

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0862 of 31 March 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Anchor Channel FES with fischer Channel Bolts FBC

Anchor Channels

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

33 pages including 3 annexes which form an integral part of this assessment

EAD 330008-03-0601, Edition 06/2021

ETA-18/0862 issued on 16 June 2020

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-18/0862 English translation prepared by DIBt

Page 2 of 33 | 31 March 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 33 | 31 March 2023

Specific Part

1 Technical description of the product

The fischer Anchor Channel FES with fischer Channel Bolts FBC is a system consisting of a C-shaped channel profile of steel and at least two metal anchors non-detachably fixed on the channel back and fischer Channel Bolts.

The anchor channel is embedded surface-flush in the concrete. fischer Channel Bolts with appropriate hexagonal nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1
 Resistance to steel failure of the connection between anchors and channel 	$N_{Rk,s,c}$ see Annex C1
 Resistance to steel failure of channel lips and subsequently pull-out of channel bolt 	$N_{Rk,s,l}^{0}$; $s_{l,N}$ see Annex C1
- Resistance to steel failure of channel bolt	N _{Rk,s} see Annex C10
 Resistance to steel failure by exceeding the bending strength of the channel 	s_{max} see Annex A5 $M_{Rk,s,flex}$ see Annex C2
 Maximum installation torque to avoid damage during installation 	$T_{inst,g}$; $T_{inst,s}$ see Annex B4
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C3
- Resistance to concrete cone failure	h_{ef} see Annex B3 $k_{cr,N}$; $k_{ucr,N}$ see Annex C4
 Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation 	s_{min} see Annex A5 c_{min} ; h_{min} see Annex B3
- Characteristic edge distance and spacing to avoid splitting of concrete under load	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C4
- Resistance to blowout failure - bearing area of anchor head	A_h see Annex A4

European Technical Assessment

ETA-18/0862

English translation prepared by DIBt

Page 4 of 33 | 31 March 2023

Essential characteristic	Performance
Characteristic resistance under shear load (static and quasi-static loading)	
 Resistance to steel failure of channel bolt under shear loading without lever arm 	$V_{Rk,s}$ see Annex C10
 Resistance to steel failure by bending of the channel bolt under shear load with lever arm 	$M^0_{Rk,s}$ see Annex C11
 Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction) 	$V^0_{Rk,s,l,y}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C6
 Resistance to steel failure of connection between channel lips and channel bolt (shear load in longitudinal channel axis) 	$V_{Rk,s,l,x}$ see Annex C8
 Factor for sensitivity to installation (longitudinal shear) 	γ_{inst} see Annex C8
 Resistance to steel failure of the anchor (longitudinal shear) 	$V_{Rk,s,a,x}$ see Annex C6
 Resistance to steel failure of connection between anchor and channel (longitudinal shear) 	$V_{Rk,s,c,x}$ see Annex C6
- Resistance to concrete pry-out failure	k ₈ see Annex C8
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C8
Characteristic resistance under combined tension and shear load (static and quasi-static load)	
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C9
Characteristic resistance under fatigue tension loading	
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, test method A1, A2) 	No Performance assessed
 Fatigue limit resistance to steel failure of the whole system (test method B) 	No Performance assessed
 Fatigue resistance to concrete related failure (exponential function, test method A1, A2) 	No Performance assessed
 Fatigue limit resistance to concrete related failure (test method B) 	No Performance assessed
Displacements (static and quasi-static load)	$\begin{array}{l} \delta_{N0} \ ; \ \delta_{N^{\infty}} \ see \ Annex \ C5 \\ \delta_{V,y,0} \ ; \ \delta_{V,y,\infty} \ ; \ \delta_{V,x,0} \ ; \ \delta_{V,x,\infty} \end{array}$
	see Annex C9

European Technical Assessment

ETA-18/0862

Page 5 of 33 | 31 March 2023

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Characteristic resistance to fire	$N_{Rk,s,fi}$; $V_{Rk,s,fi}$ see Annex C12

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	No performance assessed

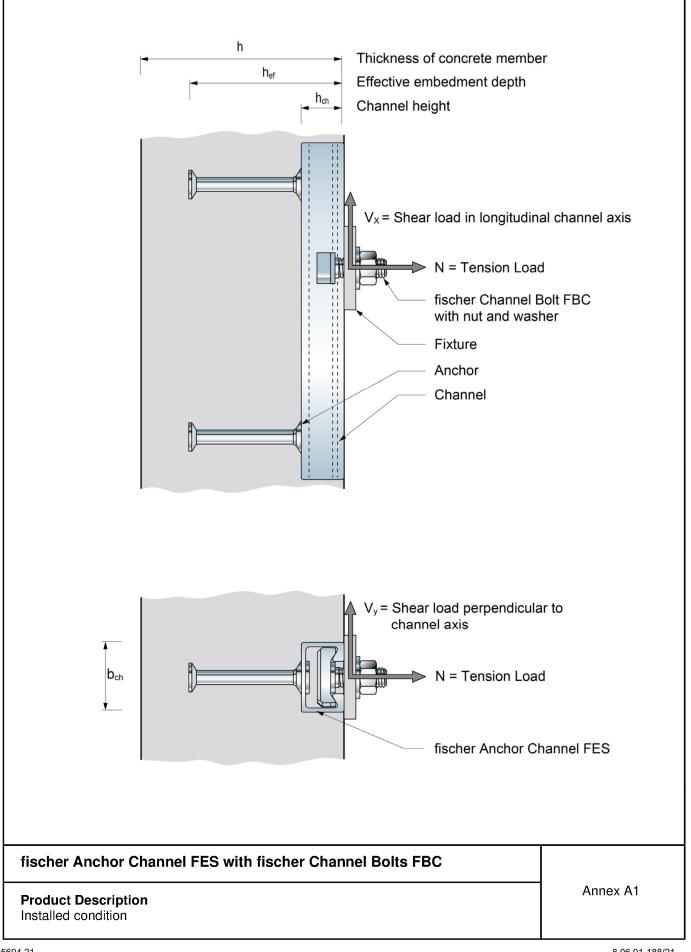
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-03-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

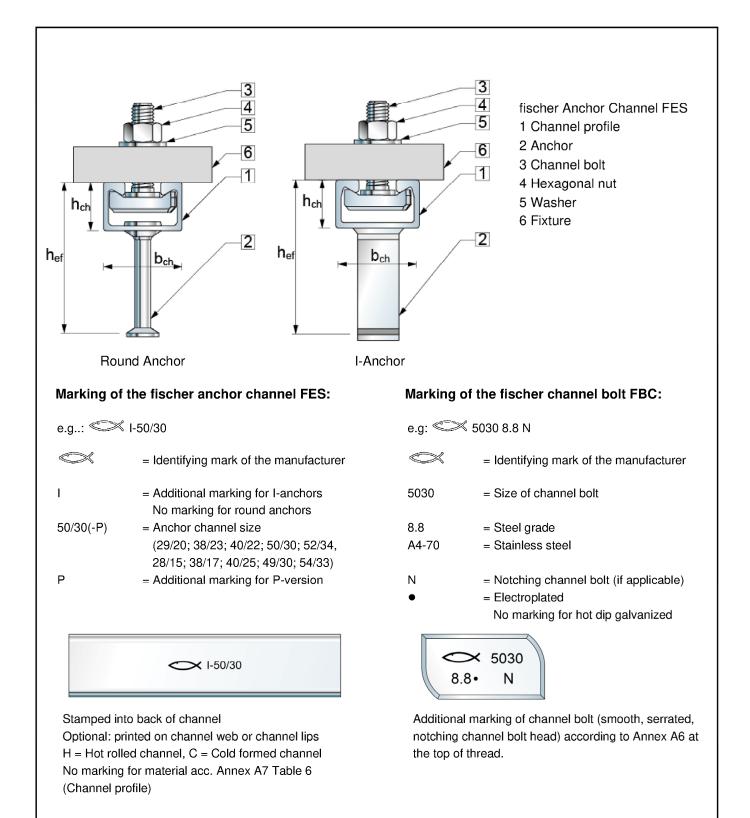
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 31 March 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Müller

