

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0352 of 18 August 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Injection system FIS AB for masonry

Metal Injection anchors for use in masonry

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

55 pages including 3 annexes which form an integral part of this assessment

EAD 330076-00-0604, Edition 11/2017

ETA-17/0352 issued on 8 June 2021

European Technical Assessment ETA-17/0352 English translation prepared by DIBt

Page 2 of 55 | 18 August 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language.

original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing

Translations of this European Technical Assessment in other languages shall fully correspond to the

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Technical Assessment Body. Any partial reproduction shall be identified as such.

Z71981.22 8.06.04-174/22

European Technical Assessment ETA-17/0352

English translation prepared by DIBt

Page 3 of 55 | 18 August 2022

Specific Part

1 Technical description of the product

The fischer Injection system FIS AB for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with fischer injection mortar FIS AB, FIS AB Low Speed or FIS AB High Speed, a perforated sleeve FIS H K and an anchor rod with hexagon nut and washer or an internal threaded achor FIS E. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for resistance	See Annexes B 13,
	C 1 to C 33
Displacements	See Annex C 33
Durability	See annex B 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330076-00-0604 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1

Z71981.22 8.06.04-174/22

European Technical Assessment ETA-17/0352

Page 4 of 55 | 18 August 2022

English translation prepared by DIBt

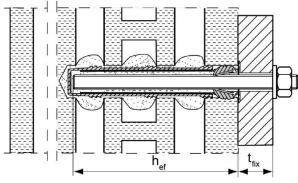
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 18 August 2022 by Deutsches Institut für Bautechnik

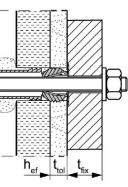
Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Z71981.22 8.06.04-174/22



Installation conditions part 1

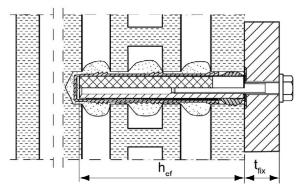
Anchor rods with perforated sleeve FIS H K; Installation in perforated and solid brick masonry


FIS H 20x85 K

Pre-positioned anchorage:

FIS H 12x85 K FIS H 16x130 K perforated sleeve: FIS H 16x85 K

Installation with render bridge



FIS H 20x130 K FIS H 20x200 K

Internal threaded anchor FIS E with perforated sleeve FIS H K; Installation in perforated and solid brick masonry

Pre-positioned anchorage:

Size of the

Figures not to scale

h_{ef} = effective anchorage depth

t_{tol} = thickness of unbearing layer (e.g. plaster)

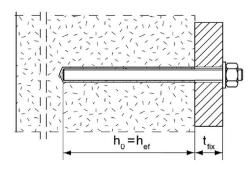
 t_{fix} = thickness of fixture

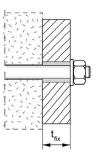
fischer injection system FIS AB for masonry

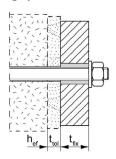
Product description

Installation conditions part 1,

Anchor rods and internal threaded anchor FIS E with perforated sleeve

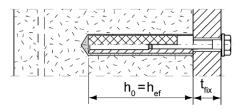

Annex A 1

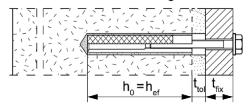

Installation conditions part 2


Anchor rods without perforated sleeve FIS H K; installation in solid brick masonry and autoclaved aerated concrete

Pre-positioned anchorage:

Push through anchorage: Annular gap filled with mortar




Installation with render bridge

Internal threaded anchors FIS E without perforated sleeve FIS H K; installation in solid brick masonry and autoclaved aerated concrete

Pre-positioned anchorage:

Installation with render bridge

Figures not to scale

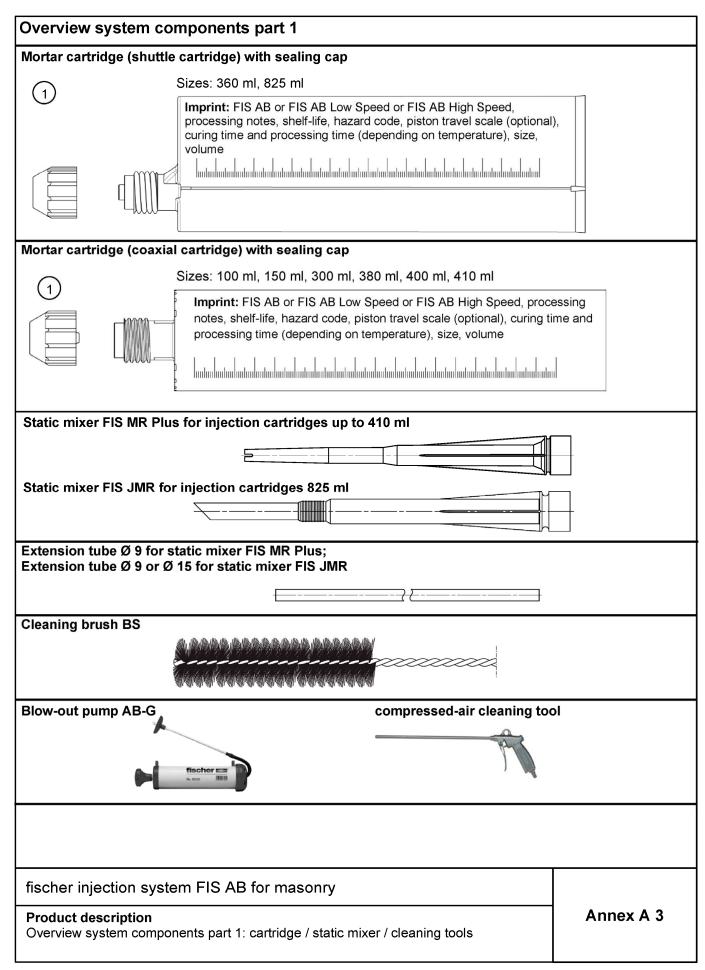
 h_0 = depth of drill hole

ttol = thickness of unbearing layer (e.g. plaster)

h_{ef} = effective anchorage depth

 t_{fix} = thickness of fixture

fischer injection system FIS AB for masonry


Product description

Installation conditions part 2, Anchor rods and internal threaded anchor without perforated sleeve

Annex A 2

Z78085.22

Over	view system components par	t 2				
fische	r anchor rod					
2			Size:	M8, M10, M12		
Intern	al threaded anchor FIS E					
5			Size:	11x85 M6 / M8 15x85 M10 / M12		
Perfor	ated sleeve FIS H K					
7			Size:	FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K		
7			Size:	FIS H 16x130 K FIS H 20x130 K FIS H 20x200 K		
Wash	er					
3						
Hexag	on nut					
4						
Injecti	Injection adapter					
					Figures not to scale	
fisch	er injection system FIS AB for n	nasonry	/			
Produ	uct description view system components part 2: steel			d sleeve,	Annex A 4	

Zinc plated Zinc plated Acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015 EN 1993-1	roperty class 50 or 80; SO 3506-1:2020 perty class 70 wi <= 560 N/mm² 4565; 1.4529 10088-1:2014 ≤ 1000 N/mm² rracture elongat 4565;1.4529 10088-1:2014 roperty class 50, 70 or 80;
Zinc plated Zinc plated Acc. to EN 10088-1:2014 Acc. to EN 1993-1-4:2006+A1:2015 EN 1993-1	steel HCR EN 10088-1:20 on resistance class CV acc. to 3-1-4:2006+A1:2 roperty class 50 or 80; SO 3506-1:2020 perty class 70 wi = 560 N/mm² 4565; 1.4529 10088-1:2014 ≤ 1000 N/mm² practure elongation 4565; 1.4529 10088-1:2014
Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015 EN 1993-1 Property class Property class Property class Property class SO, 70 or 80; EN ISO 898-1: 2013 EN ISO 3506-1:2020 EN ISO 2506-1:2020 Sinc plated ≥ 5μm, EN ISO 4042:2018Zn5/An(A2K) or hot-dip galvanised EN ISO 10684: 2004+AC:2009 fuk ≤ 1000 N/mm² A5 > 8% fracture elongation A5 > 8% fract	on resistance clast RC V acc. to 3-1-4:2006+A1:2 roperty class 50 or 80; SO 3506-1:2020 perty class 70 wi = 560 N/mm² 4565; 1.4529 10088-1:2014 ≤ 1000 N/mm² fracture elongation 4565; 1.4529 10088-1:2014
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 or 80; SO 3506-1:2020 perty class 70 wi = 560 N/mm ² 4565; 1.4529 10088-1:2014 ≤ 1000 N/mm ² perfracture elongate 10088-1:2014 2 roperty class 50, 70 or 80;
3 Washer ISO 7089:2000 EN ISO 4042:2018 1.4578; 1.4571; EN 19 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10088-1:2014 Property class 50, 70 or 80;
EN ISO 898-2:2012 50, 70 or 80; 50 EN ISO 3506-2:2020 EN ISO 3506-2:	50, 70 or 80;
EN ISO 10684:2004+AC:2009 EN 10088-1:2014	SO 3506-2:2020 4565; 1.4529 10088-1:2014
EN 10277-1:2018 EN ISO 3506-1:2020 EN ISO 3506-1:4401; 1.4404; 1.450	operty class 70 SO 3506-1:2020 4565; 1.4529 10088-1:2014
Standard screw or	operty class 70; SO 3506-1:2020 4565; 1.4529 10088-1:2014
7 Perforated sleeve PP / PE	

