

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

ETA-18/0862

of 19 May 2025

European Technical Assessment

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	fischer Anchor Channel FES with fischer Channel Bolts FBC
Product family to which the construction product belongs	Anchor Channels
Manufacturer	fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND
Manufacturing plant	fischer manufacturing plants
This European Technical Assessment contains	37 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330008-04-0601, Edition 07/2024
This version replaces	ETA-18/0862 issued on 31 March 2023

Page 2 of 37 | 19 May 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The fischer Anchor Channel FES with fischer Channel Bolts FBC is a system consisting of a C-shaped channel profile of steel and at least two metal anchors non-detachably fixed on the channel back and fischer Channel Bolts.

The anchor channel is embedded surface-flush in the concrete. fischer Channel Bolts with appropriate hexagonal nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1
 Resistance to steel failure of the connection between anchors and channel 	$N_{Rk,s,c}$ see Annex C1
 Resistance to steel failure of channel lips and subsequently pull-out of channel bolt 	$N_{Rk,s,l}^{0}$; $s_{l,N}$ see Annex C1
- Resistance to steel failure of channel bolt	$N_{Rk,s}$ see Annex C10
 Resistance to steel failure by exceeding the bending strength of the channel 	s_{max} see Annex A5 $M_{Rk,s,flex}$ see Annex C2
 Maximum installation torque to avoid damage during installation 	$T_{inst,g}$; $T_{inst,s}$ see Annex B4
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C3 and C4
- Resistance to concrete cone failure	h_{ef} see Annex B3 $k_{cr,N}$; $k_{ucr,N}$ see Annex C3 and C4
 Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation 	s_{min} see Annex A5 c_{min} ; h_{min} see Annex B3
 Characteristic edge distance and spacing to avoid splitting of concrete under load 	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C3 and C4
 Resistance to blowout failure - bearing area of anchor head 	A_h see Annex A4

Page 4 of 37 | 19 May 2025

Essential characteristic	Performance				
Characteristic resistance under shear load (static and quasi-static loading)					
 Resistance to steel failure of channel bolt under shear loading without lever arm 	$V_{Rk,s}$ see Annex C10				
 Resistance to steel failure by bending of the channel bolt under shear load with lever arm 	$M_{Rk,s}^{0}$ see Annex C11				
- Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction)	$V_{Rk,s,l,y}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C6 and C7				
 Resistance to steel failure of connection between channel lips and channel bolt (longitudinal shear) 	$V_{Rk,s,l,x}$ see Annex C8				
 Factor for sensitivity to installation (longitudinal shear) 	γ_{inst} see Annex C8				
 Resistance to steel failure of the anchor (longitudinal shear) 	$V_{Rk,s,a,x}$ see Annex C6 and C7				
 Resistance to steel failure of connection between anchor and channel (longitudinal shear) 	$V_{Rk,s,c,x}$ see Annex C6 and C7				
- Resistance to concrete pry-out failure	k ₈ see Annex C8				
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C8				
Characteristic resistance under combined tension and shear load (static and quasi-static load)					
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C9				
Characteristic resistance under fatigue tension loading					
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, assessment method A1, A2) 	No Performance assessed				
 Fatigue limit resistance to steel failure of the whole system (assessment method B) 	No Performance assessed				
 Fatigue resistance to steel failure of the whole system (linearized function, assessment method C) 	No performance assessed				
 Fatigue resistance to concrete related failure (exponential function, assessment method A1, A2) 	No Performance assessed				
 Fatigue limit resistance to concrete related failure (assessment method B) 	No Performance assessed				
 Fatigue resistance to concrete related failure (linearized function, assessment method C) 	No performance assessed				

Page 5 of 37 | 19 May 2025

Essential characteristic	Performance
Characteristic resistance under seismic loading (seismic performance category C1)	
Resistance to steel failure under seismic tension loading (seismic performance category C1)	$N_{Rk,s,a.eq}$; $N_{Rk,s,c.eq}$; $N^0_{Rk,s,l.eq}$; $M_{Rk,s,flex.eq}$ see Annex C12 $N_{Rk,s.eq}$ see Annex C14
Resistance to steel failure under seismic shear loading for shear load in transverse direction (seismic performance category C1)	$V_{Rk,s.eq}$ see Annex C14 $V^0_{Rk,s,l,y.eq}$; $V_{Rk,s,c,y.eq}$; $V_{Rk,s,a,y.eq}$ see Annex C13
Resistance to steel failure under seismic shear loading for shear load in longitudinal channel axis (seismic performance category C1)	$V_{Rk,s,l,x.eq}$; $V_{Rk,s,a,x.eq}$; $V_{Rk,s,c,x.eq}$ see Annex C13
Characteristic resistance under static and quasi-static tension and/or shear loading	
Displacements	$\begin{array}{l} \delta_{\text{N0}} \text{ ; } \delta_{\text{N}^{\infty}} \text{ see Annex C5} \\ \delta_{\text{V},\text{y},0} \text{ ; } \delta_{\text{V},\text{y},\infty} \text{ ; } \delta_{\text{V},\text{x},0} \text{ ; } \delta_{\text{V},\text{x},\infty} \\ \text{see Annex C9} \end{array}$

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Characteristic resistance to fire	$N_{Rk,s,fi}$; $V_{Rk,s,y,fi}$ see Annex C15

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

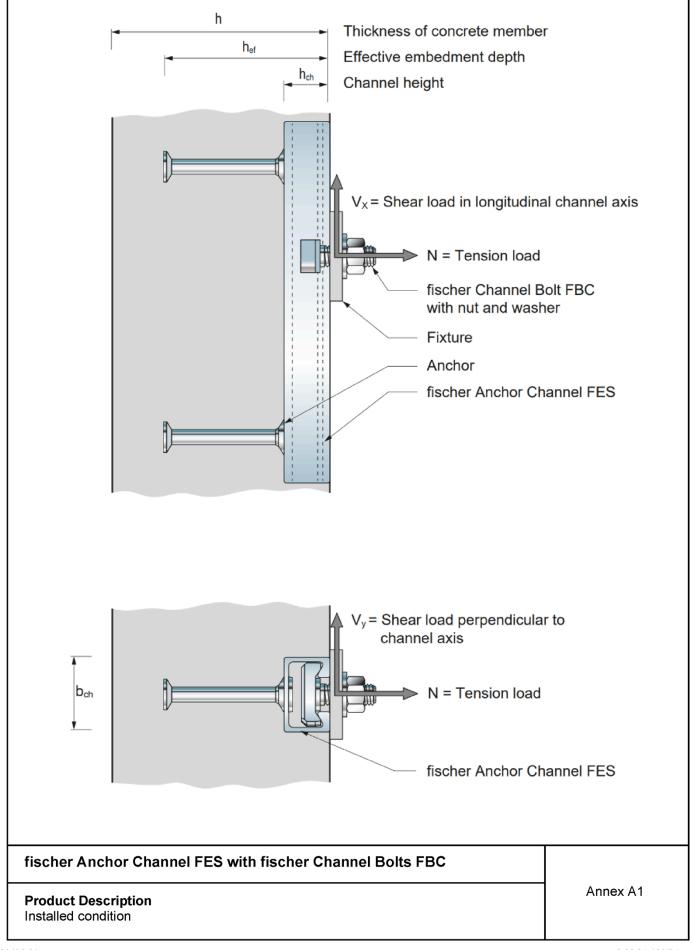
In accordance with EAD No. 330008-04-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