Page 6 of European Technical Assessment ETA-18/0862 of 31 March 2023

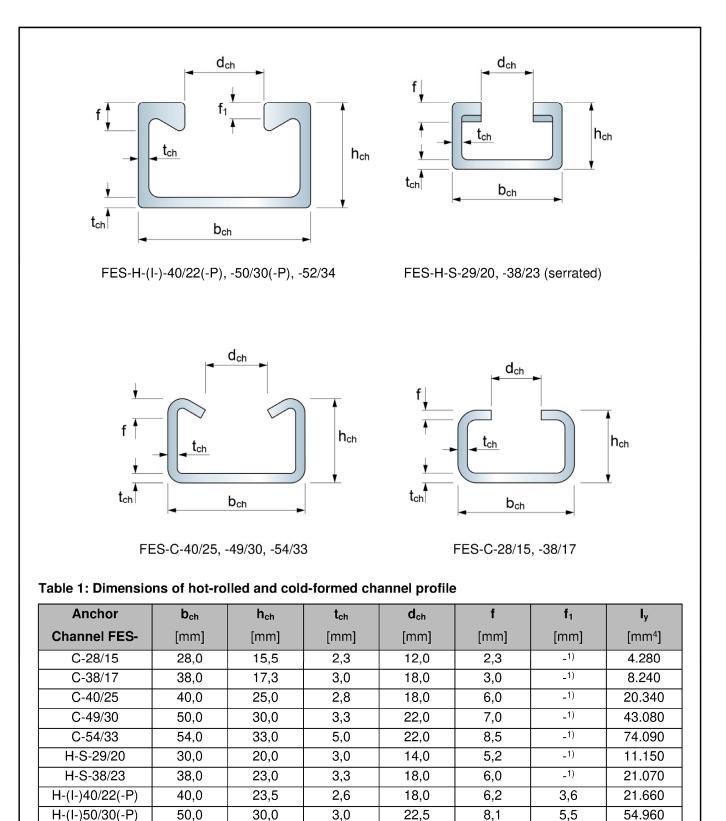
English translation prepared by DIBt



Page 7 of European Technical Assessment ETA-18/0862 of 31 March 2023

English translation prepared by DIBt

fischer Anchor Channel FES with fischer Channel Bolts FBC


Product Description Marking and materials

Annex A2

Page 8 of European Technical Assessment ETA-18/0862 of 31 March 2023

English translation prepared by DIBt

¹⁾ This dimension is not available for this product.

52,5

fischer Anchor Channel FES with fischer Channel Bolts FBC

34,0

4,0

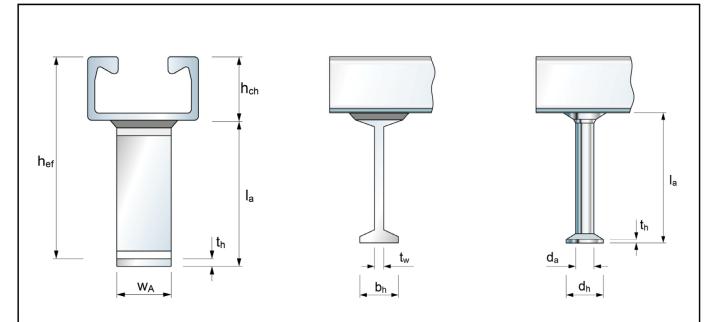
22,5

11,5

8,3

Product Description
Dimensions of channels

H-(I-)52/34


Annex A3

96.330

Page 9 of European Technical Assessment ETA-18/0862 of 31 March 2023

English translation prepared by DIBt

Table 2: Dimensions of anchor (welded I-anchor or forged round anchor)

Anchor			I-and	chor				Roi	und anc	hor	
Channel FES -	l _{a,min} [mm]	t _{w,min} [mm]	b _{h,min} [mm]	t _h [mm]	W _A [mm]	A _{h,min} [mm²]	l _{a,min} [mm]	da [mm]	d _h [mm]	t _h [mm]	A _h [mm²]
C-28/15		_ 2)							12,0	1,3	85
C-38/17			-	2)			60,8	8	16,0	2,0	151
C-40/25			-	2)			56,0	8	16,0	2,0	151
C-49/30			-	2)			66,0	10	20,0	2,2	236
C-54/33			-	2)			124,5	11	24,3	2,5	369
H-S-29/20			-	2)			59,5	10	20,0	2,5	236
H-S-38/23			-	2)			76,2	10	20,0	2,2	236
H-(I-)40/22	62	5	20	5	20	300	68,5	8	16,0	2,0	151
H-40/22-P			-	2)			69,7	10	20,0	2,2	236
H-(I-)50/30	69	5	20	5	25	375	66,2	10	20,0	2,2	236
H-50/30-P			-	2)	·		78,5	11	24,3	2,5	369
H-(I-)52/34	126	5 ¹⁾	20 ¹⁾	5	40	600	123,5	11	24,3	2,5	369

¹⁾ Alternative I-anchor: tw = 6 mm, bh = 25 mm.

²⁾ Product not available.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Product Description

Dimensions of anchors

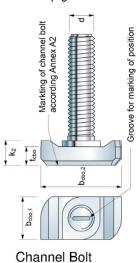
Annex A4

Electronic copy of the ETA by DIBt: ETA-18/0862

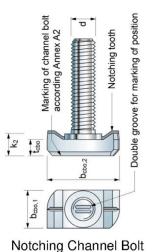
Page 10 of European Technical Assessment ETA-18/0862 of 31 March 2023

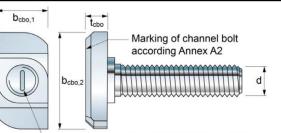
English translation prepared by DIBt

Anchor channel FES-	Anchor type	S _{min} [mm]	S _{max} [mm]	X _{min} [mm]	x _{max} [mm]	l _{min} [mm]	I _{max} [mm]
C-28/15			200				
C-38/17			200				
C-40/25							
C-49/30	round		250				
C-54/33		100		25	35	150	6.070
H-S-29/20		100	200	25	00	150	0.07
H-S-38/23							
H-(I-)40/22(-P)	round or I						
H-(I-)50/30	round or I		250				
H-I-52/34	I		200				
H-50/30-P	round			35		170	
H-52/34	Tound			- 55		170	
		≥ I _{min}					

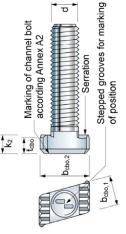

Table 4: Steel	Table 4: Steel grade and corrosion class								
Channel Bolt	Stainless steel ¹⁾								
Steel grade	8.8	A4-70							
f _{uk} [N/mm ²]	800 / 830	700							
f _{yk} [N/mm ²]	640 / 660 ²⁾	450							
Finish	G ³⁾ F ⁴⁾	-							

¹⁾ Material properties according to Annex A7.


