

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-17/0435 of 21 March 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Injektionssystem T-Bond PRO.1 - FIS C700 HP PRO.1

Bonded fastener for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal **DEUTSCHLAND**

fischerwerke

26 pages including 3 annexes which form an integral part of this assessment

EAD 330499-02-0601, Edition 12/2023

ETA-17/0435 issued on 6 October 2017

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de Z078494.25 8.06.01-59/22

European Technical Assessment ETA-17/0435

English translation prepared by DIBt

Page 2 of 26 | 21 March 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z078494.25 8.06.01-59/22

Page 3 of 26 | 21 March 2025

Specific Part

1 Technical description of the product

The "fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1" is a bonded anchor consisting of a cartridge with injection mortar according to Annex A3 and a steel element according to Annex A4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B3 to B5, C1 to C6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 to C4
Displacements under short-term and long-term loading	See Annex C7 and C8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z078494.25 8.06.01-59/22

European Technical Assessment ETA-17/0435

English translation prepared by DIBt

Page 4 of 26 | 21 March 2025

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

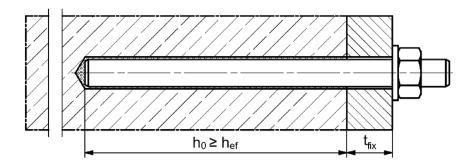
The system to be applied is: 1

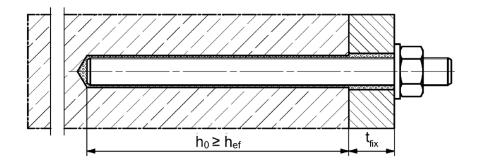
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

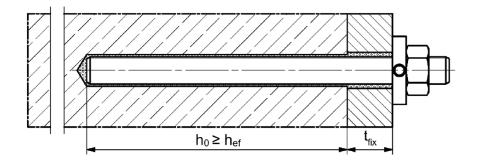
Issued in Berlin 21 March 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin *beglaubigt:*Baderschneider


Z078494.25 8.06.01-59/22


Installation conditions part 1

Anchor rod FIS A / RG M (Anchor rod) and standard threaded rod (Threaded rod)


Pre-positioned installation

Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently injected fischer filling disc (annular gap filled with mortar)

Figures not to scale

h₀ = drill hole depth

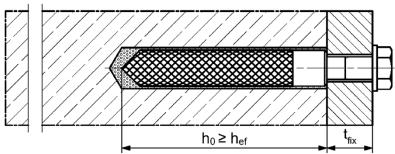
hef = effective embedment depth

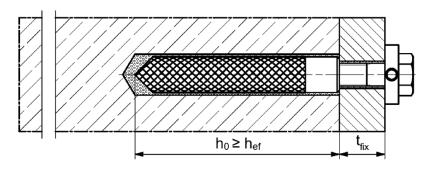
 t_{fix} = thickness of fixture

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Product description

Installation conditions part 1


Annex A1


Installation conditions part 2

fischer internal threaded anchor RG M I (fischer RG M I)


Pre-positioned installation

Pre-positioned installation with subsequently injected fischer filling disc (annular gap filled with mortar)