Specifications of intended use part 1

Table B1.1:	Overview use	and performance	categories
-------------	--------------	-----------------	------------

Table B1.1: Overview use and performance categories				
Anchorages subj	ect to	fischer injection sys	tems FIS AB for masonry	
	n hammer drill mode		l bricks; o C 23, C 26 to C 27	
•	th rotary drill mode	а	ll bricks	
	uasi static load, asonry	а	l bricks	
Use conditions	dry or wet masonry	а	ll bricks	
Installation	Pre-positioned anchorage	Anchor rod or internal threaded anchor (in solid brick masonry and autoclaved aerated concrete)	Perforated sleeve with anchor rod or internal threaded anchor (in perforated and solid brick masonry) Size: FIS H 12x85 K FIS H 16x85 K FIS H 16x130 K FIS H 20x85 K FIS H 20x200 K	
	Push through anchorage	Anchor rod; use only in cylindrical drill hole (in solid brick masonry and autoclaved aerated concrete)		
Installation and use conditions	condition d/d condition w/d condition w/w		l bricks	
Installation tempe	erature	$T_{i,min} = 0 ^{\circ}C$	to $T_{i,max}$ = +40 °C	
In-service temperature	Temperature range Tb		nort term temperature +80 °C ng term temperature +50 °C)	
fischer injecti Intended Use Specifications p	on system FIS AB	for masonry	Annex B 1	

Specifications of intended use part 2

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Solid brick masonry (base material group b) and autoclaved aerated concrete (base material group d),
 acc. to Annex B 10
- Hollow brick masonry (base material group c), according to Annex B 10
- For minimum thickness of masonry member h_{ef}+30mm applies
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2016
- For other bricks in solid masonry, hollow or perforated masonry and autoclaved aerated concrete, the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 053:2016-04, Annex B under consideration of the β-factor according to Annex C 33, Table C33.1

Note (only applies to solid bricks and autoclaved aerated concrete):

The characteristic resistance is also valid for larger brick sizes, higher compressive strength and higher raw density of the masonry unit.

Temperature Range:

• **Tb:** From - 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions):

- X1: Structures subject to dry internal conditions exist (zinc coated steel, stainless steel or high corrosion resistant steel)
- X2: Structures subject to external atmospheric exposure including industrial and marine environment or
 exposure to permanently damp internal condition, if no particulary aggressive conditions exist
 (stainless steel or high corrosion resistant steel)
- X3: Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particulary aggressive conditions exist (high corrosion resistant steel)

Note: Particulary aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

fischer injection system FIS AB for masonry	
Intended Use Specifications part 2	Annex B 2

Specifications of intended use part 2 continued

Design:

The anchorages have to be designed in accordance with EOTA Technical Report TR 054:2016-04,
 Design method A under the responsibility of an engineer experienced in anchorages and masonry work.
 Applies to all bricks, if no other values are specified:

$$N_{Rk} = N_{Rk,b} = N_{Rk,p}$$

$$V_{Rk} = V_{Rk,b} = V_{Rk,c}$$

For the Calculation of pulling out a brick under tension loading $N_{Rk,pb}$ or pushing out a brick under shear loading $V_{Rk,pb}$ see EOTA Technical Report TR 054:2016-04.

 $N_{Rk,s}$, $V_{Rk,s}$ and $M^0_{Rk,s}$ see annex C1-C3

Factors for job site tests and displacements see Annex C 33

Verifiable calculation notes and drawings have to be prepared taking account the relevant masonry in the
region of the anchorage, the loads to be transmitted and their transmission to the supports of the
structure. The position of the anchor is indicated on the design drawings.

Installation:

- Condition d/d: Installation and use in dry structures
- Condition w/w: Installation and use in dry and wet structures
- Condition w/d: Installation in wet structures and use in dry structures
- Hole drilling see Annex C (drilling method)
- · In case of aborted hole: The hole shall be filled with mortar
- Bridging of unbearing layer (e.g. plaster) at perforated brick masonry see Annex B 6, Table B6.1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or anchor rods (including nut and washer) must comply with the appropriate material and property class of the internal threaded anchor FIS E.
- minimum curing time see Annex B 7, Table B7.2
- Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

Material dimensions and mechanical properties of the metal parts according to the specifications are given in Annex A 5, Table 5.1

Conformation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents shall be stored

Marking of the anchor rod with the envisage embedment depth. This may be done by the manufacturer of the rod or by a person on job site

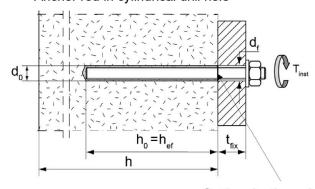
fischer injection system FIS AB for masonry	
Intended Use Specifications part 2 continued	Annex B 3

Thread

Table B4.1:	Installation parameters for anchor rods in solid bricks and autoclaved
	aerated concrete without perforated sleeves

Anchor rod	Thread	M8	M10	M12
Nominal drill hole diameter d ₀ [mm]		10	12	14
Effective anchorage depth	$h_{ef}^{1)}$ $h_{0,min}=h_{ef,min}$ [mm]	100		
in AAC cylindrical drill hole	h _{0,max} =h _{ef,max} [mm]	min (h-30, ≤200)		
Effective anchorage depth	$h_{\text{ef}}^{1)} \hspace{1cm} h_{\text{ef,min}} [mm]$	50		
in solid brick (depth of drill hole $h_0 = h_{ef}$)	h _{ef,max} [mm]	min (h-30, ≤200)		
Diameter of clearance	pre-position d _f ≤[mm]	9	12	14
hole in the fixture	push through d _f ≤[mm]	11	14	16
Diameter of cleaning brush d _b ≥[mm]		see Table B7.1		
Maximum installation torque max T _{inst} [Nm]		see	parameters of brick Ani	nex C

 $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible.


Marking (on random place) fischer anchor rod:

Steel zinc plated PC ¹⁾ 8.8	or +	Steel hot-dip galvanised PC ¹⁾ 8.8	•
High corrosion resistant steel HCR PC1) 50	•	High corrosion resistant steel HCR PC1) 70	_
High corrosion resistant steel HCR PC1) 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		

Alternatively: Colour coding according to DIN 976-1: 2016; property class 4.6 marking according to EN ISO 898-1:2013 1) PC = property class

Installation conditions:

Anchor rod in cylindrical drill hole

Setting depth mark

Figures not to scale

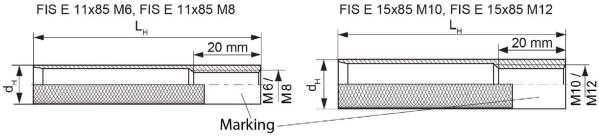
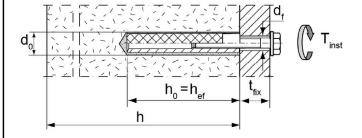

fischer injection system FIS AB for masonry Annex B 4 **Intended Use** Installation parameters for anchor rods without perforated sleeve

Table B5.1: Installation parameters for internal threaded anchors FIS E in solid bricks and autoclaved aerated concrete without perforated sleeves

Internal threaded anchor FIS I		11x85 M6	11x85 M8	15x85 M10	15x85 M12	
Diameter of anchor	d⊦[mm]	,	11	15		
Nominal drill hole diameter	d ₀ [mm]	,	14	18		
Length of anchor	L _H [mm]	85				
Effective anchorage depth	$h_0 = h_{ef}[mm]$	85				
Diameter of cleaning brush	d _b ≥[mm]	see Table B7.1				
Maximum installation torque	max T _{inst} [Nm]	see parameters of brick Annex C				
Diameter of clearance hole in the fixture	d _f [mm]	7 9		12	14	
Scrow in donth	I _{E,min} [mm]	6	8	10	12	
Screw-in depth	I _{E,max} [mm]	60				

Internal threaded anchor FIS E



Marking:

Size, e.g. M8, Stainless steel: R, e.g. M8 R, High corrosion-resistant steel: HCR, e.g. M8 HCR

Installation conditions:

Internal threaded anchor in cylindrical drill hole

Figures not to scale

fischer injection system FIS AB for masonry

Intended Use
Installation parameters for internal threaded rods FIS E without perforated sleeve

Annex B 5

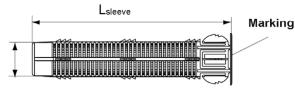
Table B6.1:	Installation parameters for anchor rods and internal threaded anchors
	FIS E with perforated sleeves (pre-positioned anchorage)

The E with periorated electron (pro positioned anotherage)								
perforated sleeve FIS H K		12x85	16x85	16x130 ²⁾	20x85	20x130 ²⁾	20x200 ²⁾	
Nominal drill hole diameter d ₀ = D _{sleeve,nom}	d₀ [mm]	12	1	6		20		
Depth of drill hole	h₀ [mm]	90	90	135	90	135	205	
Cff ative analyses alouth	h _{ef,min} [mm]	85	85	110	85	110	180	
Effective anchorage depth	h _{ef,max} [mm]	85	85	130	85	130	200	
Size of threaded rod	[-]	M8	M8 ar	nd M10		M12		
Size of internal threaded anch FIS E	-	11x85	-	15x85	-	-		
Diameter of cleaning brush ¹⁾	see Table B7.1							
Max. installation torque	max T _{inst} [Nm]		see	parameters	of brick An	nex C		

¹⁾ Only for solid areas in hollow bricks and solid bricks.