Page 6 of 37 | 19 May 2025

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

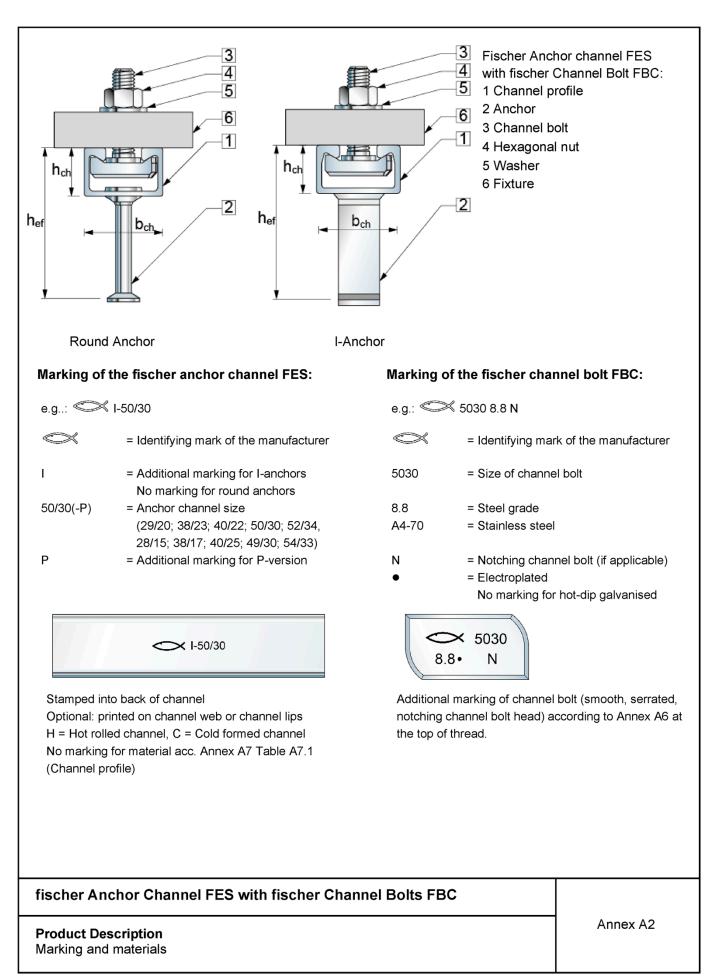
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 19 May 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section

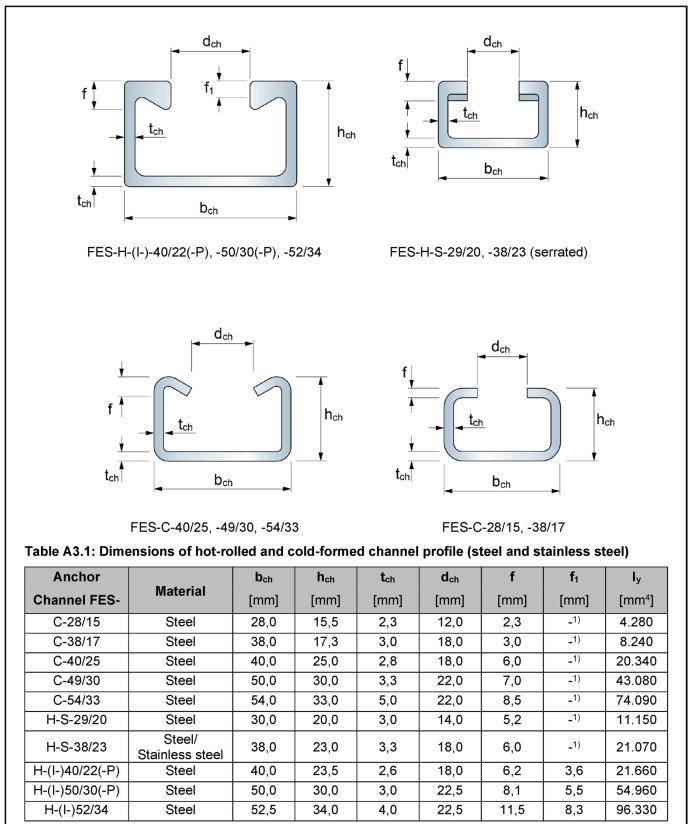
beglaubigt: Müller Page 7 of European Technical Assessment ETA-18/0862 of 19 May 2025

English translation prepared by DIBt



Page 8 of European Technical Assessment ETA-18/0862 of 19 May 2025

English translation prepared by DIBt



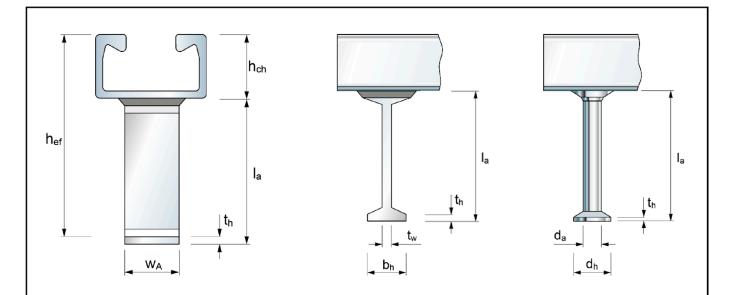
Page 9 of European Technical Assessment ETA-18/0862 of 19 May 2025

English translation prepared by DIBt

¹⁾ This dimension is not available for this product.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Product Description


Dimensions of channels

Annex A3

Page 10 of European Technical Assessment ETA-18/0862 of 19 May 2025

English translation prepared by DIBt

Table A.4.1: Dimensions of anchor (welded I-anchor or forged round anchor)

Anchor	l-anchor							Roi	und anc	hor	
Channel FES -	I _{a,min} [mm]	t _{w,min} [mm]	b _{h,min} [mm]	t _h [mm]	w _A [mm]	A _{h,min} [mm²]	l _{a,min} [mm]	d _a [mm]	d _h [mm]	t _h [mm]	A _h [mm²]
C-28/15		_ 2)						6	12,0	1,3	85
C-38/17			-	2)			60,8	8	16,0	2,0	151
C-40/25		_ 2)						8	16,0	2,0	151
C-49/30	_ 2)						66,0	10	20,0	2,2	236
C-54/33	_ 2)						124,5	11	24,3	2,5	369
H-S-29/20 ¹⁾		_ 2)						8	18,0	2,0	204
H-S-38/23			-	2)			76,2	10	20,0	2,2	236
H-(I-)40/22	62	5	20	5	20	300	68,5	8	16,0	2,0	151
H-40/22-P			-	2)			69,7	10	20,0	2,2	236
H-(I-)50/30	69	5	20	5	25	375	66,2	10	20,0	2,2	236
H-50/30-P		_ 2)						11	24,3	2,5	369
H-(I-)52/34 ³⁾	126	5	20	5	40	600	123,5	11	24,3	2,5	369

¹⁾ Alternative round anchor: $d_a = 10$ mm, $d_h = 20$ mm, $t_h = 2,5$ mm, $A_h = 236$ mm², $I_{a,min} = 59,5$ mm.

²⁾ Product not available.