²⁾ Material properties according to EN ISO 898-1.


³⁾ Electroplated.

⁴⁾ Hot-dip galvanized.


FBC-40/22, FBC-50/30

Groove for marking of position

Channel Bolt FBC-28/15, FBC-38/17

Serrated Channel Bolt FBC-S-29/20, FBC-S-38/23

Table 5: Dimensions of fischer Channel Bolts FBC and matching fischer Anchor Channels FES

FBC-N-40/22, FBC-N-50/30

Anchor	Channel			Dimensions		
Channel FES-	Bolt FBC-	d [mm]	b _{cbo,1} [mm]	b _{cbo,2} [mm]	t _{cbo} [mm]	k ₂ [mm]
C-28/15	28/15 8.8	8 10 12	11,0	22,2	5,0 5,0 7,0	_ 1)
C-38/17	38/17 8.8	10 12	16,0	30,0	6,0 7,0	_ 1) _ 1)
H-S-29/20	S-29/20 8.8	12	13,0	22,0	6,5	8,0
H-S-38/23 C-38/17	S-38/23 8.8	12 16	16,7	29,1	5,8	7,3
H(-I)-40/22(-P) C-40/25	40/22 8.8 40/22 8.8, A4-70 40/22 8.8, A4-70	10 12 16	14,0 14,0 17,0	32,5	8,0	11,0
H(-I)-40/22(-P)	N-40/22 8.8	16	17,0	33,0	7,8	10,3
C-49/30 H(-I)-50/30 C-54/33 H(-I)-52/34	50/30 8.8 50/30 8.8, A4-70 50/30 8.8, A4-70 50/30 8.8, A4-70 50/30 8.8, A4-70	10 12 16 20	17,1 17,1 17,1 20,5	40,5	9,0 10,0 11,0 12,0	11,5 12,5 13,5 14,5
H(-I)-50/30(-P) H(-I)-52/34	N-50/30 8.8	16 20	17,5 21,0	42,2 40,5	12,0 12,0	15,5 15,5

¹⁾ This dimension is not available for this product.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Product Description

Channel bolts

Annex A6

Page 12 of European Technical Assessment ETA-18/0862 of 31 March 2023

English translation prepared by DIBt

	Carb	on steel		Stainless steel
Component	Mechanical properties	Coating	Coating	Mechanical properties
1	2a	2a	2b	3
Channel profile	1.0038, 1.0044 acc. to EN 10025:2004 1.0976, 1.0979 acc. to EN 10149:2013	≥ 50 µm	alvanized acc. to 461:2022	_ 2)
Anchor	1.0038, 1.0213, 1.0214 acc. to EN 10025:2004 1.5525, 1.5535 acc. to EN 10263:2017 1.5523	≥ 50 µm	alvanized n acc. to 461:2022	_ 2)
Channel bolt	Steel grade 8.8 acc. to EN ISO 898-1:2013	Electroplated acc. to EN ISO 4042:2018	Hot dip galvanized ≥ 50 µm acc. to EN ISO 10684:2004 + AC:2009	Steel grade 70 according to EN ISO 3506-1: 2020
Plain washer ¹⁾ acc. to EN ISO 7089:2000 and EN ISO 7093- 1:2000	Hardness class A ≥ 200 HV	Electroplated acc. to EN ISO 4042:2018	Hot dip galvanized ≥ 50 µm acc. to EN ISO 10684:2004 + AC:2009	1.4401, 1.4404, 1.4571; 1.4578 according to EN 10088: 2009
Hexagonal nut acc. to EN ISO 4032:2012	Property class 5 or 8 acc. to EN ISO 898-2:2012	Electroplated acc. to EN ISO 4042:2018	Hot dip galvanized ≥ 50 µm acc. to EN ISO 10684:2004 + AC:2009	Property class 70 or 80 according to EN ISO 3506-2: 2020

¹⁾ Not in the scope of delivery.

²⁾ Product not available.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Product Description Materials Annex A7

Electronic copy of the ETA by DIBt: ETA-18/0862

Specification of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static tension and shear perpendicular to the longitudinal axis of the channel for FES in combination with channel bolt FBC.
- Static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel for FES-H(-I)-40/22(-P) , FES-H(-I)-50/30(-P) or FES-H(-I)-52/34 in combination with notching channel bolt FBC-N.
- Static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel for serrated anchor channels FES-H-S in combination with serrated channel bolts FBC-S.
- Fire exposure: Only for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C90/105 according to EN 206-1:2000
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A7, Table 6, column 2a and 2b, 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchens, bathrooms and laundries in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A7, Table 6, column 2b, 3).

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels have to be designed in accordance with EOTA TR 047 "Design of Anchor Channels", March 2018 or EN 1992-4:2018.
- The characteristic resistances are calculated with the minimum effective embedment depth.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Intended Use

Specifications

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A5, Table 3 are generated including end spacing x and minimum channel length I_{min} and only to be used in dry internal conditions.
- Installation in accordance with the installation instruction given in Annexes B5, B6, B7 or B8.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete around the head of the anchors is properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washers may be chosen according to Annex A7 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B6, B7 and B8) rectangular to the channel axis.
- The required installation torque given in Annex B4 must be applied and must not be exceeded.
- Notching channel bolts FBC-N may be used only once after applying the installation torque Tinst,s.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Intended Use Specifications

Anchor Channel FES-			C-28/15	C-38/17	H-S-29/20	H-S-38/23	C-40/25 H-40/22 H-40/22-P H-I-40/22	C-49/30 H-50/30 H-50/30-P H-I-50/30	C-54/33 H-52/34 H-I-52/34
Minimum effective embedment depth	h _{ef,min}		45	76	77	97	79 90 91 79	94 94 106 94	155 155 155
Minimum edge distance	Cmin	[mm]	40	50	75	100	50 50 50 50	75 75 75 75 75	100 100 100
Minimum thickness of concrete member	h _{min} 1)		70	100	100	100	100 100 100 100	100 100 108 100	160 160 170
$h_{min} = h_{ef} + t_h + c_{nom}; c_{nom} na$	ch EN 199	92-1-1:2	2004 + AC	;:2010.					
C₂ ►	•	Scbo							
C1	[>		[
•									
)	
	S					s		x	
						S		×	
- ►	S					 S		×	
Table 8: Minimum spacin	S	annel k)olts			S			
- ►	S	annel k	olts				110 M12	· - ·	M20
Γable 8: Minimum spacin	s s)olts	Scbo,min		M8 M	110 M12 50 60		M20 100
Table 8: Minimum spacin Channel bolt	s s)olts	I Scbo,min		M8 M		2 M16	