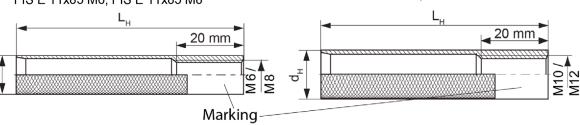
Perforated sleeve

FIS H 12x85 K; FIS H 16x85 K; FIS H 16x130 K; FIS H 20x85 K, FIS H 20x130 K: FIS H 20x200 K

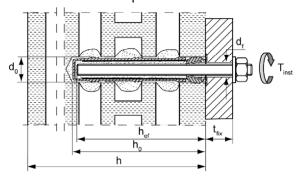

Marking:

Size Dsleeve, nom x Lsleeve

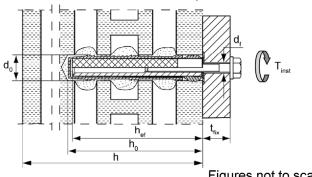
(e.g.: 16x85)


Dsleeve, nom

FIS E 15x85 M10, FIS E 15x85 M12


Internal threaded anchor FIS E

FIS E 11x85 M6, FIS E 11x85 M8



Installation conditions:

Anchor rod with perforated sleeve

Internal threaded anchor with perforated sleeve

Figures not to scale

fischer injection system FIS AB for masonry

Intended Use

Installation parameters for anchor rods and internal threaded anchors FIS E with perforated sleeve (pre-positioned anchorage)

Annex B 6

²⁾ Bridging of unbearing layer (e.g. plaster) is possible. When reducing the effective anchorage depth hef, min, the values of the next shorter perforated sleeve of the same diameter must be used. The smaller value of charastereristic resistance must be taken.

The size of the cleaning brush refers to the drill hole diameter

Drill hole diameter	d ₀ [mm]	8	10	12	14	16	18	20
Brush diameter	d₅ [mm]	9	11	14	16	20	20	25

Only for solid bricks and autoclaved aerated concrete or solid areas of perforated bricks and hollow blocks

Table B7.2: Maximum processing times and minimum curing times

(During the curing time of the mortar the masonry temperature may not fall below the listed minimum temperature)

Temperature at	Maxin	num processing t _{work}	g time	Minimum curing time 1) t _{cure}		
anchoring base [°C]			FIS AB Low Speed ²⁾	FIS AB High Speed ³⁾	FIS AB 2)	FIS AB Low Speed ²⁾
0 to 5	5 min	13 min	20 min	3 h	3 h	6 h
> 5 to 10	3 min	9 min	20 min	50 min	90 min	3 h
> 10 to 20	1 min	5 min	10 min	30 min	60 min	2 h
> 20 to 30	-	4 min	6 min	-	45 min	60 min
> 30 to 40	-	2 min	4 min	-	35 min	30 min

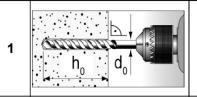
¹⁾ For wet bricks the curing time must be doubled

Figures not to scale

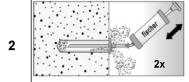
fischer injection system FIS AB for masonry

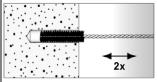
Intended use
Cleaning brush (steel brush)
Maximum processing times and minimum curing times

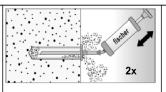
Annex B 7

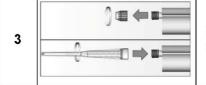

²⁾ Minimum cartridge temperature +5°C

³⁾ Minimum cartridge temperature ±0°C

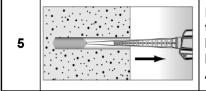


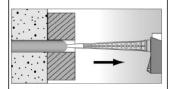

Installation instruction part 1

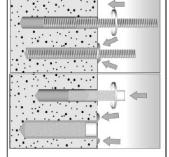

Installation in solid brick and autoclaved aerated concrete (without perforated sleeve)


Drill the hole (drilling method see Annex C of the respective brick) depth of drill hole **h**₀ and drill hole diameter **d**₀ see **Table B4.1**; **B5.1**

Blow out the drill hole twice. Brush twice and blow out twice again.


Remove the sealing cap. Screw on the static mixer. (the spiral in the static mixer must be clearly visible)


Place the cartridge into a suitable dispenser


Press out approximately 10 cm of mortar until the resin is permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed of.

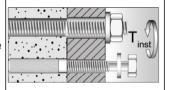
Fill approximetly 2/3 of the drill hole with mortar beginning from the bottom of the hole¹⁾. Avoid bubbles!

For push through anchorage (not FIS E) fill the annular clearance with mortar.

Only use clean and oil-free metal parts.

Mark the anchor rod for setting depth.

Insert the anchor rod or internal threaded anchor FIS E by hand using light turning motions.


When reaching the setting depth marking, excess mortar must emerge from the mouth of the drill hole.

7

6

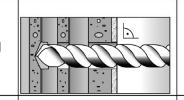
Do not touch.
Minimum curing time see
Table **B7.2**

Mounting the fixture. max T_{inst} see parameter of brick in Annex C.

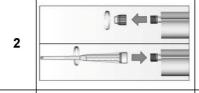
fischer injection system FIS AB for masonry

Intended use

Installation instruction (without perforated sleeve) part 1


Annex B 8

¹⁾ Exact volume of mortar see manufacturer's specification.

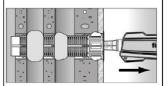

Installation instruction part 2

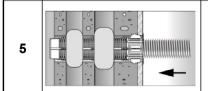
Installation in perforated or solid brick with perforated sleeve (pre-positioned anchorage)

Drill the hole (drilling method see Annex C of the respective brick). depth of drill hole h_0 and drill hole diameter d_0 see **Table B6.1**

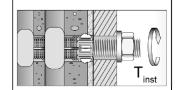
When install perforated sleeves in solid bricks or solid areas of hollow bricks, also clean the hole by blowing out and brushing.


Remove the sealing cap. Screw on the static mixer. (the spiral in the static mixer must be clearly visible)


Place the cartridge into a suitable dispenser.


Press out approximately 10 cm of mortar until the resin is permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed of.

Insert the perforated sleeve flush with the surface of the masonry or plaster.


Fill the perforated sleeve completely with mortar beginning from the bottom of the hole¹⁾.

Only use clean and oil-free metal parts. Mark the ancher rod for setting depth. Insert the anchor rod or the internal threaded anchor FIS E by hand using light turning motions until reaching the setting depth marking (anchor rod) or flush with the surface (internal threaded anchor).

Do not touch. Minimum curing time see Table **B8.2**

Mounting the fixture. max T_{inst} see parameter of brick in Annex C.

fischer injection system FIS AB for masonry

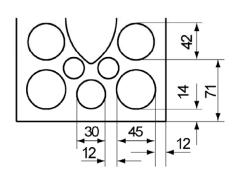
Intended use

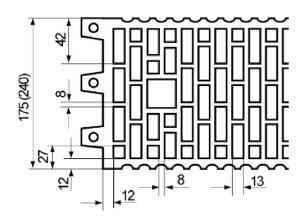
Installation instruction (with perforated sleeve) part 2

Annex B 9

¹⁾ Exact volume of mortar see manufacturer's specification.

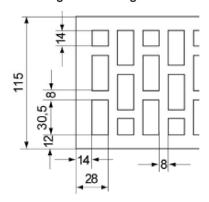
Table B10.1: Overview of controlled bricks part 1										
Kind of masonry	E	Brick format [mm]	Compressive strength f♭ [N/mm²]	Producing counrty	Density ρ [kg/dm³]	Annex				
Solid brick Mz										
	NF	≥240x115x71	12 / 20	Germany	≥1,8	C4-C7				
Solid brick Mz	2DF	≥240x115x113	10 / 16	Germany	≥1,8	C8/C9				
		≥ 245x118x54	10 / 20	Italy	≥1,8	C 10 / C 11				
So	lid sa	nd- lime brick KS	/ perforated Sand-	lime brick KS	L					
Solid sand - lime brick KS	NF	≥240x115x71	12 / 20	Germany	≥2,0	C12 / C 13				
Perforated sand - lime brick KSL	240x175x113	12 / 20	Germany	≥1,4	C 14 – C 15					
		Vertical po	erforated brick HLz							
		370x240x237	10	Germany	≥1,0	C 16 / C 17				
		500x175x237	10	Germany	≥1,0	C 16 / C 17				
	2DF	240x115x113	20	Germany	≥1,4	C 18 / C 19				
Vertical perforated brick		248x365x249	8 - 12	Germany	≥0,7	C 20 / C 21				
11122		248x425x248	4 - 8	Germany	≥0,6	C 22 / C 23				
		253x300x240	2 - 6	Austria	≥0,8	C 24 / C 25				
		250x440x250	6 - 10	Austria	≥0,7	C 26 / C 27				
		Light-weight co	oncrete hollow bloc	k Hbl						
Light-weight concrete hollow block Hbl		362x240x240	4	Germany	≥1,0	C 28 / C 29				
		Autoclaved a	erated concrete (A	AC)						
PP2 / AAC		-	2	Germany	0,35	C30 - C 32				
PP4 / AAC		-	4	Germany	0,50	C30 - C 32				
PP6 / AAC		-	6	Germany	0,65	C30 - C 32				


fischer injection system FIS AB for masonry	
Intended use Overview of controlled bricks part 1	Annex B 10