³⁾ Alternative I-anchor: $t_w = 6 \text{ mm}$, $b_h = 25 \text{ mm}$, $t_h = 5 \text{ mm}$, $w_A = 40 \text{ mm}$, $I_{amin} = 126 \text{ mm}$.

fischer Anchor Channel FES with fischer Channel Bolts FBC

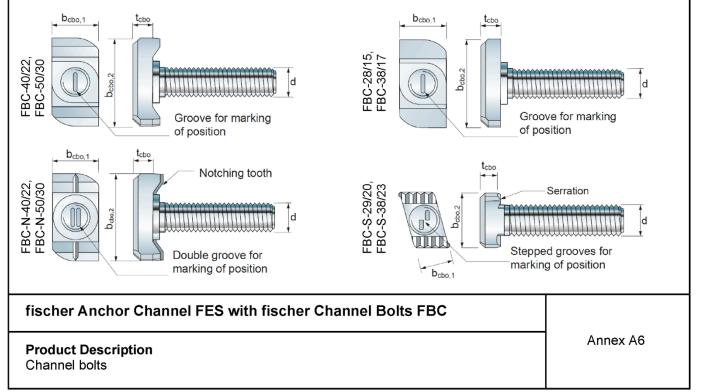
Product Description Dimensions of anchors Annex A4

Page 11 of European Technical Assessment ETA-18/0862 of 19 May 2025

English translation prepared by DIBt

Anchor channel FES-	Anchor type	s _{min} [mm]	s _{max} [mm]	X _{min} [mm]	X _{max} [mm]	I _{min} [mm]	I _{max} [mm]
C-28/15			200				
C-38/17		50	200			100	
C-40/25							
C-49/30	round	100	250			150	
C-54/33	_			25	35		6.070
H-S-29/20	_	50	200			100	
H-S-38/23							
H-(I-)40/22(-P)	round or I					150	
H-(I-)50/30	round or I	100	250				
H-I-52/34	I						-
H-50/30-P	round			35		170	
H-52/34							
		≥ ^I min					
er Anchor Channel FES	S with fischer C	hannel E	Bolts FB	C			

Channel Bolt	Carbon steel ¹⁾	Stainless steel ¹⁾
Steel grade	8.8	A4-70
f _{uk} [N/mm ²]	800 / 830	700
f _{yk} [N/mm ²]	640 / 660 ²⁾	450
Coating	G ³⁾ F ⁴⁾	-


¹⁾ Material properties according to Annex A7.
 ²⁾ Material properties according to EN ISO 898-1:2013+AC:2013.

³⁾ Electroplated.

⁴⁾ Hot-dip galvanised.

Table A6.2: Dimensions of fischer Channel Bolts FBC

Anchor	Channel	Stool grade		Dimer	nsions	
Channel FES-	Bolt FBC-	Steel grade	d [mm]	b _{cbo,1} [mm]	b _{cbo,2} [mm]	t _{cbo} [mm]
C-28/15	28/15	8.8	8 10 12	11,0	22,2	5,0 5,0 7,0
C-38/17	38/17	8.8	10 12 16	16,0	30,0	6,0 7,0 8,0
H-S-29/20	S-29/20	8.8	12	13,0	22,0	6,5
H-S-38/23 C-38/17	S-38/23	8.8 A4-70	12 16	16,7	29,1	5,8
H(-I)-40/22(-P) C-40/25	40/22	8.8 8.8 A4-70	10 12 16	14,0 14,0 17,0	32,5	8,0
H(-I)-40/22(-P)	N-40/22	8.8	16	17,0	33,0	7,8
C-49/30 H(-I)-50/30 C-54/33 H(-I)-52/34	50/30	8.8 8.8 A4-70	10 12 16 20	17,1 17,1 17,1 20,5	40,5	9,0 10,0 11,0 12,0
H(-I)-50/30(-P) H(-I)-52/34	N-50/30	8.8	16 20	17,5 21,0	42,2	12,0 12,0

		Carbon steel		Stainless steel	
Component	Mechanical properties	Mechanical properties Coating Coating		Mechanical properties	
1	2	2a	3		
Channel profile	1.0038, 1.0044 acc. to EN 10025:2004 1.0976, 1.0979 acc. to EN 10149:2013	Hot-dip g ≥ 50 µr EN ISO 1	1.4401, 1.4404, 1.4571, 1.4578 according to EN 10088: 2023		
Anchor	1.0038, 1.0213, 1.0214 acc. to EN 10025:2004 1.5525, 1.5535 acc. to EN 10263:2017 1.5523 acc. to EN 10269:2014-02	Hot-dip g ≥ 50 µr EN ISO ∕	1.4401, 1.4404, 1.4571, 1.4578 according to EN 10088: 2023		
Channel bolt	Steel grade 8.8 acc. to EN ISO 898-1:2013 +AC:2013	Electroplated acc. to EN ISO 4042:2022	acc. to EN ISO 10684:2004		
Plain washer ¹⁾ acc. to EN ISO 7089:2000 and EN ISO 7093-1:2000	Hardness class A ≥ 200 HV	Electroplated acc. to EN ISO 4042:2022	1.4401, 1.4404, 1.4571; 1.4578 according to EN 10088: 2023		
Hexagonal nut acc. to EN ISO 4032:2023	Property class 5 or 8 acc. to EN ISO 898-2:2022	Electroplated acc. to EN ISO 4042:2022	Hot-dip galvanised ≥ 50 µm acc. to EN ISO 10684:2004 + AC:2009	Property class 70 or 80 according to EN ISO 3506-2: 2020	

¹⁾ Not in the scope of delivery.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Product Description Materials Annex A7

Specification of intended use

Anchor channels and channel bolts subject to:

- Static and guasi-static tension, shear perpendicular to the longitudinal axis of the channel
- Static and guasi-static shear in the direction of the longitudinal axis of the channel. (anchor channels FES-H(-I)-40/22(-P) with notching channel bolts FBC-N-40/22, anchor channels FES-H(-I)-50/30(-P) or FES-H(-I)-52/34 with notching channel bolts FBC-N-50/30 and serrated anchor channels FES-H-S in combination with serrated channel bolts FBC-S).
- Seismic tension, seismic shear perpendicular to the longitudinal axis of the channel and seismic shear in the direction of the longitudinal axis of the channel (seismic performance category C1) (anchor channels and channel bolts according to Annex C12).
- Fire exposure for concrete strength class C20/25 to C50/60 for tension and shear perpendicular to the longitudinal axis of the channel (anchor channels and channel bolts according to Annex C15).

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibres according to EN 206:2013+A2:2021.
- Strength classes C12/15 to C90/105 according to EN 206:2013+A2:2021.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A7, Table A7.1, column 2a and 2b, 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchens, bathrooms and laundries in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A7, Table A7.1, column 2b, 3).
- According to EN 1993-1-4:2006 +A1:2015+A2:2020 relating to corrosion resistance class CRC III (anchor channels, channel bolts, washers and nuts made of stainless steel according to Annex A7, Table A7.1, column 3).

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and guasi-static loading as well as seismic loading (performance category C1) and fire exposure the anchor channels are designed in accordance with EN 1992-4:2018 and EOTA TR 047 "Design of Anchor Channels", May 2021.
- The characteristic resistances are calculated with the minimum effective embedment depth.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Intended Use

Specifications

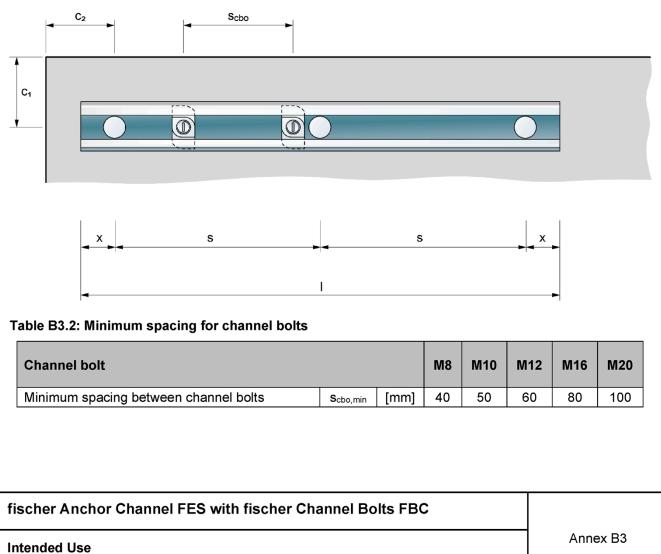
Annex B1

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A5, Table A5.1 are generated including end spacing x and minimum channel length I_{min} and only to be used in dry internal conditions. For anchor channels made of stainless steel there are no restrictions regarding corrosion resistance when using channel pieces, if cutting is done professionally and contamination of cutting edges with corroding material is avoided.
- Installation in accordance with the installation instruction given in Annexes B5, B6, B7 or B8.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no
 movement of the channels will occur during the time of laying the reinforcement and of placing and
 compacting the concrete.
- The concrete around the head of the anchors is properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washers may be chosen according to Annex A7 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B6, B7 and B8) rectangular to the channel axis.
- The required installation torque given in Annex B4 must be applied and must not be exceeded.
- Notching channel bolts FBC-N may be used only once after applying the installation torque T_{inst,s}.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Intended Use Specifications Annex B2