Electronic copy of the ETA by DIBt: ETA-18/0862

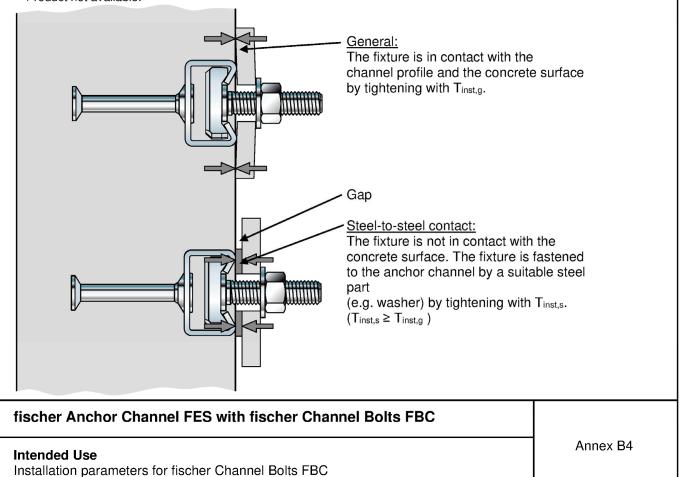
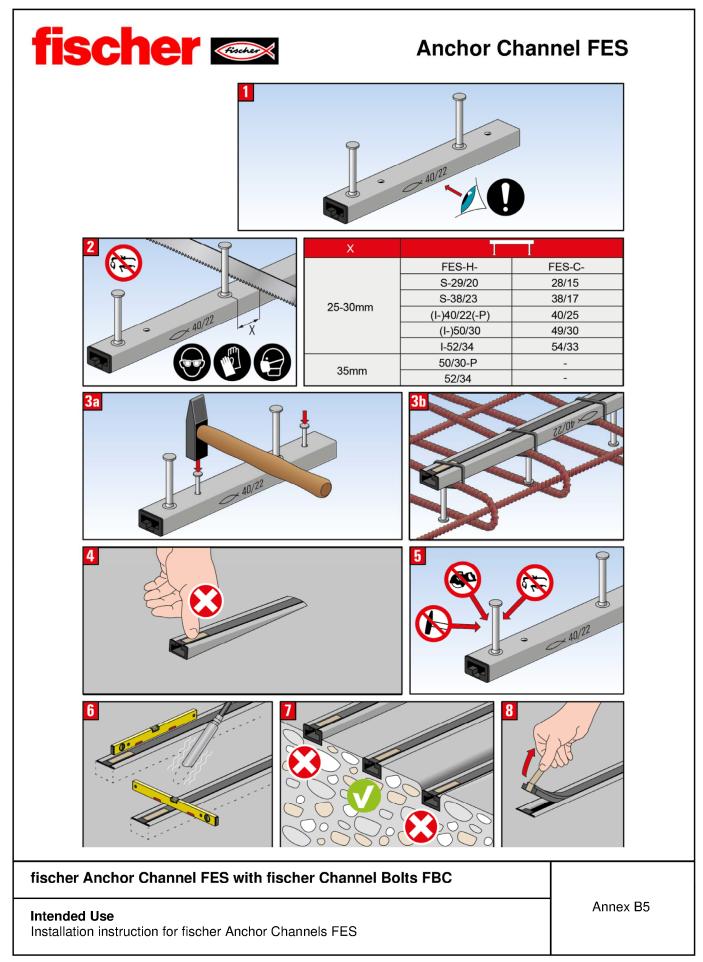
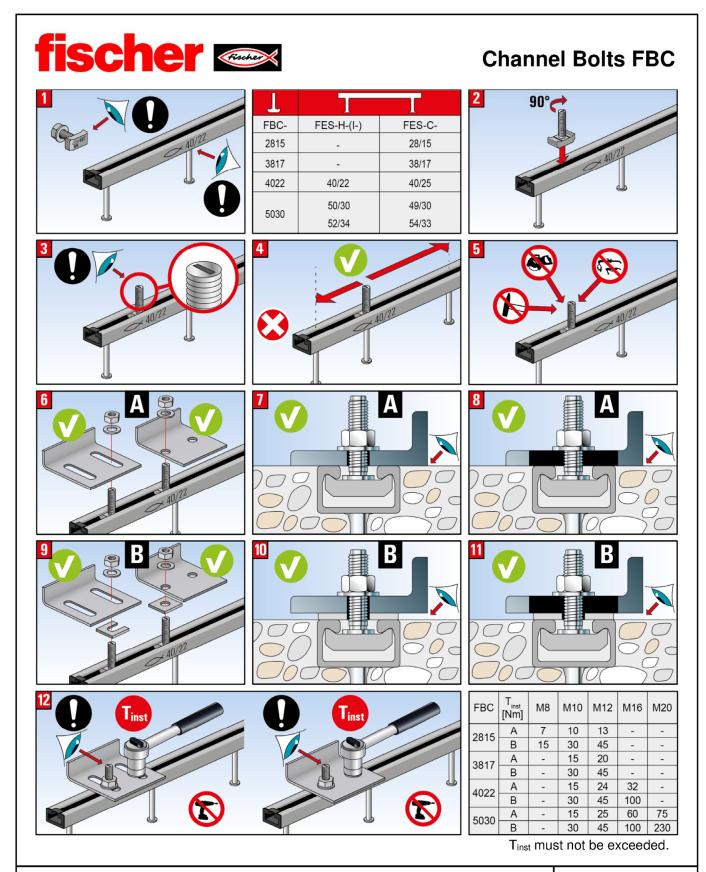

Installation parameters for fischer Anchor Channels FES

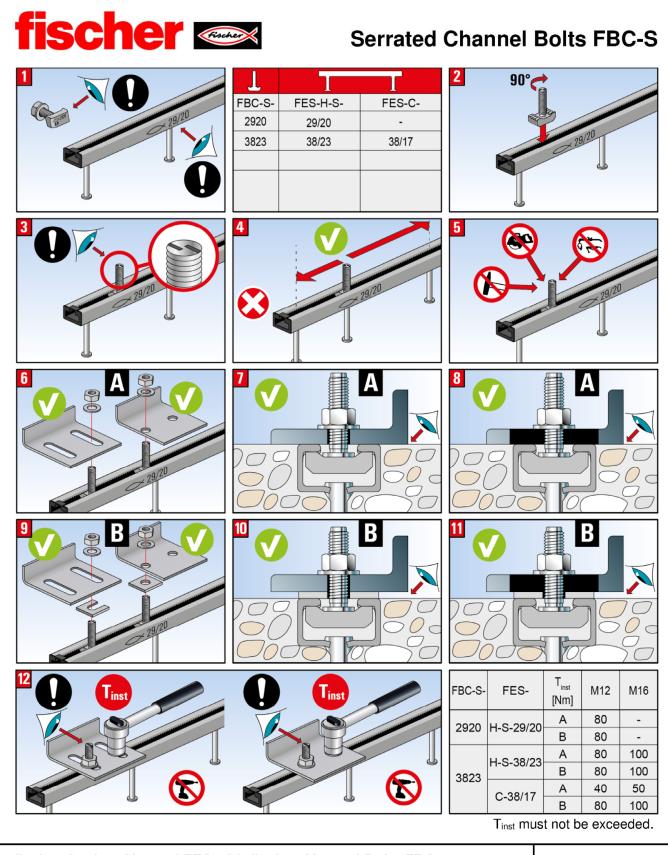
Table 9: Required install	ation torque T _{inst}							
			T _{inst} ¹⁾ [Nm]					
fischer Anchor channel	fischer Channel Bolt	Thread diameter	Ger	neral	Steel - ste	el contact		
FES-	FBC		Tir	nst,g	T _{inst,s}			
			8.8	A4-70	8.8	A4-70		
		M8	7	_2)	15	_2)		
C-28/15	28/15	M10	10	_2)	30	_2)		
		M12	13	_2)	45	_2)		
C-38/17	38/17	M10	15	_2)	30	_2)		
0.00/11		M12	20	_2)	45	_2)		
H-S-29/20	S-29/20	M12	80	_2)	80	_2)		
H-S-38/23		M12	80	_2)	80	_2)		
П-3-30/23	S-38/23	M16	100	_2)	100	_2)		
C-38/17	3-30/23	M12	40	_2)	80	_2)		
0-38/17		M16	50	_2)	100	_2)		
		M10	15	_2)	30	_2)		
H(-I)-40/22(-P)	40/22	M12	24	24	45	45		
C-40/25		M16	32	32	100	100		
	N-40/22	M16	_2)	_2)	200	_2)		
C-49/30		M10	15	_2)	30	_2)		
H(-I)-50/30(-P)	50/30	M12	25	25	45	45		
C-54/33	50/30	M16	60	60	100	100		
H(-I)-52/34		M20	75	75	230	230		
H(-I)-50/30(-P),	N-50/30	M16	_2)	_2)	200	_2)		
H(-I)-52/34	13 30/30	M20	_2)	_2)	400	_2)		