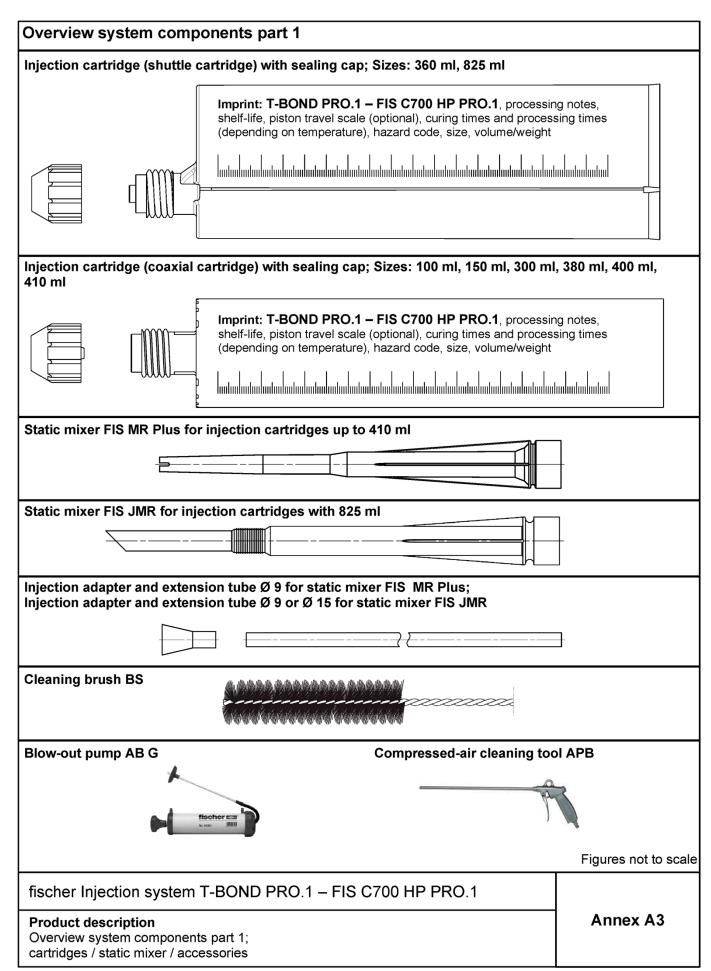
Reinforcing bar

Figures not to scale

 h_0 = drill hole depth

hef = effective embedment depth

 t_{fix} = thickness of fixture


fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Product description

Installation conditions part 2

Annex A2

Overview system components part 2 **Anchor rod / Threaded rod** Size: M8, M10, M12, M16, M20 fischer RG M I Size: M8, M10, M12, M16, M20 Screw / Threaded rod / washer / hexagon nut fischer filling disc with injection adapter Reinforcing bar Nominal diameter: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$ Figures not to scale fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1 **Annex A4 Product description** Overview system components part 2; metal parts, injection adapter

Part	Designation		Material			
1	Injection cartridge		Mortar, hardener, filler			
	, ,	Steel	Stainless steel R	High corrosion resistant steel HCR		
	Steel grade zinc plated (zp, hdg)		acc. to EN 10088-1:2023 Corrosion resistance class CRC III acc. to EN 1993-1-4: 2006+A1:2015	acc. to EN 10088-1:2023 Corrosion resistance class CRC V acc. to EN 1993-1-4: 2006+ A1:201		
2	Anchor rod / Threaded rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 electroplated \geq 5 μ m, EN ISO 4042:2022 or hot dip galvanised \geq 40 μ m EN ISO 10684:2004+AC:2009 $f_{uk} \leq$ 1000 N/mm ² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2023 $f_{uk} \le 1000 \text{ N/mm}^2$ A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2020 or property class HRC 70 with f_{yk} = 560 N/mm ^{2;} 1.4565; 1.4529; EN 10088-1:2023 $f_{uk} \le 1000 \text{ N/mm}^2$ A ₅ > 8% fracture elongation		
3	Washer ISO 7089:2000	electroplated ≥ 5 μm, EN ISO 4042:2022 or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	1.4565; 1.4529; EN 10088-1:2023		
4	Hexagon nut	Property class 4, 5 or 8 acc. EN ISO 898-2:2022 electroplated ≥ 5 μm, EN ISO 4042:2022 or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2023		
5	fischer RG M I	Property class 5.8 ISO 898-1:2013 electroplated ≥ 5 μm, EN ISO 4042:2022	Property class 70 EN ISO 3506-1:2020; 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2023		
6	Commercial standard screw or threaded rod fischer RG M I	Property class 5.8 or 8.8; EN ISO 898-1:2013 electroplated ≥ 5 µm, EN ISO 4042:2022 A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023 A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2023 A₅ > 8 % fracture elongation		
7	fischer filling disc	electroplated ≥ 5 μm, EN ISO 4042:2022 or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	1.4565;1.4529; EN 10088-1:2023		
8	Reinforcing bar	EN 1992-1-1:2004 and AC:2010, Bars and de-coiled rods, class B according EN 1992-1-1:2004/NA;	or C with fyk and k according to	NDP or NCI		
fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1						
	duct description erials	Annex A5				

Specifications of intended use part 1 Table B1.1: Overview use and performance categories T-BOND PRO.1 - FIS C700 HP PRO.1 with ... Anchorages subject to Anchor rod / fischer Reinforcing bar Threaded rod Innengewindeanker RG M I Hammer drilling with standard drill all sizes bit Hammer drilling with hollow drill bit Nominal drill bit diameter (d₀) (fischer "FHD", Heller "Duster 12 mm to 32 mm Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max" uncracked all Tables: all Tables: all Tables: concrete sizes sizes sizes C1.1 C2.1 C3.1 Static and quasi C4.1 C4.1 C4.1 static loading, in C5.1 C6.2 C6.1 φ 10 to cracked M8 to M20 _1) C7.1 C7.2 C8.1 concrete ф 20 C1 Seismic _1) performance category C2 dry or wet 11 all sizes concrete Use category water filled _1) 12 hole Installation direction D3 (downward and horizontal and upwards (e.g. overhead)) $T_{i,min} = -5 \, ^{\circ}C$ to $T_{i,max} = +40 \, ^{\circ}C$ Installation temperature for the standard variation of temperature after installation Temperature (max. short term temperature +80 °C; -40 °C to +80 °C max. long term temperature +50 °C) range I Service temperature Temperature (max. short term temperature +120 °C; -40 °C to +120 °C max. long term temperature +72 °C) range II 1) Performance not assessed. fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1 Annex B1 Intended use Specifications part 1

Specifications of intended use part 2

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021.