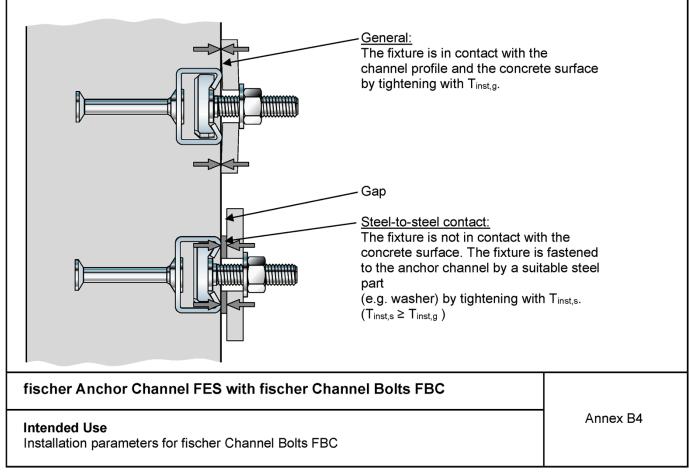


Anchor Channel FES-			C-28/15	C-38/17	H-S-29/20	H-S-38/23	C-40/25 H-40/22 H-40/22-P H-1-40/22	C-49/30 H-50/30 H-50/30-P H-I-50/30	C-54/33 H-52/34 H-I-52/34
Minimum effective embedment depth	h _{ef,min}		45	76	77	97	79 90 91 79	94 94 106 94	155 155 155
Minimum edge distance	Cmin	[mm]	40	50	50	75	50 50 50 50	75 75 75 75	100 100 100
Minimum thickness of concrete member	h _{min} 1)		55	87 ²⁾	120 ³⁾	100	90 100 100 100	100 100 109 100	160 160 170

¹⁾ For corrosion protection: $h_{min} = h_{ef} + t_h + c_{nom}$; c_{nom} acc. to EN 1992-1-1:2004 + AC:2010.

 $^{2)}$ hmin = 100 mm for FES-C-38/17 in combination with FBC-S-38/23.

³⁾ h_{min} = 100 mm if c_{min} = 100 mm and s_{min} = 100 mm.

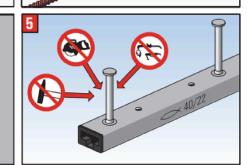

Installation parameters for fischer Anchor Channels FES

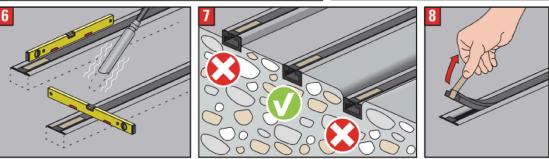
			T _{inst} ¹⁾ [Nm]					
fischer	fischer Channel Bolt	Thread	Ger	neral	Steel - steel contact			
Anchor channel FES-	FBC	diameter	Tii	T _{inst,g}		st,s		
1 20	1.50		8.8	A4-70	8.8	A4-70		
		M8	7	_2)	15	_2)		
C-28/15	28/15	M10	10	_2)	30	_2)		
		M12	13	_2)	45	_2)		
		M10	15	_2)	30	_2)		
C-38/17	38/17	M12	20	_2)	45	_2)		
		M16	30	_2)	100	_2)		
H-S-29/20	S-29/20	M12	80	_2)	80	_2)		
H-S-38/23		M12	80	80	80	80		
H-9-90/29	S-38/23	M16	100	100	100	100		
C-38/17	3-30/23	M12	40	_2)	80	_2)		
0-30/17		M16	50	_2)	100	_2)		
		M10	15	_2)	30	_2)		
H(-I)-40/22(-P)	40/22	M12	24	24	45	45		
C-40/25		M16	32	32	100	100		
	N-40/22	M16	_2)	_2)	200	_2)		
C-49/30		M10	15	_2)	30	_2)		
H(-I)-50/30(-P)	50/30	M12	25	25	45	45		
C-54/33	50/30	M16	60	60	100	100		
H(-I)-52/34		M20	75	75	230	230		
H(-I)-50/30(-P),	N-50/30	M16	_2)	_2)	200	_2)		
H(-I)-52/34	11-50/50	M20	_2)	_2)	400	_2)		

¹⁾ T_{inst} must not be exceeded.

²⁾ No performance assessed.

Page 18 of European Technical Assessment ETA-18/0862 of 19 May 2025

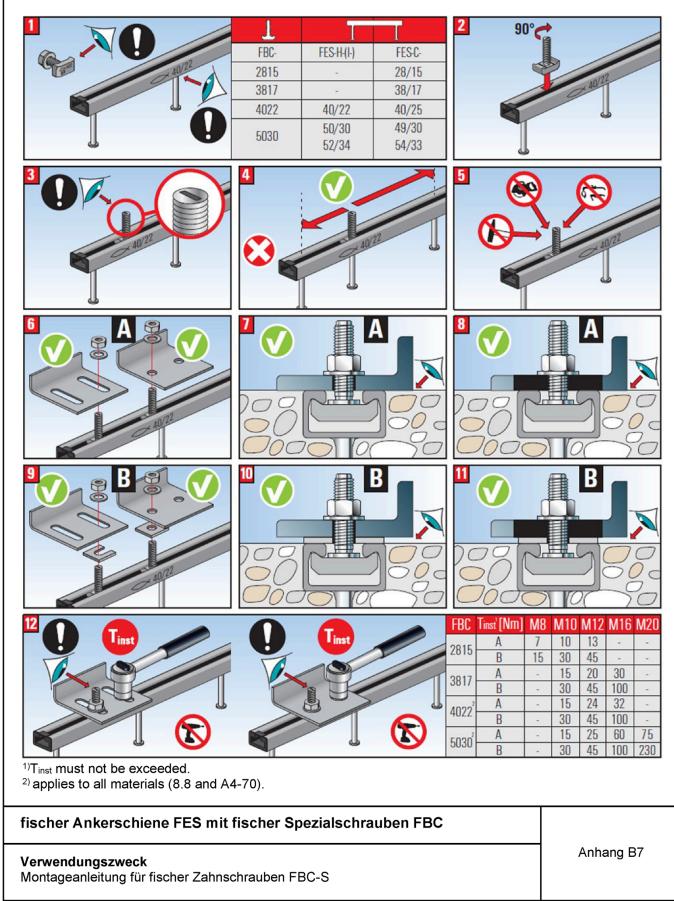

English translation prepared by DIBt


3a

4

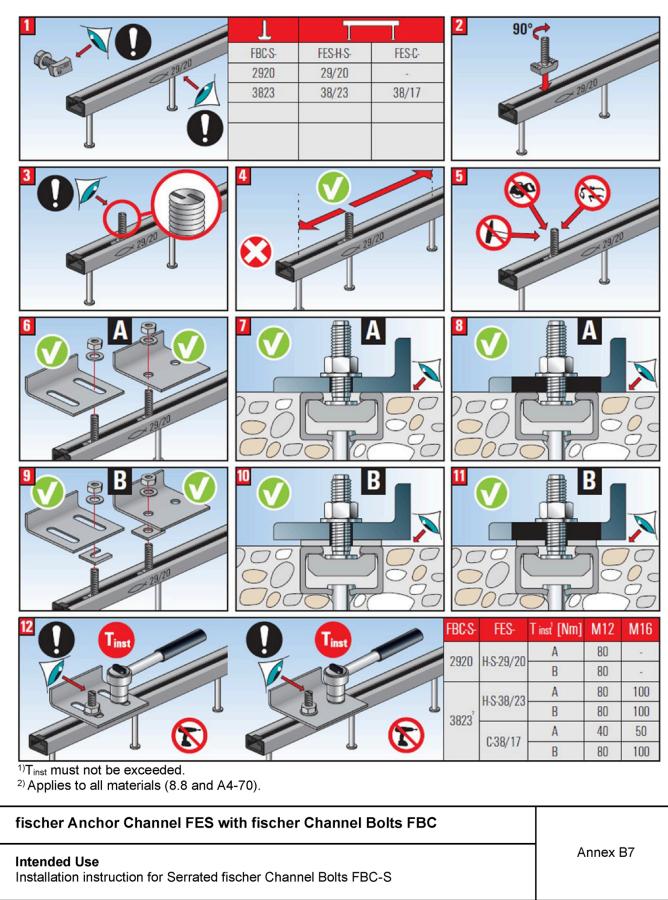
Anchor channel FES 1 J Х FES-H-FES-C-S-29/20 28/15 38/17 S-38/23 25 - 35 mm (I-)40/22(-P) 40/25 (I-)50/30 49/30 1-52/34 54/33 50/30-P 35 mm 52/34