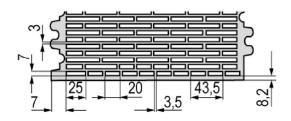

Table B11.1:Overview dimensions of perforated and hollow bricks part 1

Perforated sand-lime brick KSL, 3DF, FN 771-2:2011+A1:2015; e.g. KS Wemdii

EN 771-2:2011+A1:2015; e.g. KS Wemding according to Annex C 14 $\,$



Vertical perforated brick HLz, EN 771-1:2011+A1:2015: e.g. Wienerberger, Poroton according to Annex C 16



Vertical perforated brick HLz, 2DF, EN 771-1:2011+A1:2015;

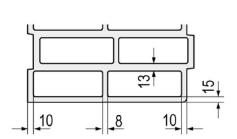
e.g. Wienerberger according to Annex C 18

Vertical perforated brick HLz, T10, T11, EN 771-1:2011+A1:2015; according to Annex C 20

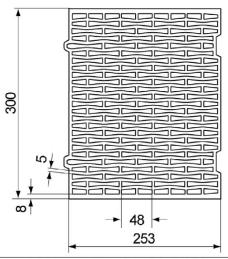
Figures not to scale

fischer injection system FIS AB for masonry

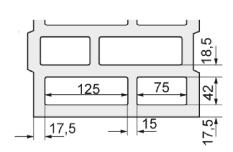
Intended use

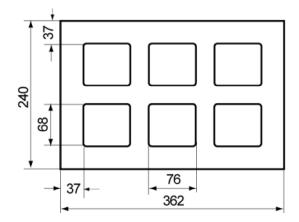

Overview dimensions of perforated and hollow bricks part 1

Annex B 11


Table B12.1:Overview dimensions of perforated and hollow bricks part 2

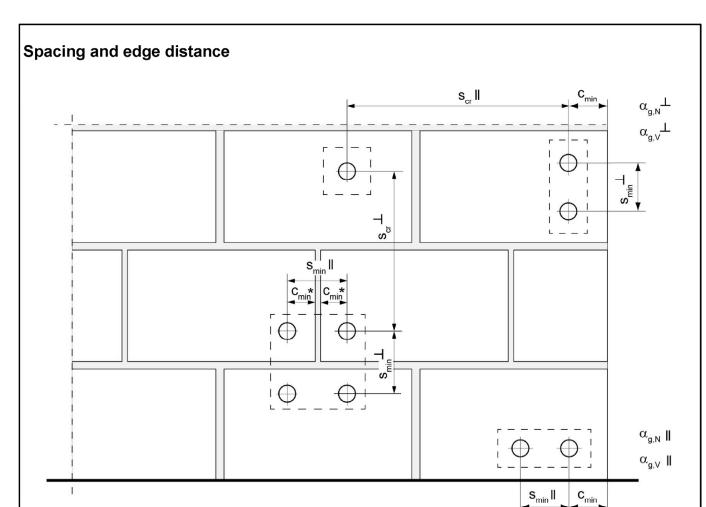
Vertical perforated brick HLz, FZ 7, filled with mineral wool, EN 771-1:2011+A1:2015; according to Annex C 22


Vertical perforated brick HLz, EN 771-1:2011+A1:2015;


e.g. Ziegelwerk Brenner according to Annex C 24

Vertical perforated brick HLz, Porotherm W 44, filled with mineral wool, EN 771-1:2011+A1:2015 according to Annex C 26

Light-weight concrete hollow block Hbl, EN 771-3:2011+A1:2015; according to Annex C 28


Figures not to scale

fischer injection system FIS AB for masonry

Intended use
Overview dimensions of perforated and hollow bricks part 2

Annex B 12

* Only, if vertical joints are not completely filled with mortar

 $s_{min} II = Minimum spacing parallel to bed joint$

 $s_{min} \perp$ = Minimum spacing vertical to bed joint

s_{cr} II = Characteristic spacing parallel to bed joint

 s_{cr}^{\perp} = Characteristic spacing vertical to bed joint

 $c_{cr} = c_{min}$ = Edge distance

 $\alpha_{g,N}II$ = Group factor for tension loading, anchor group parallel to bed joint

 $\alpha_{g,V}II$ = Group factor for shear loading, anchor group parallel to bed joint

 $\alpha_{g,N}$ = Group factor for tension loading, anchor group vertical to bed joint

 $\alpha_{g,V}$ = Group factor for shear loading, anchor group vertical to bed joint

For
$$s \ge s_{cr}$$
 $\alpha_g = 2$

For $s_{min} \le s < s_{cr}$ α_g according to installation parameters of brick

$$N^{g}_{Rk} = \alpha_{g,N} \cdot N_{Rk}$$
; $V^{g}_{Rk} = \alpha_{g,V} \cdot V_{Rk}$ (Group of 2 anchors)

$$N^{g}_{Rk} = \alpha_{g,N} \coprod \bullet \alpha_{g,N} \bot \bullet N_{Rk}$$
; $V^{g}_{Rk} = \alpha_{g,V} \coprod \bullet V_{Rk}$ (Group of 4 anchors)

fischer injection system FIS AB for masonry	
Intended use Spacing and edge distance	Annex B 13

Table C1.1: Characteristic resistance to steel failure under tension loading of fischer anchor rods and standard threaded rods

Anch	or rod / standard	threaded re	od		М8	M10	M12		
Chara	acteristic resistar	nce to steel	failure	unde	er tension loading 3)				
			4.6		15(13)	23(21)	33		
Ø	Stool zing plotod		4.8] [15(13)	23(21)	33		
istic N _{Rk,s}	Steel zinc plated		5.8] [19(17)	29(27)	43		
teri ce I		Property	8.8] [[_N]	29(27)	47(43)	68		
= =	Stainless steel R and		50	[kN] -	19	29	43		
ည် နို	High corrosion		70		26	41	59		
	resistant steel HCR		80		30	47	68		
Partia	al factors 1)	•							
			4.6		2,00				
	Otaal -: na mlatad		4.8			1,50			
ट्ट	Steel zinc plated		5.8]	1,50				
fac s, r		Property 8.8 class 50] , ,	1,50					
Partial factor י™s,N	Stainless steel R and		50	[-]	2,86				
	High corrosion		70		1,50 ²⁾ / 1,87				
	resistant steel HCR		80		1,60				

¹⁾ In absence of other national regulations

fischer injection system FIS AB for masonry	
Performance Characteristic steel bearing capacity of fischer anchor rods under tension loading	Annex C 1

²⁾ Only for fischer FIS A made of high corrosion-resistant steel HCR

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009

Table C2.1: Characteristic resistance to steel failure of fischer anchor rods and standard threaded rods under shear loading

					diaci silcai loa	9			
Anch	or rod / standard	threaded r	od		М8	M10	M12		
Char	acteristic resistar	nce under s	hear lo	oading	g, steel failure ³⁾				
witho	ut lever arm								
		4.6	4.6		9(8)	14(13)	20		
Ø	Stool zing plotod		4.8		9(8)	14(13)	20		
stic /¤k,	Steel zinc plated		5.8		11(10)	17(16)	25		
teri ce		Property	8.8	[kN]	15(13)	23(21)	34		
Characteristic resistance V _{Rk,s}	Stainless steel R and	class	50	נאוז	9	15	21		
ည် ခွေ	High corrosion		70		13	20	30		
	resistant steel HCR		80		15	23	34		
with I	lever arm								
e e	Steel zinc plated	4.6 4.8 5.8 Property 8.8 class 50 70	4.6		15(13)	30(27)	52		
tan			4.8	[Nm]	15(13)	30(27)	52		
Sis			5.8		19(16)	37(33)	65		
ristic re M ⁰ Rk,s			8.8		30(26)	60(53)	105		
Characteristic resistance M ⁰ Rk,s	Stainless steel R and		50		19	37	65		
araci	High corrosion resistant steel			26	52	92			
ပ ်	HCR		80		30	60	105		
Partia	al factors ¹⁾								
			4.6			1,67			
	Steel zinc plated		4.8			1,25			
ģ	Oteel Zille plated		5.8			1,25			
ial fac Yмs,∨		Property	8.8	,,	1,25				
Partial factor	Stainless steel R and		50	[-]		2,38			
<u>α</u>	High corrosion resistant steel		70			1,25 ²⁾ / 1,56			
	HCR		80			1,33			

¹⁾ In absence of other national regulations

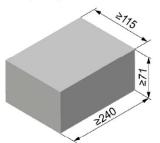
fischer injection system FIS AB for masonry

Performance
Characteristic steel bearing capacity of fischer anchor rods and standard threaded rods under shear loading

Annex C 2

²⁾ Only for fischer FIS A made of high corrosion-resistant steel HCR

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised fischer anchor rod and standard threaded rods according to EN ISO 10684:2004+AC:2009.