Use conditions (Environmental conditions):

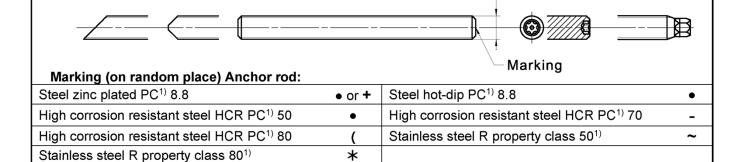
- Fastener intended for use in structures subject to dry internal conditions (all materials).
- For all other conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 5 Table 5.1.

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with: EN 1992-4:2018.

Installation:

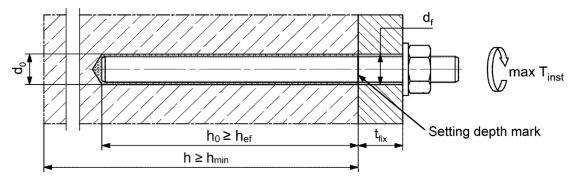
- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening depth should be marked and adhered to installation.
- · Overhead installation is allowed (necessary equipment see installation instruction).


fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Intended use
Specifications part 2

Annex B2

Table B3.1: Installation parameters for Anchor rods / Threaded rods								
Anchor rods / Th	readed rods		Thread	M8	M10	M12	M16	M20
Nominal drill hole	diameter	d₀		10	12	14	18	24
Drill hole depth		h ₀				h₀ ≥ hef		
Effective		h _{ef, min}		60	60	70	80	90
embedment depth		h _{ef, max}		160	200	240	320	400
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	45	55	65	85
Diameter of the	pre-positioned installation	df		9	12	14	18	22
clearance hole of the fixture push through installation		d _f		12	14	16	20	26
Minimum thickness of concrete member h _{min}		h _{min}		ŀ	n _{ef} + 30 (≥100))	h _{ef} +	- 2d ₀
Maximum installat	ion torque	max T _{inst}	[Nm]	10	20	40	60	120



Thread

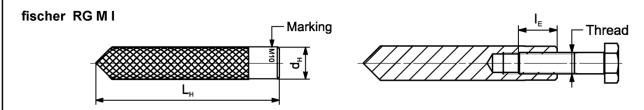
Installation conditions:

Alternatively: Colour coding according to DIN 976-1: 2016

Anchor rod / Threaded rods

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

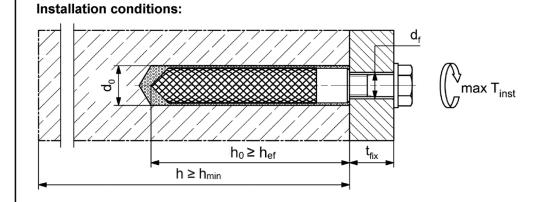
- Materials, dimensions and mechanical properties according to Annex A5, Table A5.1.
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored.
- Setting depth is marked.


Figures not to scale

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Intended use Installation parameters Anchor rods / Threaded rods	Annex B3

¹⁾ PC = property class

Table B4.1: Installation parameters for fischer RG M I								
fischer RG M I		Thread	М8	M10	M12	M16	M20	
Diameter of anchor	$d_{nom} = d_H$		12	16	18	22	28	
Nominal drill hole diameter	d ₀] [14	18	20	24	32	
Drill hole depth	h ₀] [$h_0 \ge h_{ef} = L_H$			
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200	
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125	
Diameter of clearance hole in the fixture	d _f		9	12	14	18	22	
Minimum thickness of concrete member	h _{min}		120	125	165	205	260	
Maximum screw-in depth	I _{E,max}] [18	23	26	35	45	
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20	
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120	