fischer Anchor Channel FES with fischer Channel Bolts FBC


Intended Use

Installation instruction for fischer Anchor Channels FES

Annex B5



Channel bolt FBC

Serrated channel bolt FBC-S

Notching channel bolt FBC-N 2 90 FBC-N-4022 40/22 50/30 FBC-N-5030 52/34 4 5 3 8 T inst [Nm] FBC-N-FES-M16 M12 M20 H-(I-)4022(-P) 4022 200 H-(I-)5030(-P) 200 400 5030 T H-(I-)52/34 200 400 ¹⁾T_{inst} must not be exceeded. fischer Anchor Channel FES with fischer Channel Bolts FBC Annex B8 Intended Use Installation instruction for Notching fischer Channel Bolts FBC-N

Table C1.1: Characteristic resistances under tension load – steel failure of hot-rolled and	hor
channels	

Anchor Channel FES-H-			S-29/20	S-38/23 S-38/23-A4	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34			
Steel failure: Anchor										
Characteristic resistance	N _{Rk,s,a}	[kN]	25,0	31,0 40,0	20,0 42,0 35,0	31,0 44,0 44,0	55,0 70,4			
Partial factor	γMs ¹⁾	[-]		1,8						
Steel failure: Connection I	el failure: Connection between anchor and channel									
Characteristic resistance	N _{Rk,s,c}	[kN]	25,0	30,3 40,0	20,0 40,1 38,0	31,0 44,0 40,0	55,0 70,4			
Partial factor	γMs ¹⁾	[-]			1,8					
Steel failure: Local flexure	of chann	el lips								
Characteristic spacing of channel bolts for N _{Rk,s,I}	SI,N	[mm]	60	76	80 80 80	100 100 100	105 105			
Characteristic resistance	N ⁰ Rk,s,I	[kN]	25,0	30,3 45,0	38,0 42,0 38,0	43,0 52,0 43,0	72,0 72,0			
Partial factor	γMs ¹⁾	[-]			1,8					

¹⁾ In absence of other national regulations.

Table C1.2: Characteristic resistances under tension load – steel failure of cold-formed anchor channels

Anchor Channel FES-C-			28/15	38/17	40/25	49/30	54/33	
Steel failure: Anchor								
Characteristic resistance	N Rk,s,a	[kN]	9,0	20,0	20,0	31,0	55,0	
Partial factor γ _{Ms} ¹⁾ [-]				1,8				
Steel failure: Connection between anchor and								
Characteristic resistance	N _{Rk,s,c}	[kN]	9,0	18,0	20,0	31,0	55,0	
Partial factor	γMs ¹⁾	[-]	1,8					
Steel failure: Local flexure of channel lips								
Characteristic spacing of channel bolts for $N_{Rk,s,I}$	SI,N	[mm]	56	76	80	100	108	
Characteristic resistance	N ⁰ Rk,s,I	[kN]	9,0	18,0	20,0	31,0	55,0	
Partial factor	γMs ¹⁾	[-]			1,8			

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistances under tension load - Steel failure of anchor channel

Table C2.1: Characteristic flexural resistance of hot rolled channels under tension load

Anchor Channel FES-H-			S-29/20	S-38/23 S-38/23-A4	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34
Steel failure: Flexure of channel							
Characteristic flexural resistance of channel	$M_{Rk,s,flex}$	[Nm]	704	1.240 1.305	1.118 1.118 1.118	2.185 2.185 2.185	3.163 3.670
Partial factor	γMs,flex ¹⁾	[-]			1,15		

¹⁾ In absence of other national regulations.

Table C2.2: Characteristic flexural resistance of cold-formed channels under tension load

Anchor Channel FES-C-			28/15	38/17	40/25	49/30	54/33
Steel failure: Flexure of channel							
Characteristic flexural resistance of channel	M _{Rk,s,flex}	[Nm]	310	567	915	1.554	2.350
Partial factor	γMs,flex ¹⁾	[-]			1,15		

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistances under tension load - Steel failure of anchor channel

Table C3.1: Characteristic resistances under tension load – concrete failure of hot rolled anchor
channels

Anchor Channel FES-H-			S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34
Concrete failure: Pull-out failure							
Characteristic resistance in cracked concrete C12/15	NL	[kN]	18,4	21,2	13,6 21,2 27,0	21,2 33,2 33,8	33,2 54,0
Characteristic resistance in uncracked concrete C12/15	N _{Rk,p}		25,7	29,7	19,0 29,7 37,8	29,7 46,5 47,3	46,5 75,6
Increasing factor of N _{Rk,p} = N _{Rk,p} (C12/15)*ψ _c	C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 C55/67 ≥C60/75	ψc [-]			1,33 1,67 2,08 2,50 2,92 3,33 3,75 4,17 4,58 5,00		
Partial factor	γ _{Mp} =γ _{Mc} ¹⁾	[-]			1,5		
Concrete failure: Concrete cone failure							
Product factor k1	k cr,N	[-]	7,8	8,1	8,0 8,0 7,9	8,1 8,2 8,1	8,7 8,7
	K ucr,N	[-]	11,2	11,6	11,4 11,5 11,2	11,5 11,7 11,5	12,4 12,4
Partial factor	γMc ¹⁾	[-]			1,5		
Concrete failure: Splitting							
Characteristic edge distance	C cr,sp	[mm]	231	291	270 273 237	282 318 282	465 465
Characteristic spacing	S _{cr,sp}	[mm]	462	582	540 546 474	564 636 564	930 930
Partial factor	γMsp =γMc ¹⁾	[-]			1,5		

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistances under tension load – concrete failure of hot rolled anchor channels

Anchor Channel FES-C-			28/15	38/17	40/25	49/30	54/33
Concrete failure: Pull-out failure							
Characteristic resistance in cracked concrete C12/15	NI-	[LNI]	7,6	13,6	13,6	21,2	33,2
Characteristic resistance in uncracked concrete C12/15	NRK,p [KN]	[kN]	10,7	19,0	19,0	29,7	46,5
Increasing factor of N _{Rk,p} = N _{Rk,p} (C12/15)*ψc	C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 C55/67 ≥C60/75	ψc [-]			1,33 1,67 2,08 2,50 2,92 3,33 3,75 4,17 4,58 5,00		
Partial factor	$\gamma_{Mp} = \gamma_{Mc}^{1)}$	[-]			1,5		
Concrete failure: Concrete cone failure							
Product factor k₁	k cr,N	[-]	7,2	7,8	7,9	8,1	8,7
	k ucr,N	[-]	10,3	11,2	11,2	11,5	12,4
Partial factor	γMc ¹⁾	[-]			1,5		
Concrete failure: Splitting failure							
Characteristic edge distance	C _{cr,sp}	[mm]	135	228	237	282	465
Characteristic spacing	Scr,sp	[mm]	270	456	474	564	930
Partial factor	γMsp =γMc ¹⁾	[-]			1,5		