Table C3.1:					e to steel fail hear loading	ure of interna	al threaded ai	nchors	
Internal thread	ed anch	or FIS E			М6	M8	M10	M12	
Characteristic	resistar	ice to stee	l failure	unde	r tension loadii	າg,			
Characteristic		Property class	5.8	F1 A 13	10	18	29	42	
resistance with screw	N _{Rk,s}	Property	R	[kN]	14	26	41	59	
WILLI SCIEW		class 70	HCR		14	26	41	59	
Partial factors ¹)								
Dortiol factor	2/Ma- NI	Property class	5.8			1,	50		
Partial factor	γMs,N	Property	R	[-]	1,87				
		class 70	HCR			1,	87		
Characteristic	resistar	ice to stee	l failure	unde	r shear loading				
without lever a	rm								
Characteristic	\	Property class	5.8		5	9	15	21	
resistance with screw	$V_{Rk,s}$	Property	R	[kN]	7	13	20	30	
With Sciew		class 70	HCR		7	13	20	30	
with lever arm									
Characteristic	B # O	Property class	5.8	FA L	8	19	37	65	
resistance	M^0 Rk,s	Property	R	[Nm]	11	26	52	92	
		class 70	HCR		11	26	52	92	
Partial factors ¹)								
Davidal facts		Property class	5.8	F 3		1,	25		
Partial factor	γMs,V	Property	R	[-]		1,	56		
		class 70	HCR			1,	56		

1) In	absence	of other	national	regulations
· 111	absence	OI OILIGI	Hallonai	Icuulations

fischer injection system FIS AB for masonry	
Performance Characteristic resistance to steel failure under tension and shear loading of fischer internal threaded anchor FIS E	Annex C 3

Solid brick Mz, NF, EN 771-1:2011+A1:2015

Solid brick Mz, NF, EN 771-1:2011+A1:2015											
Producer		e.g. Wienerberger									
Nominal dimensions	[mm]	length L	width W	height H							
INOMINAL CIMENSIONS	נוווווון	≥ 240	≥ 115	≥ 71							
Density ρ	[kg/dm ³]	≥ 1,8									
Compressive strength fb	[N/mm ²]	12 / 20									
Standard		EN 771-1:2011+A1:2015									

Table C4.1: Installation parameters for edge distance c=100mm

Anchor rod			M8	M10	M12			
Internal threaded anchor FIS E			-			M6	M8	
				-	-	11)	(85	
Anchor rod ar	nd internal t	hreaded anch	or FIS E with	out perforated sl	eeve	_		
				50	50	50		
Effective anchorage dep	ath.	h _{ef}	[mm]	80	80	80	8	5
and lorage dep	, d 1			200	200	200		
Max. installation torque max T _{inst}		max T _{inst}	[Nm]	10			4	10
General instal	lation parai	meters						
Edge distance		C _{min}				10	00	
Edge distance	h _{ef} =200	C _{min}			150			1)
		S _{min} II,N			60		6	0
	h _{ef}	h _{ef} =200 s _{min} II, _N [mm] s _{min} II, _V s _{cr} II			_1)			
Spacing					240			
					240			
		$s_{cr} \perp = s_{min} \perp$			75			

Drilling method

Hammer drilling with hard metal hammer drill

Table C4.2: Group factors

Anchor rods		M8	M10	M12	-				
Internal threaded anchor FIS E						M6	M8		
			-	-	-	11:	x85		
Edge distance	C _{min}	[mm]		100	0				
	$\alpha_{g,N}$ II		1,5						
	α _{g,V} II		2,0						
_	h _{ef} =200 $lpha_{g,N}$ II		1,5						
-	h _{ef} =200 α _{g,V} II		2,0						
Group factor -	$\alpha_{\sf g,N} \perp$	[-]	2,0						
-	$lpha_{\sf g,v}ot$		2,0						
	h _{ef} =200 $lpha$ g,N $oxdot$		2,0						
_	h _{ef} =200 $lpha_{ m g,V}$ $oxdot$		2,0						

fischer injection system FIS AB for masonry	
Performance Solid brick Mz, NF, dimensions, installation parameters c=100mm	Annex C 4

¹⁾ No performance assessed

Solid brick Mz, NF, EN 771-1:2011+A1:2015

Table C5.1: Characteristic resistance under tension loading for edge distance c=100mm

Anchor rod	M8	M10	M12		-
Internal threaded				М6	M8
anchor FIS E	-	-	-	112	x85

N _{Rk} = I	N _{Rk} = N _{Rk,b} = N _{Rk,p} [kN] depending on the compressive strength f _b (temperature range 50/80°C)									
compressive	use		Effective anchorage depth hef [mm]							
strength f ₀	condition	≥ 50	50	80	200	50	80	200	85	
40 N/2	w/w w/d	2,5	2,0	3,0	7,5	2,0	3,5	5,0	3,5	
12 N/mm ²	d/d	4,0	3,5	5,0	12,0	3,0	5,5	8,0	5,5	
20 N/mm ²	w/w w/d	3,5	3,0	4,5	11,0	3,0	5,0	7,0	5,0	
20 N/mm²	d/d	5,5	5,0	7,0	12,0	4,5	8,0	11,5	8,0	

Table C5.2: Characteristic resistance under shear loading for edge distance c=100mm

Anchor rod		M8	M10		M12			-
Internal threaded anchor FIS E		-	_				М6	M8
							11x85	
V _{Rk} = V _{Rk,b} = V _{Rk,c} [kN] depending on the compressive strength f _b (temperature range 50/80°C)								
compressive	use		Effect	Effective anchorage depth hef [mm]				
strength f _b	condition	≥ 50	≥ 50	200	≥ 50	200	8	5
12 N/mm²	w/w w/d	2,5	4,0	8,5	4,0	11.5	2	,5
12 14/111111	d/d	2,0	٦,٥	0,0	7,0	11,0		,0
20 N/mm ²	w/w w/d	4,0	6,0	12,0	5,5	12,0	4	,0

Factor for job site tests and displacements see annex C33

d/d

fischer injection system FIS AB for masonry

Performance
Solid brick Mz, NF, Characteristic resistance under tension and shear loading c=100mm

Annex C 5

Solid brick Mz, NF, EN 771-1:2011+A1:2015

Table C7.1: Characteristic resistance under tension loading for edge distance c=60mm

Anchor rod	M8	M10	M12		-
Internal threaded				М6	M8
anchor FIS E	-	-	-	11)	k 85

N _{Rk} =	$N_{Rk} = N_{Rk,b} = N_{Rk,p}$ [kN] depending on the compressive strength f _b (temperature range 50/80°C)											
compres-	use		Effective anchorage depth h _{ef} [mm]									
sive strength f ♭	condition	50	100	50	100	200	50	100	200	85		
12 N/mm²	w/w w/d	2,0	2,0	2,0	2,5	_1)	2,0	2,5	_1)	_1)		
12 N/IIIII-	d/d	3,0	4,0	3,0	4,0	9,5	3,0	4,0	9,5	_1)		
20 N/mm²	w/w w/d	2,5	3,0	2,5	3,5	_1)	3,0	3,5	_1)	_1)		
20 N/mm ²	d/d	4,5	5,5	4,5	5,5	12	4,5	5,5	12	_1)		

No performance assessed

Table C7.2: Characteristic resistance under shear loading for edge distance c=60mm

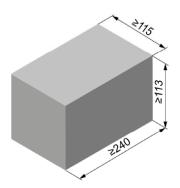
Anchor roo	d	N	18		M10			M12			•
Internal thi			_		_			_		М6	М8
anchor FIS	S E		_	-			_			11x85	
V _{Rk}	= V _{Rk,b} =V _{Rk,c}	[kN] depe	kN] depending on the compressive strength f _b (temperature range 50/80°								
compres-	use		Effective anchorage depth hef [mm]								
sive strength f ь	condition	50	100	50	100	200	50	100	200	8	5
12 N/mm²	w/w w/d	1,2	3,0	2,0	3,0	1,5	1,5	3,0	3,0	-	1)
20 N/mm ²	w/w w/d	1,5	4,5	3,0	4,5	2,5	2,0	4,5	4,5	_	1)

¹⁾ No performance assessed

d/d

Factor for job site tests and displacements see annex C 33

fischer injection system FIS AB for masonry


Performance

Solid brick Mz, NF, Characteristic resistance under tension and shear loading c=60mm

Annex C 7

Solid brick Mz, 2DF, EN 771-1:2011+A1:2015

Solid brick Mz, 2DF, EN 771-1:2011+A1:2015											
Producer		e.g. Wienerberger									
Nominal dimens	ione Imm	length L	width W	height H							
Nominal dimens	ions [mm	≥ 240	≥ 240 ≥ 115 ≥ 113								
Density ρ	[kg/dm ³]	≥ 1,8								
Compressive strength f _b	[N/mm²		10 / 16								
Standard		EN 771-1:2011+A1:2015									