Marking: Anchor size e. g.: M10

Stainless steel → additional **R**; e.g.: **M10 R**

High corrosion resistant steel → additional HCR; e.g.: M10 HCR

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A5, Table A5.1

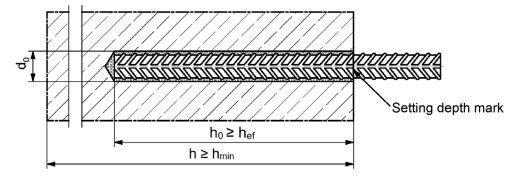
Figures not to scale

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Intended use
Installation parameters fischer RG M I

Annex B4

Table B5.1: Installation parameters for reinforcing bars									
Nominal diameter of the bar φ 8 ¹⁾ 10 ¹⁾ 12 ¹⁾ 14 16 20								20	
Nominal drill hole diameter	d_0		10 12 12 14 14				18	20	25
Drill hole depth	h_0		h ₀ ≥ h _{ef}						
Effective embedment death	h _{ef,min}		60	60	7	0	75	80	90
Effective embedment depth	h _{ef,max}] [160	200	200 24		280	320	400
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	40	45	55		60	65	85
Minimum thickness of concrete member	h _{min}		h _{ef} + 30 (≥ 100) h _{ef} + 2d ₀						


¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfill the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Nominal diameter of the bar, h_{rib} = rib height).

Installation conditions:

Figures not to scale

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Intended use
Installation parameters reinforcing bars

Annex B5

Table B6.1: Parameters of the cleaning brush BS (steel brush with steel bristles)														
The size of the cleaning brush refers to the drill hole diameter														
Nominal drill hole diameter	d ₀	[mama]	8	10	12	14	16	18	20	24	25	28	30	32
Steel brush diameter BS	dь	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

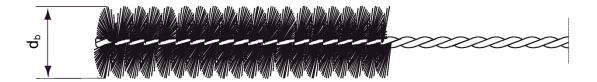


Table B6.2 Maximum processing time of the mortar and minimum curing time
(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Temperature at anchoring base	Maximum processing time twork	Minimum curing time 1) t _{cure}
[°C]	T-BOND PRO.1 – FIS C700 HP PRO.1	T-BOND PRO.1 – FIS C700 HP PRO.1
> -5 to 0 ²⁾	>13 min	24 h
> 0 to 5 ²⁾	13 min	3 h
> 5 to 10	9 min	90 min
> 10 to 20	5 min	60 min
> 20 to 30	4 min	45 min
> 30 to 40	2 min	35 min

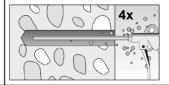
¹⁾ In wet concrete or water filled holes the curing times must be doubled.

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Intended use	Annex B6
Cleaning brush (steel brush)	
Processing time and curing time	

²⁾ Minimal cartridge temperature +5°C.

Installation instructions part 1

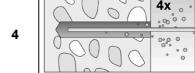
Drilling and cleaning the hole (hammer drilling with standard drill bit)

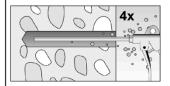

1

Drill the hole. Nominal drill hole diameter **d**₀ and drill hole depth **h**₀ see **Tables B3.1**, **B4.1**, **B5.1**.

2

4x


Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand.


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$.

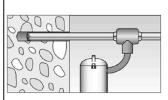
3

Brush the drill hole four times. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **Table B6.1**

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand.

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$.

Go to step 5


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **Table B1.1**) for correct operation of the dust extraction.

2

Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter d_0 and drill hole depth h_0 see **Tables B3.1**, **B4.1**, **B5.1**.

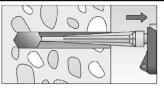
Go to step 5

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

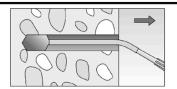
Intended use

Installation instructions part 1

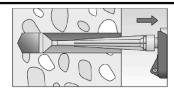
Annex B7


Preparing the cartridge Mark the setting depth. Remove the sealing cap. Screw on the static mixer (the spiral in the static mixer must be clearly visible). Place the cartridge into the dispenser.

Go to step 9


8

9


Injection of the mortar

For h_0 = h_{ef} fill approximately 2/3 of the drill hole with mortar. For $h_0 > h_{ef}$ more mortar is needed. Always begin from the bottom of the hole and avoid bubbles.

For drill hole depth ≥ 150 mm use an extension tube.

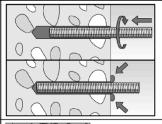
Extrude approximately 10 cm of material out until

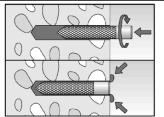
the resin is evenly grey in colour. Do not use

mortar that is not uniformly grey.

For overhead installation, deep holes ($h_0 > 250$ mm) use an injection adapter.