¹⁾ T_{inst} must not be exceeded.


²⁾ Product not available.


Page 17 of European Technical Assessment ETA-18/0862 of 31 March 2023

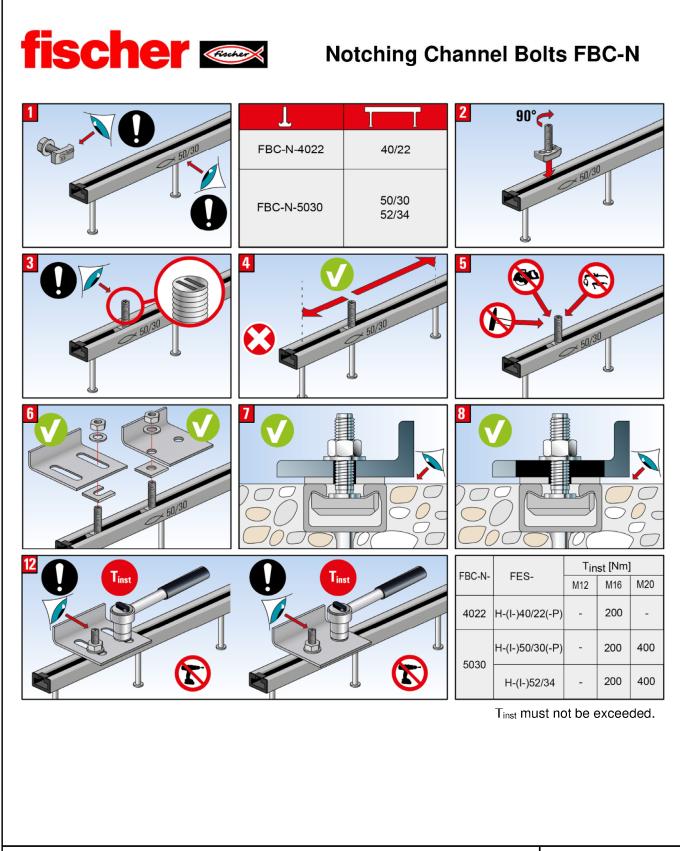
English translation prepared by DIBt



fischer Anchor Channel FES with fischer Channel Bolts FBC

Intended Use

Installation instruction for fischer Channel Bolts FBC



Intended Use

Installation instruction for Serrated fischer Channel Bolts FBC-S

Table 10: Characteristic resistances under tension load - steel failure of hot-rolled anchor channels

Anchor Channel FES-H-	S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34		
Steel failure: Anchor							
Characteristic resistance	N _{Rk,s,a}	[kN]	31,0	31,0	20,0 42,0 35,0	31,0 44,0 44,0	55,0 70,4
Partial factor	γ _{Ms} ¹⁾	[-]			1,8		
Steel failure: Connection between anchor and	l chanı	nel					
Characteristic resistance	N _{Rk,s,c}	[kN]	20,2	30,3	20,0 40,1 38,0	31,0 44,0 40,0	55,0 70,4
Partial factor	γ _{Ms} ¹⁾	[-]			1,8		
Steel failure: Local flexure of channel lips							
Characteristic spacing of channel bolts for $N_{Rk,s,I}$	SI,N	[mm]	60	76	80 80 80	100 100 100	105 105
Characteristic resistance	N ⁰ Rk,s,I	[kN]	20,2	30,3	38,0 42,0 38,0	43,0 52,0 43,0	72,0 72,0
Partial factor	γ _{Ms} ¹⁾	[-]			1,8		

¹⁾ In absence of other national regulations.

Table 11: Characteristic resistances under tension load – steel failure of cold-formed anchor channels

Anchor Channel FES-C-	28/15	38/17	40/25	49/30	54/33				
Steel failure: Anchor									
Characteristic resistance	N _{Rk,s,a}	[kN]	9,0	20,0	20,0	31,0	55,0		
Partial factor	γMs ¹⁾	[-]			1,8				
Steel failure: Connection between anchor and channel									
Characteristic resistance	N _{Rk,s,c}	[kN]	9,0	18,0	20,0	31,0	55,0		
Partial factor	γMs ¹⁾	[-]			1,8				
Steel failure: Local flexure of channel lips									
Characteristic spacing of channel bolts for $N_{Rk,s,l}$	SI,N	[mm]	56	76	80	100	108		
Characteristic resistance	N ⁰ Rk,s,I	[kN]	9,0	18,0	20,0	31,0	55,0		
Partial factor $\gamma_{Ms}^{(1)}$ [-] 1,8									

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistances under tension load - Steel failure of anchor channel

Table 12: Characteristic flexural resistance of hot rolled channels under tension load

Anchor Channel FES-H-	S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34		
Steel failure: Flexure of channel							
Characteristic flexural resistance of channel	MRk,s,flex	[Nm]	745	1.241	1.118 1.118 1.118	2.185 2.185 2.185	3.163 3.670
Partial factor	γMs,flex ¹⁾	[-]			1,15		

¹⁾ In absence of other national regulations.

Table 13: Characteristic flexural resistance of cold-formed channels under tension load

Anchor Channel FES-C-	28/15	38/17	40/25	49/30	54/33		
Steel failure: Flexure of channel							
Characteristic flexural resistance of channel	MRk,s,flex	[Nm]	310	567	915	1.554	2.350
Partial factor	γMs,flex ¹⁾	[-]			1,15		

¹⁾ In absence of other national regulations.

