)	0,31)
as per EN 12602	≥ 2,5 (AAC 2,5)	2)	0,3 / 0,41)
h _{min} = 100 mm ³⁾ Hammer drilling	≥ 3,0 (AAC 3)	2)	0,4
	≥ 3,5 (AAC 3,5)	2)	0,4 / 0,51)
	≥ 4,0 (AAC 4)	2)	0,5 / 0,61)
	≥ 4,5 (AAC 4,5)	2)	0,6 / 0,751)
	≥ 5,0 (AAC 5)	2)	0,75
	≥ 6,0 (AAC 6)	2)	0,9
Partial factor	γ _{ΜΑΑ} ς ⁴⁾ [-]	2,	0

¹⁾ Only valid for temperature range "c" (30/50 °C).

⁴⁾ In absence of other national regulations.

fischer frame fixing DuoXpand	
Performances Characteristic resistance for use in autoclaved aerated concrete and in reinforced autoclaved aerated concrete	Annex C 15

²⁾ In absence of other national regulations.

²⁾ No performance assessed.

For anchor groups in AAC 6 h_{min} = 175 mm.