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance Characteristic resistances under tension load – concrete failure of cold formed anchor channels

Anchor Channel FES-H-			S-29/20	S-38/23 S-38/23-A4	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34
Tension load	N	[kN]	14,6	19,4 19,2	15,1 16,7 15,1	17,1 20,6 17,1	28,6 28,6
Short-term displacement ¹⁾	δ _{N0}	[mm]	2,3	1,4 1,3	2,2 2,5 2,2	1,5 1,8 1,5	1,9 1,9
Long-term displacement ¹⁾	δ _{N∞}	[mm]	4,6	2,8 2,6	4,4 5,0 4,4	3,0 3,6 3,0	3,8 3,8

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

Table C5.2: Displacements of cold-formed anchor channels under tension load

Anchor Channel FES-C-			28/15	38/17	40/25	49/30	54/33
Tension load	N	[kN]	3,6	7,1	7,9	12,3	21,8
Short-term displacement 1)	δ_{N0}	[mm]	0,7	1,3	1,5	1,4	1,2
Long-term displacement 1)	δ _{N∞}	[mm]	1,4	2,6	3,0	2,8	2,4

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt,

deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance Characteristic resistance under tension load - displacements

Page 27 of European Technical Assessment ETA-18/0862 of 19 May 2025

English translation prepared by DIBt

					10/20				
Anchor Channel FES-H-			S-29/20	S-38/23 S-38/23-A4	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34		
Steel failure: Anchor				1					
Characteristic resistance	V _{Rk,s,a,y}	[kN]	25,0	30,3 40,0	40,0 50,8 40,0	60,0 87,9 60,0	100 100		
	V _{Rk,s,a,x}	[kN]	15,1	18,8 24,0	12,0 25,4 22,8	18,6 26,8 24,0	33,0 42,2		
Partial factor	γMs ¹⁾	[-]	1,8						
Steel failure: Connection betwee	n anchor	and cha	annel						
	V _{Rk,s,c,y}	[kN]	25,0	30,3 40,0	40,0 50,8 40,0	60,0 87,9 60,0	100 100		
Characteristic resistance	V _{Rk,s,c,x}	[kN]	15,0	18,2 24,0	12,0 25,2 22,8	18,6 26,4 24,0	33,0 42,2		
Partial factor	γMs ¹⁾	[-]		•	1,8				
Steel failure: Local flexure of cha	annel lips								
Characteristic spacing of channel bolts for $V_{\text{Rk},\text{s},\text{I}}$	SI,∨	[mm]	60	76	80 80 80	100 100 100	108 108		
Characteristic resistance	V ⁰ _{Rk,s,l,y}	[kN]	25,0	30,3 40,0	40,0 50,8 40,0	60,0 87,9 60,0	100 100		
Partial factor	γMs ¹⁾	[-]		<u> </u>	1,8	1			

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistance under shear load - Steel failure of hot-rolled anchor channels

Table C7.1: Characteristic resistances under shear load – steel failure of cold-formed anchor channels

Anchor Channel FES-C-			28/15	38/17	40/25	49/30	54/33
Steel failure: Anchor							
Characteristic resistance	V _{Rk,s,a,y}	[kN]	9	18	20	31	55
Characteristic resistance	V _{Rk,s,a,x}	[kN]	_2)	_2)	_2)	_2)	_2)
Partial factor	γMs ¹⁾	[-]			1,8		
Steel failure: Connection between anchor and cl	nannel						
	V _{Rk,s,c,y}	[kN]	9	18	20	31	55
Characteristic resistance	V _{Rk,s,c,x}	[kN]	_2)	_2)	_2)	_2)	_2)
Partial factor	γMs ¹⁾	[-]			1,8		
Steel failure: Local flexure of channel lips							
Characteristic spacing of channel bolts for $V_{Rk,s,l}$	SI,V	[mm]	56	76	80	100	108
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	9	18	20	31	55
Partial factor	γMs ¹⁾	[-]			1,8		

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistance under shear load - Steel failure of cold-formed anchor channels

Table C8.1: Characteristic resistance for shear load in direction of the longitudinal axis of the channel – steel failure

Anchor Channel	FES-H-			S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34
Steel failure: Con	nection	bet	ween channel lips and cl	hannel bo	olt			
			FBC-S-29/20-M12-8.8	22,5	_2)	_2)	_2)	_2)
			FBC-S-38/23-M12-8.8	_2)	23,2	_2)	_2)	_2)
			FBC-S-38/23-M12-A4-70	_2)	29,0	_2)	_2)	_2)
Characteristic		FLA 1 1	FBC-S-38/23-M16-8.8	_2)	30,3	_2)	_2)	_2)
resistance	VRk,s,l,x	[KIN]	FBC-S-38/23-M16-A4-70	_2)	29,0	_2)	_2)	_2)
			FBC-N-40/22-M16-8.8	_2)	_2)	14,0	_2)	_2)
			FBC-N-50/30-M16-8.8	_2)	_2)	_2)	10,7	10,7
			FBC-N-50/30-M20-8.8	_2)	_2)	_2)	21,0	21,0
Installation factor	γinst ¹⁾	[-]		1,2	8.8: 1,0 A4-70: 1,2	1,2	M16: 1,2 M20: 1,4	M16: 1,2 M20: 1,4

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

Table C8.2: Characteristic resistances of the hot-rolled anchor channel under shear load – concrete failure

Anchor Channel FES-H-			S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34
Concrete failure: Pry-out fail	ure						
Product factor	k ₈	[-]	2,0	2,0	2,0	2,0	2,0
Partial factor	γMc ¹⁾	[-]		-	1,5		
Concrete failure: Concrete e	dge fai	lure					
	k cr,V	[-]	7,5	7,5	7,5	7,5	7,5
Product factor k ₁₂	k ucr,V	[-]	10,5	10,5	10,5	10,5	10,5
Partial factor	γMc ¹⁾	[-]			1,5		

¹⁾ In absence of other national regulations.

Table C8.3: Characteristic resistances of the cold-formed anchor channel under shear load – concrete failure

	4.0						
Anchor Channel FES-C			28/15	38/17	40/25	49/30	54/33
Concrete failure: Pry-ou	t failure						
Product factor	k ₈	[-]	1	2	2	2	2
Partial factor	γMc ¹⁾	[-]			1,5		
Concrete failure: Concre	ete edge fai	lure					
Draduct factor k	kcr,∨	[-]	5,8	7,5	7,5	7,5	7,5
Product factor k ₁₂	k ucr,V	[-]	8,1	10,5	10,5	10,5	10,5
Partial factor	γ _{Mc} ¹⁾	[-]		•	1,5		•
¹⁾ In absence of other natio	nal regulation	s.					
fischer Anchor Chann	el FES witl	n fis	cher Chanr	nel Bolts FB	C		
Performance							Annex C8

Characteristic resistance under shear load

Deutsches Institut für Bautechnik

Anchor Channel FES-			C-28/15	C-38/17	H-S-29/20	H-S-38/23 H-S- 38/23-A4	C-40/25 H-40/22 H-40/22-P H-1-40/22	C-49/30 H-50/30 H-50/30-P H-1-50/30	C-54/33 H-52/34 H-I-52/34
Shear load perpendicular to the longitudinal axis of the channel	Vy	[kN]	3,6	7,1	14,6	23,0 23,0	7,9 15,9 20,2 15,9	12,3 23,8 34,9 23,8	21,8 39,7 39,7
Short-term displacement ¹⁾	δv,y,o	[mm]	0,7	1,3	2,3	3,8 2,8	1,5 2,1 2,2 2,1	1,4 3,7 2,1 3,7	1,2 4,0 4,0
Long-term displacement ¹⁾	δ _{V,y,} ∞	[mm]	1,1	2,0	3,5	5,7 4,2	2,3 3,2 3,3 3,2	2,1 5,5 3,2 5,5	1,8 5,9 5,9
Shear load in direction of the longitudinal axis of the channel	Vx	[kN]	_3)	_3)	16,6	15,4 21,2	- ³⁾ 4,6 4,6 4,6	_3) 4) 4) 4)	_3) 4) 4)
Short-term displacement ²⁾	δ _{V,x,0}	[mm]	_3)	_3)	1,9	0,8 2,0	_ ³⁾ 0,9 0,9 0,9	_3) 5) 5) 5)	_3) 5) 5)
Long-term displacement ²⁾	δ _{V,x,} ∞	[mm]	_3)	_3)	2,9	1,2 3,0	- ³⁾ 1,4 1,4 1,4	_3) 6) 6) 6)	_3) 6) 6)

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete.