Table C8.1: Installation parameters

Anchor rod			IV	18	М	10	M	12		•		-
Internal threaded	anchoi	-					M6	M8	M10	M12		
FIS E						-	-		11x85		15x85	
Anchor rod and i	nternal	thread	ded anc	hor FIS	E witho	ut perfo	rated sl	eeve				
Effective anchorage depth	h _{ef}	[mm]	50	100	50	100	50	100	85			
Max. installation torque	nax T _{inst}	[Nm]			1	0			4 10			
Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H 16x85 K												
Effective anchorage depth	h_{ef}	[mm]		8	5			1)	8	5		1)
Max. installation torque	T _{inst}	[Nm]		1	0		_	-,	4	10	_	•,
General installati	on para	meter	'S									
Edge distance	C _{min}						6	0				
	s _{min} II	[mm1					12	20				
Spacing	s _{cr} II	[mm]					24	40				
s cr⊥	= s _{min} ⊥				115							
Drilling mothed												

Drilling method

Hammer drilling with hard metal hammer drill

Table C8.2: Group factors

Anchor rods		M8	M10	M12		•	-		
Internal threade	d anchor	_	_	_	М6	M8	M10	M12	
FIS E		-	-	-	11x85		15x85		
	$lpha_{g,N}$ II			1,5					
Croup footor	α _{g,V} II								
Group factor	$\alpha_{g,N} \perp$ [-]			2					
	$lpha_{\sf g,V} ot$								

fischer injection system FIS AB for masonry	
Performance Solid brick Mz, 2DF, dimensions, installation parameters	Annex C 8

¹⁾ No performance assessed

Solid brick Mz, 2DF, EN 771-1:2011+A1:2015

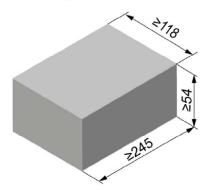
Table C9.1: Characteristic resistance under tension loading

Anchor rod	M8	M10	M12	-		-		M8	M10		-
Internal threaded anchor FIS E	-	-	-	M6	M6 M8 11x85		M12 x85	_	-	M6 M8	
Perforated sleeve FIS H K	-	-	-	-		-			162	k 85	

N _{Rk} =	$N_{Rk} = N_{Rk,b} = N_{Rk,p}$ [kN] depending on the compressive strength f_b (temperature range 50/80°C)											
compressive	us	se		Effective anchorage depth hef [mm]								
strength \mathbf{f}_{b} condition 50 100 50 100						100	50	100	8	5		
10 N/mm ²	w/w	w/d	1,5	2,5	1,5	3	2	3,5	2	1,5		
10 N/MM-	d,	/d	3,0	4,0	3,0	4,5	3	5,5	3	3		
16 N/mama ²	w/w	w/d	2,5	4	2,5	4,5	3,5	5,5	3,5	2,5		
16 N/mm ²	d/d		4,5	7,0	4,5	7,5	5,5	8	5,5	4,5		

Table C9.2: Characteristic resistance under shear loading

Anchor rod	M8	M10	M12	-		-		-		-		-		- M8		-	
Internal threaded	_		_	М6	M8	M10	M12			М6	M8						
anchor FIS E	-	_	_	11x85		15x85		-	-	11x85							
Perforated sleeve FIS H K	-	-	-		-	-			162	k85							


V _{Rk} = '	$V_{Rk} = V_{Rk,b} = V_{Rk,c}$ [kN] depending on the compressive strength fb (temperature range 50/80°C)												
compressive	use			pth h _{ef}	[mm]								
strength fb	condition		≥ 50			85							
10 N/mm²	w/w w/d	3,0	3,0	3,5	2,5	3.0	3.0	3,0	3,0	3,5	2.5	3.0	
	d/d	0,0	-,-	, ,,,	_,_	,,,	-,-		-,-	,,,	_,-		
16 N/mm²	w/w w/d d/d	5,0	5,5	5,5	4,0	5,0	5,0	5,0	5,0	6,0	4,0	5,0	

Factor for job site tests and displacements see annex C 33

fischer injection system FIS AB for masonry	
Performance Solid brick Mz, 2DF, Characteristic resistance under tension and shear loading	Annex C 9

Solid brick Mz, EN 771-1:2011+A1:2015

2											
Solid brick Mz, EN 771-1:2011+A1:2015											
Producer			e.g. Nigra								
Nominal dimens	iono	[mm]	length L	width W	height H						
Norminal dimens	10115	[mm]	≥ 245 ≥ 118 ≥ 54								
Density ρ	[k	g/dm³]	≥ 1,8								
Compressive strength f _b	[N	l/mm²]	10 / 20								
Standard			EN 771-1:2011+A1:2015								

Table C10.1: Installation parameters

Anchor rod			M8		M10		M12		-			•
Internal threaded anchor					-		-		M6	M8	M10	M12
FIS E			-						11x85		15x85	
Anchor rod and internal threaded anchor FIS E without perforated sleeve												
Effective anchorage	depth h _{ef}	[mm]	50	100	50	100	50	100	85			
Max. installatorque	ation max T _{inst}	[Nm]			1	0			4 10			
General ins	stallation para	meter	S									
Edge distan	ice c _{min}	C _{min} 60										
Specina	scr = smin	[mm]				245						
Spacing	$s_{cr} \perp = s_{min} \perp$				60							

Drilling method

Hammer drilling with hard metal hammer drill

Table C10.2: Group factors

Anchor rods		M8	M10	M12	- -		•	
Internal threaded anchor FIS E		-	-	-			M10	M12 (85
$\begin{array}{c} \alpha_{g,N} \text{ II} \\ \hline \alpha_{g,V} \text{ II} \\ \hline \alpha_{g,N} \perp \\ \hline \alpha_{g,V} \perp \end{array}$	[-]			2				

fischer injection system FIS AB for masonry	
Performance Solid brick Mz, dimensions, installation parameters	Annex C 10

Solid brick Mz, EN 771-1:2011+A1:2015

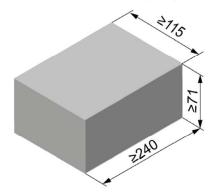
Table C11.1: Characteristic resistance under tension loading

Anchor rod	M8	M10	M12	-		-	
Internal threaded				M6	M8	M10	M12
anchor FIS E	-	-	-	11:	x85	15x85	

N _{Rk} =	N _{Rk} = N _{Rk,b} = N _{Rk,p} [kN] depending on the compressive strength f _b (temperature range 50/80°C)									
compressive	use	æ		Effective anchorage depth hef [mm]						
strength f _b	condi	tion		≥ 50	85					
40 N/mana2	w/w	w/d	0,9	0,75	0,75	0,6	0,75			
10 N/mm ²	d/d		1,5	1,2	1,2	1,2	1,2			
20 N/mm ²	w/w	w/d	1,5	1,2	1,2	0,9	1,2			
20 N/MM-	d/d	t	2,5	2,0	2,0	1,5	2,0			

Table C11.2: Characteristic resistance under shear loading

Anchor rod	M8	M10	M12	-		-	
Internal threaded				M6	M8	M10	M12
anchor FIS E	-	-	-	112	x85	15:	x85


V _{Rk} =	$V_{Rk} = V_{Rk,b} = V_{Rk,c}$ [kN] depending on the compressive strength f_b (temperature range 50/80°C)											
compressive	compressive use Effective anchorage depth hef [mm]											
strength fb	condition		≥ 50			8	5					
10 N/mm ²	w/w w/d	3,0	4.0	4,5	2,0	3.0	4,0	4,5				
10 14/111111	d/d	3,0	4,0	4,5	2,0	3,0	4,0	4,0				
20 N/mm²	w/w w/d	4,0	5 F	6,0	2,5	4.0	5,5	6,0				
20 N/mm ²	d/d	4,0	5,5	0,0	2,5	4,0	5,5	0,0				

Factor for job site tests and displacements see annex C 33

fischer injection system FIS AB for masonry	
Performance Solid brick Mz, Characteristic resistance under tension and shear loading	Annex C 11

Solid sand-lime brick KS, NF, EN 771-2:2011+A1:2015

Solid sand-lin	ne b	rick KS	S, NF, EN 7	71-2:2011+	A1:2015		
Producer							
Nominal dimensions [mm]			length L	width W	height H		
			≥ 240	≥ 115	≥ 71		
Density ρ	[k	g/dm³]	≥ 1,8				
Compressive strength f _b	[N	l/mm²]		12 / 20			
Standard			EN 771-2:2011+A1:2015				

Table C12.1: Installation parameters

Anchor rod			М8	M10	M12	-				
Internal threaded anchor						M6	M8			
FIS E	FIS E		-	-	-	11x85				
Anchor rod ar	d internal	threade	ed anchor FIS E wit	thout perforated sl	eeve					
			50	50	50					
Effective anchorage depth	th h _{ef}	[mm]	100	100	100	8	85			
andiorage dep	ui		_1)	200	200					
Max. Installation torque	max T _{inst}	[Nm]	5	15	15	3	5			
General instal	lation para	meters								
Edge distance	C _{min}			6	0					
	s _{min} II		80							
Connaine —	s _{cr} II	[mm]	3x h _{ef}							
Spacing —	$s_{min} oldsymbol{\perp}$		80							
	scr⊥] [3x h _{ef}							