Go to step 10

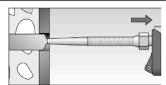

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Intended use Installation instructions part 2	Annex B8



Installation instructions part 3

Installation of anchor rods or fischer RG M I

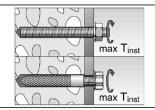
10



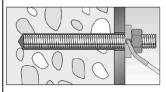
Only use clean and oil-free metal parts.
Push the anchor rod or fischer RG M I anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the metal parts, excess mortar must be emerged around the anchor element. If not, pull out the metal part immediately and reinject mortar.

For overhead installations support the metal part with wedges (e.g. centering wedges).

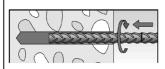

For push through installation fill the annular gap with mortar

11


Wait for the specified curing time t_{cure} see **Table B6.2**.

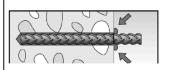
12

Mounting the fixture max T_{inst} see **Tables B3.1** and **B4.1**.


Option

After the minimum curing time is reached, the gap between metal part and fixture (annular clearance) may be filled with mortar via the filling disc. Compressive strength ≥ 50 N/mm² (e.g. fischer T-BOND PRO.1 – FIS C700 HP PRO.1).

ATTENTION: By using filling disc reduces t_{fix} (usable length of the anchor).


Installation reinforcing bars

Only use clean and oil-free reinforcing bars. Push the reinforcement bar with the setting depth mark into the filled hole up to the setting depth mark. Recommendation:

Rotation back and forth of the reinforcement bar makes pushing easy.

10

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole. If not, pull out the metal part immediately and reinject mortar.

11

Wait for the specified curing time t_{cure} see **Table B6.2**.

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Intended use

Installation instructions part 3

Annex B9

	Ancho	r rods	and I	hreaded ro	ds					
Anch	or rod / Threaded roo	<u> </u>		M8	M10	M12	M16	M20		
Chara	acteristic resistance	to stee	l failure	under tensio	n loading ¹⁾					
o,		4.6	3	14,6(13,2)	23,2(21,4)	33,7	62,8	98,0		
istic N _{RK,s}	Steel zinc plated		3	18,3(16,6)	29,0(26,8)	42,1	78,5	122,5		
Characteristic esistance NRK,		\[\frac{1}{5}\] \[\frac{1}{8.8}\]	3	29,2(26,5)	46,4(42,8)	67,4	125,6	196,0		
haracter sistance	Stainless steel R	Property 20	(kN)	18,3	29,0	42,1	78,5	122,5		
Sha Sis	and high corrosion	2 70	5	25,6	40,6	59,0	109,9	171,5		
ပ စု	resistant steel HCR	80)	29,2	46,4	67,4	125,6	196,0		
Partia	al factors ²⁾			,						
		4.8	3			1,50				
ģ	Steel zinc plated	$\frac{1}{5.0}$	3	1,50						
ial fac ‱∖		고 공 8.8	3	1,50						
Partial factor ‱,∾	Stainless steel R	50 Series	[-]			2,86				
Ра	and high corrosion	Property 20)		1,87 / f	ischer HCR: 1	,50 ³⁾			
	resistant steel HCR	80				1,60				
Chara	acteristic resistance	to stee	l failure	under shear	loading ¹⁾					
witho	ut lever arm									
O ×		ω <u>4.8</u>	_	8,7(7,9)	13,9(12,8)	20,2	37,6	58,8		
Characteri sistance \ ou sy —	Steel zinc plated	5.5	3	10,9(9,9)	17,4(16,0)	25,2	47,1	73,5		
		Property class 20 20 20 20 20 20 20 20 20 20 20 20 20	3 [kN]	14,6(13,2)	23,2(21,4)	33,7	62,8	98,0		
	Stainless steel R	e 50		9,1	14,5	21,0	39,2	61,2		
	and high corrosion	2 70)	12,8	20,3	29,5	54,9	85,7		
	resistant steel HCR	80)	14,6	23,2	33,7	62,8	98,0		
	ty factor	k ₇	[-]			1,0				
vith I	ever arm				00.0(00.5)	500	100.0	050.0		
₹,s		<u></u> <u>γ</u> 4.8	_	14,9(12,9)	29,9(26,5)	52,3	132,9	259,6		
Sharact. tance M ^o rk,s	Steel zinc plated		_	18,7(16,1)	37,3(33,2)	65,4	166,2	324,6		
Charact. stance M		<u>8.8 ج</u>	— [Nlm]	29,9(25,9)	59,8(53,1)	104,6	265,9	519,3		
Sh.	Stainless steel R	berty 50	<u> </u>	18,7	37,3	65,4	166,2	324,6		
Sisi	and high corrosion	2 70 2 -70	_	26,2	52,3	91,5	232,6	454,4		
<u> </u>	resistant steel HCR	80)	29,9	59,8	104,6	265,9	519,3		
	al factors 2)	1 4								
Rk,s	0	$\int \frac{4.5}{5}$	_			1,25				
Charact. stance M ⁰ Rk,s	Steel zinc plated		_			1,25				
Charact. stance M			₋			1,25				
Ch.	Stainless steel R	Property 20	<u>'</u>			2,38				
resis	and high corrosion	일 70	_		1,56 / f	ischer HCR: 1	,25 ³⁾			
ے	resistant steel HCR	80)			1,33				