Performance

Characteristic resistances under tension load - Steel failure of anchor channel

Table 14: Characteristic resistances under tension load – concrete failure of hot rolled anchor channels

Anchor Channel FES-H-		S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34	
Concrete failure: Pull-out failure							
Characteristic resistance in cracked concrete C12/15	NI		21,2	21,2	13,6 21,2 27,0	21,2 33,2 33,8	33,2 54,0
Characteristic resistance in uncracked concrete C12/15	- N _{Rk,p}	[kN]	29,7	29,7	19,0 29,7 37,8	29,7 46,5 47,3	46,5 75,6
Increasing factor of $N_{Rk,p} = N_{Rk,p}(C12/15)^* \psi_c$	C16/20 C20/25 C25/30 C35/45 C40/50 C45/55 C50/60 C55/67 ≥C60/75	ψc[-]			1,33 1,67 2,08 2,50 2,92 3,33 3,75 4,17 4,58 5,00		
Partial factor	$\gamma_{Mp} = \gamma_{Mc}^{1)}$		1,5				
Concrete failure: Concrete cone failure							
Product factor k₁	k _{cr,N}	[-]	7,8	8,1	8,0 8,0 7,9	8,1 8,2 8,1	8,7 8,7
	k _{ucr,N}	[-]	11,2	11,6	11,4 11,5 11,2	11,5 11,7 11,5	12,4 12,4
Partial factor	γMc ¹⁾	[-]			1,5		
Concrete failure: Splitting	-						
Characteristic edge distance	C cr,sp	[mm]	231	291	270 273 237	282 318 282	465 465
Characteristic spacing	Scr,sp	[mm]	462	582	540 546 474	564 636 564	930 930
Partial factor	γMsp =γMc ¹	[-]			1,5		

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistances under tension load – concrete failure of hot rolled anchor channels

Page 24 of European Technical Assessment ETA-18/0862 of 31 March 2023

English translation prepared by DIBt

Anchor Channel FES-C-			28/15	38/17	40/25	49/30	54/33
Concrete failure: Pull-out failure							
Characteristic resistance in cracked concrete C12/15	N.	[kN]	7,6	13,6	13,6	21,2	33,2
Characteristic resistance in uncracked concrete C12/15	N _{Rk,p}	נגואן	10,7	19,0	19,0	29,7	46,5
Increasing factor of $N_{RK,p} = N_{RK,p}(C12/15)^* \psi_c$	C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 C55/67 ≥C60/75	ψc[-]			1,33 1,67 2,08 2,50 2,92 3,33 3,75 4,17 4,58 5,00		
Partial factor	$\gamma_{Mp}=\gamma_{Mc}^{1)}$	[-]			1,5		
Concrete failure: Concrete cone failure							
Product factor k1	k _{cr,N}	[-]	7,2	7,8	7,9	8,1	8,7
	k _{ucr,N}	[-]	10,3	11,2	11,2	11,5	12,4
Partial factor	$\gamma Mc^{1)}$	[-]			1,5		
Concrete failure: Splitting failure							
Characteristic edge distance	Ccr,sp	[mm]	135	228	237	282	465
Characteristic spacing	Scr,sp	[mm]	270	456	474	564	930
Partial factor	γMsp =γMc ¹⁾	[-]			1,5		

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistances under tension load – concrete failure of cold formed anchor channels

Anchor Channel FES-H-	S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34		
Tension load	N	[kN]	8,0	12,0	15,1 16,7 15,1	17,1 20,6 17,1	28,6 28,6
Short-term displacement 1)	δ _{N0}	[mm]	1,4	2,0	2,2 2,5 2,2	1,5 1,8 1,5	1,9 1,9
Long-term displacement 1)	δ _{N∞}	[mm]	2,8	4,0	4,5 5,0 4,5	2,9 3,5 2,9	3,7 3,7

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt,

deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

Table 17: Displacements of cold-formed anchor channels under tension load

Anchor Channel FES-C-			28/15	38/17	40/25	49/30	54/33
Zuglast	N	[kN]	3,6	7,1	7,9	12,3	21,8
Kurzzeitverschiebung ¹⁾	δ _{N0}	[mm]	0,7	1,3	1,5	1,4	1,2
Langzeitverschiebung ¹⁾	δ _{N∞}	[mm]	1,4	2,6	3,0	2,8	2,4

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt,

deformation of channel lips, bending of the channel and slip of the anchor channel in concret.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance Characteristic resistance under tension load - displacements Annex C5

Electronic copy of the ETA by DIBt: ETA-18/0862

Page 26 of European Technical Assessment ETA-18/0862 of 31 March 2023

English translation prepared by DIBt

Anchor Channel FES-H-			S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34					
Steel failure: Anchor												
Characteristic resistance	V _{Rk,s,a,y}	[kN]	20,2	30,3	40,0 50,8 40,0	60,0 87,9 60,0	100 100					
Characteristic resistance	V _{Rk,s,a,x}	[kN]	18,8	18,8	12,0 25,4 22,8	18,6 26,8 24,0	33,0 42,2					
Partial factor	γMs ¹⁾	[-]			1,8							
Steel failure: Connection between anchor and c	hannel											
	V _{Rk,s,c,y}	[kN]	20,2	30,3	40,0 50,8 40,0	60,0 87,9 60,0	100 100					
Characteristic resistance	V _{Rk,s,c,x}	[kN]	12,1	18,2	12,0 25,2 22,8	18,6 26,4 24,0	33,0 42,2					
Partial factor	γMs ¹⁾	[-]			1,8							
Steel failure: Local flexure of channel lips												
Characteristic spacing of channel bolts for $V_{Rk,s,l}$	SI,V	[mm]	60	76	80 80 80	100 100 100	108 108					
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	20,2	30,3	40,0 50,8 40,0	60,0 87,9 60,0	100 100					
Partial factor	γ _{Ms} ¹⁾	[-]			1,8	,						

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistance under shear load - Steel failure of hot-rolled anchor channels

Table 19: Characteristic resistances under shear load – steel failure of cold-formed anchor channels											
Anchor Channel FES-C-	28/15	38/17	40/25	49/30	54/33						
Steel failure: Anchor											
Characteristic resistance	V _{Rk,s,a,y}	[kN]	9	18	20	31	55				
Characteristic resistance	V _{Rk,s,a,x}	[kN]	_2)	_2)	_2)	_2)	_2)				
Partial factor	1,8										
Partial factor γ_{Ms} ¹⁾ [-] 1,8 Steel failure: Connection between anchor and channel γ_{Ms} γ_{Ms} γ_{Ms}											
	V _{Rk,s,c,y}	[kN]	9	18	20	31	55				
Characteristic resistance	V _{Rk,s,c,x}	[kN]	_2)	_2)	_2)	_2)	_2)				
Partial factor	γMs ¹⁾	[-]		1	1,8						
Steel failure: Local flexure of channel lips											
Characteristic spacing of channel bolts for $V_{\text{Rk},\text{s},\text{I}}$	SI,V	[mm]	56	76	80	100	108				
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	9	18	20	31	55				
Partial factor $\gamma_{Ms}^{(1)}$ [-] 1,8											

 $^{1)}$ In absence of other national regulations. $^{2)}$ No performance assessed.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistance under shear load - Steel failure of cold-formed anchor channels

Table 20: Characteristic resistance for shear load in direction of the longitudinal axis of the channel – steel failure