Drilling method

Hammer drilling with hard metal hammer drill

Table C12.2: Group factors

Anchor rod		М8	M10	M12		-		-	
Internal threaded anchor					M6	M8	M10	M12	
FIS E		-	-	-	- 11x85		15x85		
	α _{g,N} II			0,7					
Cuarra fa atau	α _{g,V} II			1,3					
Group factor	$\frac{\alpha_{g,N} \perp}{\alpha_{g,N} \perp}$ [-]			2,0					
	ag,∨⊥								

fischer injection system FIS AB for masonry	
Performance Solid sand-lime brick KS, NF, dimensions, installation parameters	Annex C 12

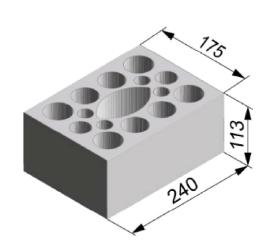
Solid sand-lime brick KS, NF, EN 771-2:2011+A1:2015

Table C13.1: Characteristic resistance under tension loading

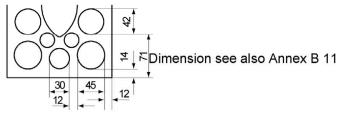
Anchor rod	M8	M10	M12		-
Internal threaded anchor FIS E				М6	M8
	-	-	-	11x85	

$N_{Rk} = N_{Rk,b} = N_{Rk,p}$ [kN] depending on the compressive strength f_b (temperature range 50/80°C)												
compressive strength f _b	us	se			Ef	fective a	anchora	ge dept	h h _{ef} [m	m]		
	condition		50	100	50	100	200	50	100	200	85	
12 N/mm ²	w/w	w/d	2,5	4,5	2,5	3,5	7,0	2,5	3,0	6,5	2,5	
12 N/MM ²	d/d		4,0	8,0	4,0	5,5	12	4,0	4,5	12	4,0	
20 N/mm²	w/w	w/d	3,5	6,5	3,5	4,5	10	3,5	4,0	9,5	3,5	
	d,	/d	6,0	11	6,0	8,0	12	6,0	6,5	12	6,0	

Table C15.2: Characteristic resistance under shear loading


Anchor rod		M8 M10 M12							-			
Internal threaded anchor FIS E						Me			M8			
		'	-	•	-		-	11x85				
V _{Rk} = V _{Rk,b} =V _{Rk,c} [kN] depending on the compressive strength f _b (temperature range 50/80°C)												
compressive	use		Effective anchorage depth hef [mm]									
strength fb	condition	50	100	50	≥100	50	≥100	8	5			
12 N/mm²	w/w w/d d/d	1,5	3,0	1,2	2,0	1,2	2,0	1,	2			
20 N/mm ²	w/w w/d d/d	2,5	4,0	1,5	3,0	1,5	3,0	1,	5			

Factor for job site tests and displacements see annex C 33


fischer injection system FIS AB for masonry	
Performance Solid sand-lime brick KS, NF, Characteristic resistance under tension and shear loading	Annex C 13

Perforated sand-lime brick KSL, 3DF, EN 771-2:2011+A1:2015

Perforated sand-lime brick KSL, 3DF, EN 771-2:2011+A1:2015											
Producer			e.g. KS Wemding								
Nominal dimensi	ione	[mm]	length L	width W	height H						
Norminal dimensi	10115	[mm]	240	175	113						
Density ρ	[kg/	/dm³]	≥ 1,4								
Compressive strength f _b	[N/mm²]		12 / 20								
Standard			EN 771-2:2011+A1:2015								

Table C14.1: Installation parameters (Pre-positioned anchorage with perforated sleeve FIS H K)

Anchor rod	M8	-		M8	M10	M8 M10		-		- M12	
Internal threaded anchor FIS E	-	M6 11	M8 x85	-		-		M10 M12 15x85		_	-
Perforated sleeve FIS H K	12x85	162		x85		16x130		20>		x85	20x130

Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K

Max. installation torque max T_{inst} [Nm]

General installation parameters

Concrai motanat	Contral initialitation parameters												
Edge distance	C _{min}		60	80									
Spacing	s _{min} II		100										
	s _{cr} II	[mm]	240										
	$s_{min} \bot$			115									
	s _{cr} ⊥		115										

Drilling method

Hammer drilling with hard metal hammer drill

Table C14.2: Group factors

Anchor rod	M8		- M8 M10		M8	M10	-		M12	M12	
Internal threaded anchor FIS E	-	M6	M8 x85	-		-		-	M12 x85	_	-
Perforated sleeve FIS H K	12x85	16x85				16x	130	20x85			20x130
Group $\alpha_{g,N} I = \alpha_{g,V} I$						1	,5				
factors $\frac{g_{g,N} + g_{g,V} + g_{g,V}}{\alpha_{g,N} + g_{g,V}} = [-]$		2,0									

fischer injection system FIS AB for masonry

Performance

Perforated sand-lime brick KSL, 3DF, dimensions, installation parameters

Annex C 14

Perforated sand-lime brick KSL, 3DF, EN 771-2:2011+A1:2015

Table C15.1: Characteristic resistance under tension loading (Pre-positioned anchorage)

Anchor rod	M8	- M8 M10		M8	M10	-		M12	M12		
Internal threaded anchor FIS E	-	M6	M8 x85		-		-	M10	M12 x85	-	-
Perforated sleeve FIS H K	12x85	16x		x85		16x130		20		k 85	20x130

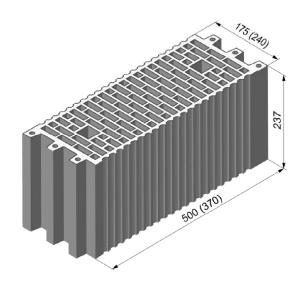
N _{Rk} = N _{Rk,b}	N _{Rk} = N _{Rk,b} = N _{Rk,p} [kN] depending on the compressive strength f _b (temperature range 50/80°C)										
compressive strength f _b		se dition									
12 N/mm²	w/w	w/d	2,5	2,5	3,0	3,0	3,0				
12 N/IIIII	d.	/d	2,5	3,0	3,5	3,5	3,5				
20 N/mm ²	w/w	w/d	4,0	4,5	5,5	5,5	5,5				
20 N/IIIII	d	/d	4,5	5,0	6,0	6,0	6,0				

Table C15.1: Characteristic resistance under shear loading (Pre-positioned anchorage)

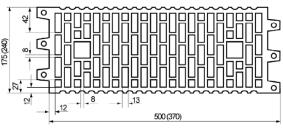
Anchor rod	M8		-	M8 M10 I		M8	M10	-		M12	M12
Internal threaded	M6 M8		M8			-		M10	M12		
anchor FIS E	-	11x85						15x85		<u> </u>	-
Perforated sleeve FIS H K	12x85	16>		x85		16x130		20		k 85	20x130

$V_{Rk} = V_{Rk,b}$	$V_{Rk} = V_{Rk,b} = V_{Rk,c}$ [kN] depending on the compressive strength f _b (temperature range 50/80°C)											
compressive strength f _b		se dition										
12 N/mm²	w/w d	w/d /d		2,5		4,5						
20 N/mm²	w/w	w/d	4.0	4.5	4.0	7.5						
20 N/mm ²	d	/d	4,0	4,5	4,0	7,5						

Factor for job site tests and displacements see annex C 33


fischer injection system FIS AB for masonry

Performance
Perforated sand-lime brick KSL, 3DF, Characteristic resistance under tension loading


Annex C 15

Vertical perforated brick HLz, EN 771-1:2011+A1:2015

Vertical perfo	Vertical perforated brick HLz, EN 771-1:2011+A1:2015										
Producer		e.g. Wienerberger, Poroton									
		length L	width W	height H							
Nominal dimens	ions [mm]	500	175	237							
		370	240	237							
Density ρ	[kg/dm³]		≥ 1,0								
Compressive strength f _b	[N/mm ²]		10								
Standard		EN 771-1:2011+A1:2015									

Dimension see also Annex B 11

Table C16.1: Installation parameters

Anchor rod	M8	-	M8 M10 M8 M10		-	M12	M12
Internal threaded anchor FIS E	-	M6 M8	_	-	M10 M12 15x85	_	-
Perforated sleeve FIS H K	12x85	16	x85	16x130	20:	x85	20x130

Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K

Max. installation max T_{inst} [Nm] 2 torque

General installation parameters

	Total Partition	
Edge distance	C _{min}	100
	s _{min} II	100
Cassina	s _{cr} II [mm]	500 (370)
Spacing	S _{min} ⊥	100
	s _{cr} ⊥	240