¹⁾ Values in brackets are valid for undersized threaded rods with smaller stress area As for hot dip galvanised Threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Only admissible for high corrosion resist. steel HCR, with $f_{yk}/f_{uk} \ge 0.8$ and $A_5 > 12 \%$ (e.g. Anchor rods).

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1	
Performances Characteristic resistance to steel failure under tension / shear loading of Anchor rods and Threaded rods	Annex C1

²⁾ In absence of other national regulations.

Table C2.1:		racteristic	I							
fischer RG M I			RG M I	Screw		M8	M10	M12	M16	M20
Characteristic I	resistan	ce to steel	failure un	der tension loadin	g					
		Property	5.8	5.8		18,3	29,0	42,1	78,3	122,4
Characteristic		class	0.0	8.8		29,2	46,4	67,4	106,7	180,2
resistance with screw	$N_{Rk,s}$	Property class	R-70 / HCR-70	R-70 / commercial standard	[kN]	25,6	40,6	59,0	109,6	171,3
		Ciass	THOR-70	HCR-70		25,6	40,6	59,0	109,6	171,3
Partial factors	l) 			·						
		Property	5.8	5.8				1,50		
		class	0.0	8.8		1,50				
Partial factors	γMs,N	Property class	R-70 / HCR-70	R-70 / commercial standard	[-]			1,87		
		Class	HCK-70	HCR-70				1,50		
Characteristic i	resistan	ce to steel	failure un	der shear loading						
Without lever a	rm									
		Property	5.8	5.8		10,9	17,4	25,2	47,1	73,5
Characteristic		class	5.6	8.8		14,6	23,2	33,7	62,8	98,0
resistance with screw	V^0 Rk,s	Property	R-70 / HCR-70	R-70 / commercial standard	[kN]	12,8	20,3	29,5	54,9	85,7
		class	HCK-70	HCR-70		12,8	20,3	29,5	54,9	85,7
Ductility factor				k ₇	[-]			1,0		
With lever arm										
		Property	5.8	5.8		18,7	37,3	65,4	166,2	324,6
Characteristic		class	0.0	8.8		29,9	59,8	104,6	265,9	519,3
resistance with screw	M ⁰ Rk,s	Property class	R-70/ HCR-70	R-70 / commercial standard	[Nm]	26,2	52,3	91,5	232,6	454,4
		Class	TICK-70	HCR-70		26,2	52,3	91,5	232,6	454,4
Partial factors	1)									
		Property	5.8	5.8				1,25		
		class	0.0	8.8		1,25				
Partial factors	γMs,V	Property	R-70 /	R-70 / commercial standard	[-]			1,56		
		class	HCR-70	HCR-70				1,25		
1) In absence o	of other I	national reg	ulations.							
Performances	•			D.1 – FIS C700 I				-	Annex (C2

	cteristic restis	stic restistance to steel failure under tension / shear loading of g bars							
Nominal diameter of the	bar	ф	8	10	12	14	16	20	
Characteristic resistance	to steel failure	unde	r tension	loading					
Characteristic resistance	[kN]	$A_s \cdot f_{uk^{1}}$							
Characteristic resistance	to steel failure	unde	r shear lo	ading					
Without lever arm									
Characteristic resistance	$V^0_{Rk,s}$	[kN]			k 6 ²⁾ · A	$A_s \cdot f_{uk^{1)}}$			
Ductility factor	k ₇	[-]			1	,0			
With lever arm									
Characteristic resistance	M^0 _{Rk,s}	[Nm]			1,2 · V	V _{el} ⋅ f _{uk} 1)			

¹⁾ f_{uk} respectively must be taken from the specifications of the reinforcing bar.

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Performances
Characteristic resistance to steel failure under tension / shear loading of reinforcing bars

Annex C3

²⁾ In accordance with EN 1992-4:2018 section 7.2.2.3.1.