Anchor Channel FES-H-					S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34
Steel failure: Con	nection	ı betv	veen channel lips and c	hannel bo	olt			
			FBC-S-29/20-M12-8.8	22,5	_2)	_2)	_2)	_2)
			FBC-S-38/23-M12-8.8	_2)	23,2	_2)	_2)	_2)
Characteristic	V	[LAN]]	FBC-S-38/23-M16-8.8	_2)	30,3	_2)	_2)	_2)
resistance	V _{Rk,s,l,x}	[KIN]	FBC-N-40/22-M16-8.8	_2)	_2)	14,0	_2)	_2)
			FBC-N-50/30-M16-8.8	_2)	_2)	_2)	10,7	10,7
			FBC-N-50/30-M20-8.8	_2)	_2)	_2)	21,0	21,0
Installation factor	γinst ¹⁾	[-]		1,2	1,0	1,2	M16: 1,2 M20: 1,4	M16: 1,2 M20: 1,4

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

Table 21: Characteristic resistances of the hot-rolled anchor channel under shear load – concrete failure

Anchor Channel FES-H-			S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34
Concrete failure: Pry-out fa	ilure						
Product factor	k ₈	[-]	2,0	2,0	2,0	2,0	2,0
Partial factor	γMc ¹⁾	[-]			1,5		
Concrete failure: Concrete	edge fail	ure					
Draduat factor k	k _{cr,V}	[-]	5,6	5,6	7,5	7,5	7,5
Product factor k ₁₂	k _{ucr,V}	[-]	7,8	7,8	10,5	10,5	10,5
Partial facto	γMc ¹⁾	[-]			1,5		

¹⁾ In absence of other national regulations.

Table 22: Characteristic resistances of the cold-formed anchor channel under shear load – concrete failure

		28/15	38/17	40/25	49/30	54/33
ut failure						
k ₈	[-]	1	2	2	2	2
γ _{Mc} ¹⁾	[-]			1,5		
ete edge failu	ire					
k _{cr,V}	[-]	5,8	6,9	7,5	7,5	7,5
k _{ucr,V}	[-]	8,1	9,7	10,5	10,5	10,5
γMc ¹⁾	[-]			1,5		
	ut failure k ₈ γ _{Mc} ¹⁾ ete edge failu k _{cr,V} k _{ucr,V}	ut failure k ₈ [-] γ _{Mc} ¹⁾ [-] ete edge failure k _{cr,V} [-] k _{ucr,V} [-]	k8 [-] 1 γMc ¹⁾ [-] ete edge failure kcr,v [-] 5,8 kucr,v [-] 8,1	k8 [-] 1 2 γMc ¹⁾ [-] - ete edge failure 6,9 kcr,V [-] 5,8 6,9 kucr,V [-] 8,1 9,7	k8 [-] 1 2 2 γMc ¹⁾ [-] 1,5 ete edge failure Kor,V [-] 5,8 6,9 7,5 kuer,V [-] 8,1 9,7 10,5	In the second

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistance under shear load

Page 29 of European Technical Assessment ETA-18/0862 of 31 March 2023

English translation prepared by DIBt

Anchor Channel FES-	C-28/15	C-38/17	H-S-29/20	H-S-38/23	C-40/25 H-40/22 H-40/22-P H-I-40/22	C-49/30 H-50/30 H-50/30-P H-I-50/30	C-54/33 H-52/34 H-I-52/34		
Shear load perpendicular to the longitudinal axis of the channel	Vy	[kN]	3,6	7,1	8,0	12,0	7,9 15,9 20,2 15,9	12,3 23,8 34,9 23,8	21,8 39,7 39,7
Short-term displacement 1)	δ _{V,y,0}	[mm]	0,7	1,3	1,4	2,0	1,5 2,1 2,2 2,1	1,4 3,7 2,1 3,7	1,2 4,0 4,0
Long-term displacement 1)	δ _{V,y,} ∞	[mm]	1,1	2,0	2,1	3,0	2,3 3,2 3,3 3,2	2,1 5,5 3,2 5,5	1,8 5,9 5,9
Shear load in direction of the longitudinal axis of the channel	Vx	[kN]	_3)	_3)	6,6	12,0	- ³⁾ 4,6 4,6 4,6 - ³⁾	_3) 4) 4) 4)	_3) 4) 4)
Short-term displacement ²⁾	δ _{V,x,0}	[mm]	_3)	_3)	0,6	0,8	0,9 0,9 0,9	_3) 5) 5) 5)	_3) 5) 5)
Long-term displacement ²⁾	δ _{V,x,} ∞	[mm]	_3)	_3)	0,9	1,3	_ ³⁾ 1,4 1,4 1,4	_3) 6) 6) 6)	_3) 6) 6)

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete.

²⁾ Displacements of the anchor channel, including slip of channel bolt, deformation of channel

lips and slip of the anchor channel in concrete.

³⁾ No performance assessed.

 $^{\rm 4)}$ For FBC-N-5030-M16 V_x = 3,5 kN, for FBC-N-5030-M20 V_x = 6,7 kN.

 $^{5)}$ For FBC-N-5030-M16 $\delta_{V,x,0}$ = 0,4 mm, for FBC-N-5030-M20 $\delta_{V,x,0}$ = 0,1 mm.

 $^{6)}$ For FBC-N-5030-M16 $\delta_{V,x,\texttt{w}}$ = 0,6 mm, for FBC-N-5030-M20 $\delta_{V,x,\texttt{w}}$ = 0,2 mm.

Table 24: Characteristic resistances under combined tension and shear load

Anchor Channel FES-			C-28/15	C-38/17	H-S-29/20	H-S-38/23	C-40/25 H-40/22 H-40/22-P H-1-40/22	H-50/30-P	C-54/33 H-52/34 H-I-52/34
Steel failure: Local flexure of o	hanne	llips	s and fle	xure of	channel				
Product factor	according to EN 1992-4:2018, 7.4.3.1								
Steel failure: Anchor and conr	nection	betv	ween ar	ichor ar	nd channe	el			
Product factor	k 14	[-]		a	ccording to	o EN 1992	2-4:2018,	7.4.3.1	

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Displacement under shear load, characteristic resistance under combined tension and shear load

Page 30 of European Technical Assessment ETA-18/0862 of 31 March 2023

English translation prepared by DIBt

Table 25: Characteristic resistance	s under tension and s	hear load	l – ste	el fail	ure of	chan	nel boli	ts			
Channel bolt thread diameter				M8	M10	M12	M16	M20			
Steel failure: Channel bolt						6,4 67,4 -2) -2) 48,5 -2) -2) 67,4 71,5 6,4 55,1 82,2 -2) -2) 100,9 6,4 67,4 96,5 -2) -2) 113,5 -2) -2) 113,5 -2) -2) 48,5					
	FBC-28/15			29,2	33,0	45,1	_2)	_2)			
Characteristic resistance	FBC-38/17			_2)	46,4	67,4	_2)	_2)			
	FBC-S-29/20			_2)	_2)	48,5	_2)	_2)			
	FBC-S-38/23			_2)	_2)	67,4	71,5	_2)			
Characteristic resistance	FBC-40/22	N _{Rk,s}	[kN]	_2)	46,4	55,1	82,2	_2)			
	FBC-N-40/22			_2)	_2)	_2)	100,9	_2)			
	FBC-50/30			_2)	46,4	67,4	96,5	127,2			
	FBC-N-50/30			_2)	_2)	_2)	113,5	134,0			
Partial factor	γMs ¹⁾	[-]	1,5								
Steel failure: Channel bolt						A4-7	0				
Characteristic resistance	FBC-40/22-A4-70	NI-		_2)	_2)	54,9	102,8	_2)			
Characteristic resistance	FBC-50/30-A4-70	- N _{Rk,s}	[kN]	_2)	_2)	59,0	82,8	163,1			
Partial factor		γMs ¹⁾	[-]			1,87	7				
Characteristic shear resistance 8.8		N-		14,6	23,2	33,7	62,8	98,0			
Characteristic shear resistance A4	-70	VRk,s,	[kN]	_2)	_2)	35,4	65,9	102,9			
Partial factor (shear loads 8.8)		γMs ¹⁾	[-]			1,25	5				
Partial factor (shear loads A4-70)		γMs ¹⁾	[-]			1,56	6				

¹⁾ In absence of other national regulations.