²⁾ Displacements of the anchor channel, including slip of channel bolt, deformation of channel

lips and slip of the anchor channel in concrete.

³⁾ No performance assessed.

⁴⁾ For FBC-N-5030-M16 V_x = 3,5 kN, for FBC-N-5030-M20 V_x = 6,7 kN.

 $^{5)}$ For FBC-N-5030-M16 $\delta_{V,x,0}$ = 0,4 mm, for FBC-N-5030-M20 $\delta_{V,x,0}$ = 0,1 mm.

 $^{6)}$ For FBC-N-5030-M16 $\delta_{V,x,\infty}$ = 0,6 mm, for FBC-N-5030-M20 $\delta_{V,x,\infty}$ = 0,2 mm.

Table C9.2: Characteristic resistances under combined tension and shear load

					H-S-38/23	C-40/25 H-40/22 H-40/22-P H-1-40/22	C-49/30 H-50/30 H-50/30-P H-1-50/30	C-54/33 H-52/34 H-I-52/34
channe	l lips	s and fle	xure of	channel				
k 13	[-]		a	ccording to	o EN 1992	2-4:2018,	7.4.3.1	
nection	bet	ween an	chor ar	nd channe	el			
k 14	[-]		a	ccording to	o EN 1992	2-4:2018,	7.4.3.1	
	k ₁₃ nection	channel lips k ₁₃ [-] nection betw	channel lips and fle k ₁₃ [-] nection between an	channel lips and flexure of k ₁₃ [-] ac nection between anchor ar	channel lips and flexure of channel k ₁₃ [-] according to nection between anchor and channel	channel lips and flexure of channel k ₁₃ [-] according to EN 1992 nection between anchor and channel	C-28/15 C-38/17 H-S-29/20 H-S-38/23 H-40/22-H-40/22-P H-40/22-P channel lips and flexure of channel according to EN 1992-4:2018, hection between anchor and channel	C-28/15 C-38/17 H-S-29/20 H-S-38/23 H-40/22 H-40/22-P H-50/30 H-50/30-P channel lips and flexure of channel according to EN 1992-4:2018, 7.4.3.1 H-1-40/22 H-50/30 k ₁₃ [-] according to EN 1992-4:2018, 7.4.3.1 H-1-40/22 H-1-40/22 between anchor and channel H-1-40/22 H-1-40/22 H-1-50/30

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Displacement under shear load, characteristic resistance under combined tension and shear load

Channel bolt thread diameter				M8	M10	M12	M16	M20
Steel failure: Special screw 8.8								
	FBC-28/15			29,2	33,0	45,1	_2)	_2)
	FBC-38/17			_2)	46,4	67,4	89,9	_2)
	FBC-S-29/20			_2)	_2)	48,5	_2)	_2)
Characteristic tensile resistance	FBC-S-38/23		[LN]	_2)	_2)	67,4	71,5	_2)
	FBC-40/22	NRk,s	[kN]	_2)	46,4	55,1	82,2	_2)
	FBC-N-40/22			_2)	_2)	_2)	100,9	_2)
	FBC-50/30			_2)	46,4	67,4	96,5	127,2
	FBC-N-50/30			_2)	_2)	_2)	113,5	134,0
Partial factor		γMs ¹⁾	[-]			1,5		
Steel failure: Special screw A4-70								
	FBC-S-38/23			_2)	_2)	59,0	71,5	_2)
Characteristic tensile resistance	FBC-40/22	N _{Rk,s}	[kN]	_2)	_2)	54,9	102,8	_2)
	FBC-50/30			_2)	_2)	59,0	82,8	163,
Partial factor		γMs ¹⁾	[-]			1,87	7	
Characteristic shear resistance 8.	8		TLN IT	14,6	23,2	33,7	62,8	98,0
Characteristic shear resistance A	4-70	VRk,s	[kN]	_2)	_2)	35,4	65,9	102,
Partial factor (shear loads 8.8)		γMs ¹⁾	[-]			1,25	5	
Partial factor (shear loads A4-70)		γMs ¹⁾	[-]			1,56	\$	

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

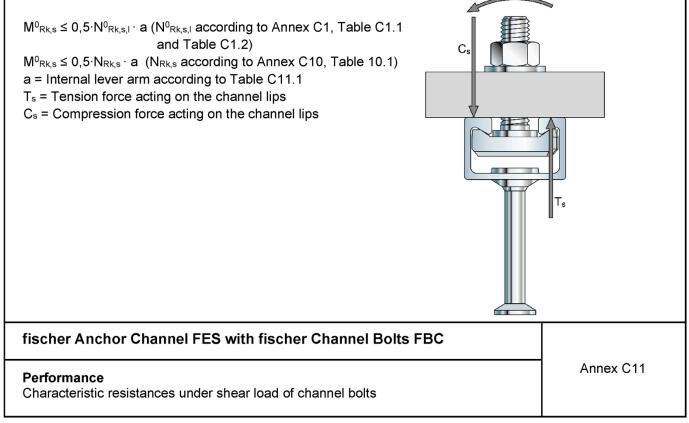
fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistances under tension and shear load of channel bolts

а

Table C11.1: Characteristic resistances under shear load with lever arm – steel failure of channel bolts


Channel bolt ²⁾ thread diameter					M8	M10	M12	M16	M20
Steel failure									
	N 40	[N loss]		8.8	30,0	59,8	104,8	266,4	519,3
Characteristic flexural resistance	M ⁰ Rk,s	linul	FBC-(S-) (N-)	A4-70	_3)	_3)	91,7	233,1	454,4
Dertiel factor	1)			8.8			1,25		
Partial factor	γMs ¹⁾	[-]	FBC-(S-) (N-)	A4-70			1,56		
			FBC-28/15	8.8	16,7	18,1	19,4	_3)	_3)
			FBC-38/17	8.8	_3)	22,7	24,0	26,0	_3)
			FBC-S-29/20	8.8	_3)	_3)	20,0	_3)	_3)
			FBC-S-38/23	8.8 A4-70	_3)	_3)	22,4	25,7	_3)
Internal lever arm	a	[mm]	FBC-40/22	8.8	_3)	23,5	24,8	26,8	_3)
		· ·	FBC-N-40/22	8.8	_3)	_3)	_3)	26,9	_3)
			FBC-50/30	8.8	_3)	27,7	29,0	31,0	33,3
			FBC-N-50/30	8.8	_3)	_3)	_3)	31,5	33,9
			FBC-40/22	A4-70	_3)	_3)	24,7	26,7	_3)
			FBC-50/30	A4-70	_3)	_3)	28,8	30,9	33,1

¹⁾ In absence of other national regulations.

²⁾ Materials according to Annex A7, Table A7.1.

³⁾ No performance assessed.