 $k_6 = 0.6$ for fasteners made of carbon steel with $f_{uk} \le 500 \text{ N/mm}^2$.

^{= 0,5} for fasteners made of carbon steel with 500 < $f_{uk} \le 1000 \text{ N/mm}^2$.

^{= 0,5} for fasteners made of stainless steel.

Table C4.1: Charact	eristic resis	tance	to concre	ete failure	e under	tensio	on / shear	loading
Size					All s	izes		
Characteristic resistance t	o concrete fa	ilure ι	ınder tensio	n loading				
Installation factor	γinst	[-]			See anne	x C5 to	C6	
Factors for the compressi	ve strength o	f conc	rete > C20/2	25				
	C25/30				1,	05		
Increasing factor ψ _c for	C30/37				1,	10		
cracked or uncracked	C35/45	١,,			1,	15		
concrete	C40/50	-l			1,	19		
$\tau_{Rk(X,Y)} = \psi_c \cdot \tau_{Rk(C20/25)}$	C45/55				1,	22		
-	C50/60				1,:	26		
Splitting failure								
h / h _e	_{ef} ≥ 2,0				1,0	h _{ef}		
Edge		[[]			4,6 h _{ef}	- 1,8 h		
h / he	_{ef} ≤ 1,3	[mm]		2,26 h _{ef}				
Spacing	S cr,sp			2 C _{cr,sp}				
Concrete failure			•					
Uncracked concrete	k _{ucr,N}	.,			11	1,0		
Cracked concrete	k cr,N	[-]			7	,7		
Edge distance	C _{cr,N}	f			1,5	h _{ef}		
Spacing	S _{cr,N}	[mm]			2 0	cr,N		
Factors for sustained tens	ion loading	•						
Temperature range			50	°C / 80 °C			72 °C / 12	O °C
Factor	ψ^0 sus	[-]	0,74 0,87					
Characteristic resistance t			ınder shear	·			5,5.	
Installation factor	γinst	[-]			1	,0		
Concrete pry-out failure	•••••					<u>'</u>		
Factor for pry-out failure	k 8	[-]			2	,0		
Concrete edge failure						, 		
Effective length of fastener is shear loading	n _{If}	[mm]	for d _{nom} ≤ 24 mm: min (h _{ef} ; 12 d _{nom}) for d _{nom} > 24 mm: min (h _{ef} ; 8 d _{nom} ; 300 mm)					
Calculation diameters					,		•	
Size			M8	M10	М	12	M16	M20
Anchor rods and Threaded rods	d _{nom}	[mm]	8	10		2	16	20
fischer RG M I	d _{nom}	[[[[]	12	16	1	8	22	28
Size (nominal diameter of th			8	10	12	14		20
Reinforcing bar	d _{nom}	[mm]	8	10	12	14		20
1) Anchor type not part of the		nt.	<u> </u>	10	12	17	10	
fischer Injection system	n T-BOND F	PRO.1	- FIS C7	00 HP PF	RO.1			
Performances Characteristic resistance to	concrete failu	re und	er tension / s	shear loadi	ng		Ann	ex C4

Table C5.1:	Characteristic resistance to combined pull-out and concrete failure for
	Anchor rods and Threaded rods in hammer drilled holes;
	uncracked or cracked concrete

uncrack	ed or c	racked	concrete				
Anchor rod / Threaded rod			M8	M10	M12	M16	M20
Combined pull-out and con	crete co	ne failure					
Calculation diameter	d	[mm]	8	10	12	16	20
Uncracked concrete							
Characteristic bond resistar	nce in u	ncracked	concrete C2	20/25			
Hammer-drilling with standard	drill bit	or hollow	drill bit (dry o	wet concrete	2)		
Tem- I: 50 °C / 80 °C		FN1/21	11,0	11,0	11,0	10,0	9,5
perature II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0
Installation factors							
Dry or wet concrete	γinst	[-]			1,2		
Cracked concrete							
Characteristic bond resistar	nce in c	racked co	ncrete C20/2	25			
Hammer-drilling with standard	drill bit	or hollow	drill bit (dry o	wet concrete	<u>e)</u>		
Tem- perature I: 50 °C / 80 °C	·	[N/mm ²]	_1)	6,0	6,0	6,0	5,5
range II: 72 °C / 120 °C	τ _{Rk,cr}	[14/11111]	_1)	5,0	6,0	6,0	5,0
Installation factors		·					
Dry or wet concrete	γinst	[-]	_1)		1,	,2	·

¹⁾ Performance not assessed.