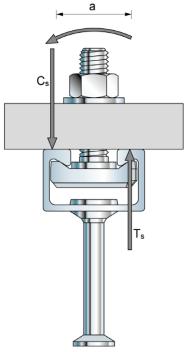
²⁾ No performance assessed.

Performance

Characteristic resistances under tension and shear load of channel bolts

Channel bolt ²⁾ thread diameter					M8	M10	M12	M16	M20
Steel failure									
Characteristic flexural resistance	N40	[NIm]	FBC-(S-) (N-)	8.8	30,0	59,8	104,8	266,4	519,3
Sharacteristic nexural resistance	M ⁰ Rk,s			A4-70	_2)	_2)	91,7	233,1	454,4
Partial factor	an. 1)	[-]	FBC-(S-) (N-)	8.8			1,25		
Faitial lactor	γms ¹⁾		FBO-(0-) (N-)	A4-70		1,56			
			FBC-28/15	8.8	16,7	18,1	19,4	_3)	_3)
			FBC-38/17	8.8	_3)	22,7	24,0	_3)	_3)
			FBC-S-29/20	8.8	_3)	_3)	20,0	_3)	_3)
			FBC-S-38/23	8.8	_3)	_3)	23,7	25,7	_3)
Internal lever arm		[mm]	FBC-40/22	8.8	_3)	23,5	24,8	26,8	_3)
	a	[[mm]	FBC-N-40/22	8.8	_3)	_3)	_3)	26,9	_3)
			FBC-50/30	8.8	_3)	27,7	29,0	31,0	33,3
			FBC-N-50/30	8.8	_3)	_3)	_3)	31,5	33,9
			FBC-40/22	A4-70	_3)	_3)	24,7	26,7	_3)
			FBC-50/30	A4-70	_3)	_3)	28,8	30,9	33,1

¹⁾ In absence of other national regulations.


²⁾ Materials according to Annex A7, Table 6.

³⁾ No performance assessed.

The characteristic flexure resistance according to Table 26 is limited as follows:

$$\begin{split} &M^0_{\text{Rk},s} \leq 0,5 \cdot N^0_{\text{Rk},s,l} \cdot a \; (N^0_{\text{Rk},s,l} \; \text{according to Annex C1, Table 10}) \\ &M^0_{\text{Rk},s} \leq 0,5 \cdot N_{\text{Rk},s} \cdot a \; (N_{\text{Rk},s} \; \text{according to Annex C5, Table 18}) \\ &a = \text{Internal lever arm according to Table 26} \\ &T_s = \text{Tension force acting on the channel lips} \end{split}$$

 C_s = Compression force acting on the channel lips

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistances under shear load of channel bolts

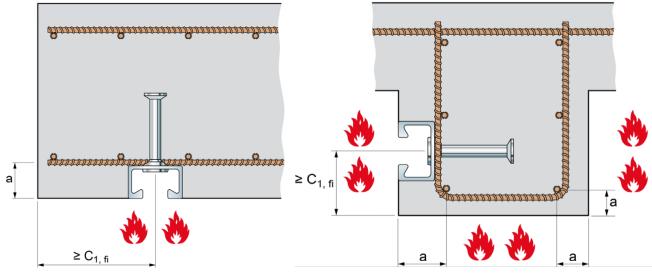
Cha	innel bolt thread dia	M8	M10	M12	M16	M20				
Stee	el failure:	Anchor, connection lips, channel bolts	n betwee	n anchor and channel, local flexure of channel						
	FES-H-S-29/2	FBC-S-29/20	R30 R60 R90 R120			_ 2)	_ 2)	2,5 2,4 1,7 1,4	_ 2)	_ 2)
-	FES-H-S-38/23	FBC-S-38/23	R30 R60 R90 R120			_ 2)	_ 2)	_ 2)	4,5 3,4 2,3 1,7	_ 2)
ē	FES-H(-I)-40/22	FBC-40/22	R30 R60 R90 R120			_ 2)	1,3 1,0 0,7 0,6	2,0 1,7 1,4 1,3	4,5 3,4 2,3 1,7	_ 2)
re exposure	FES-H(-I)-50/30	FBC(-N)-50/30	R30 R60 R90 R120			_ 2)	1,3 1,0 0,7 0,6	2,0 1,7 1,4 1,3	5,2 4,2 3,2 2,7	5,2 4,2 3,2 2,7
ce under fire	FES-H(-I)-52/34	FBC(-N)-50/30	R30 R60 R90 R120	N _{Rk,s,fi}		_ 2)	1,3 1,0 0,7 0,6	2,0 1,7 1,4 1,3	5,2 4,2 3,2 2,7	8,0 6,5 5,0 4,2
ic resistan	FES-C-28/15	FBC-28/15	R30 R60 R90 R120	− = V _{Rk,s,fi}	[kN]	0,6 0,6 0,5 0,4	1,3 1,0 0,7 0,6	1,3 1,0 0,7 0,6	_ 2)	_ 2)
Characteristic resistance	FES-C-38/17	FBC-38/17 FBC-S-38/23-M16	R30 R60 R90 R120	_		_ 2)	1,3 1,0 0,7 0,6	1,3 1,0 0,7 0,6	3,5 2,8 1,8 1,3	_ 2)
Ċ	FES-C-40/25	FBC-40/22	R30 R60 R90 R120			_ 2)	1,8 1,5 1,1 0,8	3,0 2,4 1,7 1,4	3,5 2,8 1,8 1,3	_ 2)
-	FES-C-49/30	FBC-50/30	R30 R60 R90 R120			_ 2)	1,3 1,0 0,7 0,6	2,9 2,4 1,8 1,6	3,1 2,5 1,9 1,6	3,1 2,5 1,9 1,6
-	FES-C-54/33	FBC-50/30	R30 R60 R90 R120			_ 2)	1,3 1,0 0,7 0,6	2,9 2,4 1,8 1,6	3,1 2,5 1,9 1,6	3,1 2,5 1,9 1,6

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance


Characteristic resistance under fire exposure

Page 33 of European Technical Assessment ETA-18/0862 of 31 March 2023

English translation prepared by DIBt

Anchor Cha	nnel F	ES-	C-28/15	C-38/17	H-S-29/20	H-S-38/23	C-40/25 H-40/22 H-40/22-P H-1-40/22	C-49/30 H50/30 H-50/30-P H-I-50/30	C-54/33 H-52/34 H-I-52/34
	R30		35	35	35	35	35	35	50
Minimum axis	R60	a	35	35	35	35	35	35	50
distance	R90	[mm]	45	45	45	45	45	45	50
	R120		60	60	60	60	60	60	65

Fire exposure from one side only.

Fire exposure from more than one side.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance Characteristic resistance unde