The characteristic flexure resistance according to Table C11.1 is limited as follows:

Table 12.1: Combination of anchor channels and channel bolts under seismic load (performance category C1)

Anchor channel FES-	Channel Bolt FBC-	Thread diameter	Steel grade	Corrosion protection
H-S-38/23	S-38/23	M12 M16	8.8	G ¹⁾
H-50/30 H-52/34	N-50/30	M20		F ²⁾

1) Electroplated.

²⁾ Hot-dip galvanised.

Table C12.2: Characteristic resistance under seismic tension load- steel failure of anchor channels (performance category C1)

Anchor Channel FES-H-			S-38/23	H50/30	H52/34
Steel failure: Anchor					
Characteristic resistance	N _{Rk,s,a,eq}	[kN]	31,0	31,0	31,0
Partial factor	γMs,eq ¹⁾	[-]		1,8	
Steel failure: Connection betwee		d channel			
Characteristic resistance	NRk,s,c,eq	[kN]	30,3	31,0	31,0
Partial factor	γMs,eq ¹⁾	[-]		1,8	
Steel failure: Local flexure of ch		•			
Characteristic resistance	N ⁰ Rk,s,l,eq	[kN]	30,3	43,0	43,0
Partial factor	γMs,eq ¹⁾	[-]		1,8	•

¹⁾ In absence of other national regulations.

Table 12.3: Characteristic flexural resistance of the channel under seismic tension load (performance category C1)

Anchor Channel FES-			H-S-38/23	H-50/30	H-52/43
Steel failure: Flexure of channel					
Characteristic flexural resistance of channel	M _{Rk,s,flex,eq}	[Nm]	1.240	2.185	2.185
Partial factor	γMs,flex,eq ¹⁾	[-]		1,15	

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Annex C12

Performance Characteristic resistance under seismic tension load (performance category C1)

Table C13.1: Characteristic resistance under seismic shear load- steel failure of anchor channels (performance category C1)

Anchor Channel FES-			H-S-38/23	H-50/30	H-52/34
Steel failure: Anchor					
Characteristic resistance	V _{Rk,s,a,y,eq}	[kN]	30,3	60,0	60,0
	V _{Rk,s,a,x,eq}	[kN]	18,8	18,6	18,6
Partial factor	γMs,eq ¹⁾	[-]		1,8	
Steel failure: Connection betwee	n anchor and chann	el			
Characteristic resistance	V _{Rk,s,c,y,eq}	[kN]	30,3	60,0	60,0
Characteristic resistance	V _{Rk,s,c,x,eq}	[kN]	18,2	18,6	18,6
Partial factor	γMs,eq ¹⁾	[-]		1,8	
Steel failure: Local flexure of cha	nnel lips				
Characteristic resistance	V ⁰ _{Rk,s,l,y,eq}	[kN]	30,3	60,0	60,0
Partial factor	γMs,eq ¹⁾	[-]		1,8	

¹⁾ In absence of other national regulations.

Table C13.2: Characteristic resistance for seismic shear load in direction of the longitudinal axis of the channel - steel failure (performance category C1)

Anchor Channel FES-	H-S-38/23	H-50/30	H-52/34			
Steel failure: Connectio	n betwee	en cha	annel lips and channel bolt			
			FBC-S-38/23-M12-8.8	23,2	_2)	_2)
Characteristic resistance	V _{Rk,s,l,x,eq}	[kN]	FBC-S-38/23-M16-8.8	23,2	_2)	_2)
			FBC-N-50/30-M20-8.8	_2)	21,0	21,0
Installation factor	γinst ¹⁾	[-]		1,0	1,4	1,4

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistance under seismic shear load perpendicular to the channel and in direction of the longitudinal axis of the channel (performance category C1)

Table C14.1: Characteristic resistance under seismic tension and seismic shear load – steel failure of chancel bolt (performance category C1)

Channel bolt thread diameter					M16	M20
Steel failure: Special screw						
	FBC-S-38/23	N	ELNI)	67,4	67,4	_2)
Characteristic tensile resistance	FBC-N-50/30	NRk,s,eq	[kN]	_2)	_2)	134,0
Partial factor	•	γMs ¹⁾	[-]		1,5	
Characteristic shear resistance 8.	V _{Rk,s,eq}	[kN]	33,7	33,7	98,0	
Partial factor (shear loads 8.8)		γMs ¹⁾	[-]		1,25	

¹⁾ In absence of other national regulations.

 $^{\rm 2)}$ No performance assessed.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistance of the channel bolt under seismic tension and seismic shear load (performance category C1)

Channel bolt thread diameter					M8	M10	M12	M16	M20	
Ste	el failure:	Anchor, connection between anchor and channel, local flexure of channel lips, channel bolts								
	FES-H-S-29/2	FBC-S-29/20	R30 R60 R90 R120			_ 2)	_ 2)	2,5 2,4 1,7 1,4	_ 2)	_ 2)
	FES-H-S-38/23	FBC-S-38/23	R30 R60 R90 R120			_ 2)	_ 2)	4,6 4,1 2,8 2,1	4,6 4,1 2,8 2,1	_ 2)
3)	FES-H(-I)-40/22(-P)	FBC-40/22	R30 R60 R90 R120			_ 2)	1,3 1,0 0,7 0,6	2,0 1,7 1,4 1,3	4,5 3,4 2,3 1,7	_ 2)
e exposure	FES-H(-I)-50/30(-P)	FBC(-N)-50/30	R30 R60 R90 R120			_ 2)	1,3 1,0 0,7 0,6	2,0 1,7 1,4 1,3	5,2 4,2 3,2 2,7	5,2 4,2 3,2 2,7
e under fire	FES-H(-I)-52/34	FBC(-N)-50/30	R30 R60 R90 R120	N _{Rk,s,fi}		_ 2)	1,3 1,0 0,7 0,6	4,6 4,1 2,8 2,1	5,2 4,2 3,2 2,7	8,0 6,5 5,0 4,2
: resistanc	FES-C-28/15	FBC-28/15	R30 R60 R90 R120	− = V _{Rk,s,y,fi}	[kN]	0,6 0,6 0,5 0,4	1,3 1,0 0,7 0,6	1,3 1,0 0,7 0,6	_ 2)	_ 2)
Characteristic resistance under fire	FES-C-38/17	FBC-38/17 FBC-S-38/23-M16	R30 R60 R90 R120			_ 2)	1,3 1,0 0,7 0,6	1,3 1,0 0,7 0,6	3,5 2,8 1,8 1,3	_ 2)
Cĥ	FES-C-40/25	FBC-40/22	R30 R60 R90 R120			_ 2)	1,8 1,5 1,1 0,8	3,0 2,4 1,7 1,4	3,5 2,8 1,8 1,3	_ 2)
	FES-C-49/30	FBC-50/30	R30 R60 R90 R120			_ 2)	1,3 1,0 0,7 0,6	2,9 2,4 1,8 1,6	3,1 2,5 1,9 1,6	3,1 2,5 1,9 1,6
	FES-C-54/33	FBC-50/30	R30 R60 R90 R120			_ 2)	1,3 1,0 0,7 0,6	2,9 2,4 1,8 1,6	3,1 2,5 1,9 1,6	3,1 2,5 1,9 1,6
Part	ial factor			γMs,fi ¹⁾	[-]			1,0		

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

³⁾ Values also valid for stainless steel A4-70.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistance under fire exposure

	Anchor Cha	annel F	ES-	C-28/15	C-38/17	H-S-29/20	H-S-38/23	C-40/25 H-40/22 H-40/22-P H-1-40/22	C-49/30 H50/30 H-50/30-P H-I-50/30	C-54/33 H-52/34 H-I-52/34
distance R90 [mm] 45 45 45 45 45 50 R120 60 60 60 60 60 60 60 60 65		R30		35	35	35	35	35	35	50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $; R60	a	35	35	35	35	35	35	50
$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	distance		4		45			45	45	
$\geq C_{1, fi}$		R120		60	60	60	60	60	60	65
	≥0	21, fi] 🔥				•		¥_