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Performances
Characteristic resistance to combined pull-out and concrete failure for Anchor rod and Threaded rods

Annex C5

16 M20
failure for ced concrete 16 20 10,0 9,3 8,5 8,0
failure for ced concrete 16 20 10,0 9,3 8,5 8,0
failure for ced concrete 16 20 10,0 9,3 8,5 8,0
failure for ced concrete 16 20 10,0 9,3 8,5 8,0
failure for ced concrete 16 20 10,0 9,3 8,5 8,0
failure for ced concrete 16 20 10,0 9,3 8,5 8,0
failure for ced concrete 16 20 16 20 10,0 9,4 8,5 8,6
16 20 10,0 9,3 8,5 8,0
16 20 10,0 9,3 8,5 8,0
16 20 10,0 9,3 8,5 8,0
10,0 9, 8,5 8,
10,0 9, 8,5 8,
8,5 8,0
8,5 8,0
8,5 8,0
8,5 8,0
5,0 4,
5,0 4,
5,0 4,
5,0 4,
5,0 4,
5,0 4,
ı
4,5 4,0
4,5

Table (Table C7.1: Displacements for Anchor rods / Threaded rods											
Anchor Threade		M8	M10	M12	M16	M20						
Displace	Displacement-Factors for tension loading ¹⁾											
Uncracked concrete; Temperature range I, II												
δ N0-Factor	[mm/(N/mm²)]	0,09	0,09	0,10	0,10	0,10						
δ _{N∞} -Factor		0,10	0,10	0,12	0,12	0,12						
Cracked concrete; Temperature range I, II												
δ N0-Factor	[mama//N1/mama2\1	_3)	0,12	0,12	0,13	0,13						
δ _{N0-Factor}	[mm/(N/mm ²)]	_3)	0,27	0,30	0,30	0,30						
Displace	Displacement-Factors for shear loading ²⁾											
Uncrack	Uncracked or cracked concrete; Temperature range I, II											
δv0-Factor	[mama //cN1]	0,11	0,11	0,10	0,10	0,09						
δ∨∞-Factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10						

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$

 τ = acting bond strength under tension loading

V = acting shear loading

Table C7.2: Displacements for fischer RG M I

fischer	RGMI	M8	M10	M12	M16	M20						
Displace	Displacement-Factors for tension loading ¹⁾											
Uncrack	ked concrete;	Temperature ranç	ge I, II									
δ _{N0-Factor}	[mm/(N/mm ²)]	0,10	0,11	0,12	0,13	0,14						
δN∞-Factor	[[[[[[[]/[[]]]	0,13	0,14	0,15	0,16	0,18						
Displacement-Factors for shear loading ²⁾												
Uncracked concrete; Temperature range I, II												
δ V0-Factor	[0,12	0,12	0,12	0,12	0,12						
δ∨∞-Factor	[mm/kN]	0,14	0,14	0,14	0,14	0,14						

¹⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$

 τ = acting bond strength under tension loading

V = acting shear loading

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Performances

Displacements for Anchor rods / Threaded rods and fischer RG M I

Annex C7

²⁾ Calculation of effective displacement:

³⁾ Performance not assessed

Table C	Table C8.1: Displacements for reinforcing bars											
Nominal of the ba	diameter ar	8	10	12	14	16	20					
Displace	ement-Factors	for tension lo	ading ¹⁾									
Uncracked concrete; Temperature range I, II												
δN0-Factor	վ[mm/(N/mm²)]	0,09	0,09	0,10	0,10	0,10	0,10					
δ _{N∞-Factor}		0,10	0,10	0,12	0,12	0,12	0,12					
Cracked	Cracked concrete; Temperature range I, II											
δN0-Factor	[ma ma // N /ma ma 2)]	_3)	0,12	0,13	0,13	0,13	0,13					
δ _{N∞} -Factor	վ[mm/(N/mm²)]	_3)	0,27	0,30	0,30	0,30	0,30					
Displace	Displacement-Factors for shear loading ²⁾											
Uncrack	ed or cracked	concrete; Ter	nperature rang	ge I, II								
δv0-Factor	France (LANI)	0,11	0,11	0,10	0,10	0,10	0,09					
δv∞-Factor	[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10					

¹⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{N0} = \delta_{N0\text{-Factor}} \cdot \tau$ $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau \qquad \qquad \delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Factor}} \cdot \text{V}$

 τ = acting bond strength under tension loading V = acting shear loading

fischer Injection system T-BOND PRO.1 – FIS C700 HP PRO.1

Performances
Displacements for reinforcing bars

Annex C8

³⁾ Performance not assessed.