Drilling method

Hammer drilling with hard metal hammer drill

Table C16.2: Group factors

Anchor rod	M8	-	M8 M10	M8 M10	-	M12	M12
Internal threaded anchor FIS E	-	M6 M8	-	-	M10 M12 15x85	_	-
Perforated sleeve FIS H K	12x85	16:	x85	16x130	20:	x85	20x130
Group- $\alpha_{g,N} I = \alpha_{g,V} I$ [-]				1			

factor $\alpha_{g,N} \perp = \alpha_{g,V} \perp$

fischer injection system FIS AB for masonry

Performance

Vertical perforated brick HLz, dimensions, installation parameters

Vertical perfor	ated b	rick F	ILz, EN 7	71-1:	2011	+A1	:2015	5					
Table C17.1:			·						ng				
Anchor rod			M8		-	M8	M10	M8	M10		-	M12	M12
Internal threaded anchor FIS E	I		-	M6 M8 11x85			-		-	M10	M12 <85	-	-
Perforated sleeve	FIS H	12x85	16x85 16x130						20x85				
$N_{Rk} = N_{Rk,b}$	= N _{Rk,p}	[kN] de	pending o	n the	comp	ressi	ve str	ength	f _b (te	mpera	ature	range 50 /8	0°C)
compressive strength f ♭	us cond	-											
10 N/mm²	w/w	w/d	0,9	0,9 2,5 3,0								3,0	
TO N/IIIII	d/	'd	0,9					2	,5				3,5
Table C17.2:	Chara	cteris	tic resista	nce ι	ınder	she	ar loa	ding					
Anchor rod			М8		-	M8	M10	M8	M10		-	M12	M12
Internal threaded anchor FIS E	I		-	M6 112	M8 <85		-	-		M10 15	M12 x85	-	-
Perforated sleeve	Perforated sleeve FIS H K 12x85 16x85 16x130 20x85						20x130						
$V_{Rk} = V_{Rk,b}$	=V _{Rk,c}	[kN] de	pending o	n the	comp	ressi	ve stre	ength	f _b (te	mpera	ature i	range 50/8	0°C)
compressive strength f _b	us cond	_											

1,2

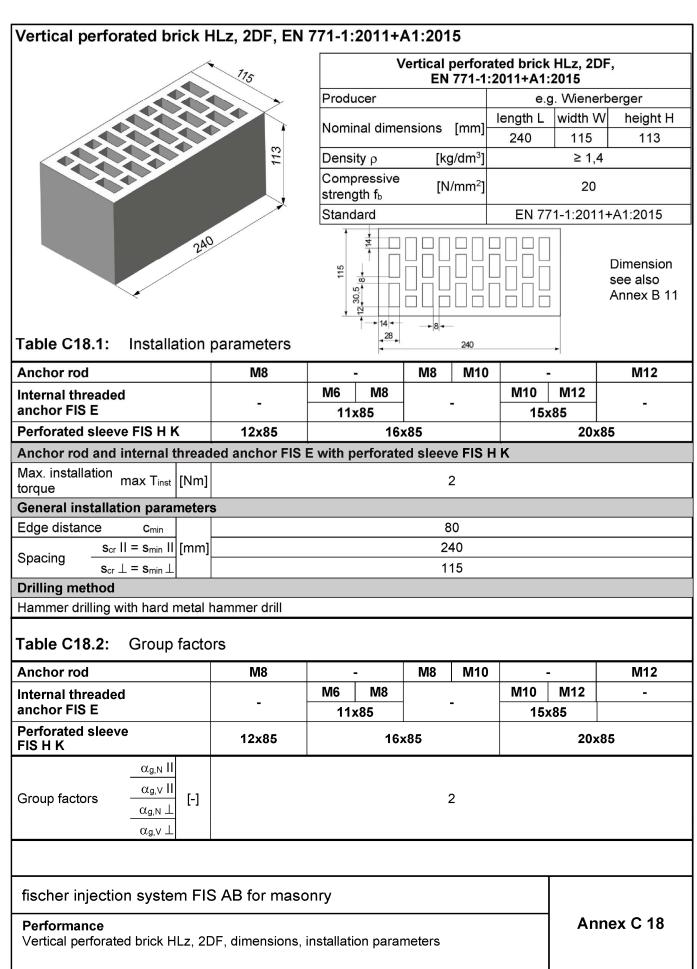
1,5

1,2

1,5

Factor for job site tests and displacements see annex C 33

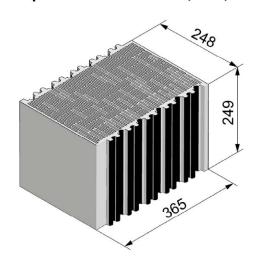
w/d

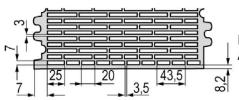

d/d

w/w

10 N/mm²

fischer injection system FIS AB for masonry	
Performance Vertical perforated brick HLz, Characteristic resistance under tension and shear loading	Annex C 17




	ated brick F	ILz, 2DF, EN	l 771-1:2011+	A1:2015		
Table C19.1:	Characteris	tic resistance	e under tension	n loading		
Anchor rod		M8	_	M8 M	10 -	M12
Internal threaded			M6 M8		M10 M12	
anchor FIS E		-	11x85	1 -	15x85	-
erforated sleeve	FIS H K	12x85	16	x85	20:	x85
	$= N_{Rk,p} [kN] d\epsilon$	pending on th	e compressive	strength f₀ (1	temperature range	50/80°C)
compressive strength f _b	use condition					
20 N/mm ²	w/w w/d	3,5	2		,0	
	d/d	4,0		2,5		,0
Table C19.2:	Characteris	tic resistance	under shear	loading M8 M	10 -	M12
Internal threaded		IVIO	M6 M8	IVIO IVI	M10 M12	IVIIZ
anchor FIS E	J	-	11x85	-	15x85	-
Perforated sleeve	FIS H K	12x85		x85		x85
$V_{Rk} = V_{Rk,b}$	=V _{Rk,c} [kN] de	pending on th	e compressive	strength f₅ (t	emperature range	50/80°C)
compressive strength f ь	use condition					
20 N/mm ²	w/w w/d d/d	7,5	4,0	4,5	8	,5
fischer injectio	n system FIS	S AB for mas	onry			

Vertical perforated brick HLz, T10, T11, EN 771-1:2011+A1:2015

Vertic	Vertical perforated brick HLz, T10, T11, EN 771-1:2011+A1:2015									
Producer			9-							
Naminal dimana	iono	[mm]	length L	width W	height H					
Nominal dimensi	Nominal dimensions			365	249					
Density ρ	[kg	g/dm³]	0,7							
Compressive strength f _b	[N	/mm ²]		8 / 10 / 12						
Standard			EN 771-1:2011+A1:2015							

Dimension see also Annex B 11

Table C20.1: Installation parameters (Pre-positioned anchorage with perforated sleeve FIS H)

					1						
Anchor rod	M8	-		M8	M10	M8	M10	-	M12	M12	M12
Internal threaded		M6	M8					M10 M12			
anchor FIS E	-	11x	85		-		-	15x85	-	-	-
Perforated sleeve FIS H K	12x85	16x		k 85		16x130		20:	x85	20x130	20x200

Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K

Max. installation torque	max T _{inst}	[Nm]	3	5	3	5
i loraue				1	l	

General installation parameters

Edge distan	nce c _{min}		60
	s _{min} II		80
Cassina	s _{cr} II	[mm]	250
Spacing	s _{min} ⊥		80
	s cr ⊥	250	

Drilling method

Rotary drilling with carbide drill

Table C20.2: Group factors

Anchor rod		M8		-	M8	M10	M8	M10		•	M12	M12	M12
Internal threade	ed		М6	M8		_		_	M10	M12	_	_	_
anchor FIS E			11x85						15>	8 5	_	_	_
Perforated sleev	12x85	12x85											
		1,7											
Cuarra fa atama	α _{g,V} II							0	,5				
Group factors	$\frac{\alpha_{g,N} \perp}{\alpha_{g,N} \perp}$ [-]							1	,3				
	α _{g,} ∨⊥							0	,5				

fischer injection system FIS AB for masonry

Performance

Vertical perforated brick HLz, T10, T11, dimensions, installation parameters

Vertical perforated brick HLz, T10, T11, EN 771-1:2011+A1:2015

 Table C21.1:
 Characteristic resistance under tension loading (Pre-positioned anchorage)

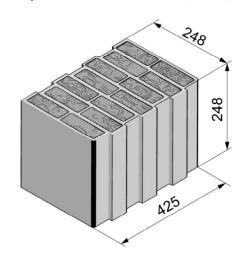
Anchor rod	M8	_	-		M10	M8	M10	_		M12	M12	M12
Internal threaded anchor FIS E	-	M6 11x	M8 85		-		-	M10 15x		-	-	ı
Perforated sleeve FIS H K	12x85		162	c 85		16x	130		20	k 85	20x130	20x200

$N_{Rk} = N_{Rk,b}$	= N _{Rk,p}	[kN] de	epending on the compressive strength f₀ (temperature range 50/80°C)
compressive strength f _b		se dition	
8 N/mm²	w/w	w/d	1,5
O N/IIIII	d.	/d	2,0
10 N/mm²	w/w	w/d	2,0
10 14/111111	d.	/d	2,0
12 N/mm²	w/w	w/d	2,0
12 19/111111	d.	/d	2,5

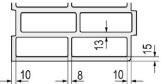
Factor for job site tests and displacements see annex C 33

 Table C21.2:
 Characteristic resistance under shear loading (Pre-positioned anchorage)

Anchor rod	M8	-	•	М8	M8	-	M12	M12	M12
Internal threaded anchor FIS E	-	M6 11x	M8 c85	_	-	M10 M12 15x85	_	-	-
Perforated sleeve FIS H K	12x85		162	. 85	16x130	20	x85	20x130	20x200


$V_{Rk} = V_{Rk,b}$	$=V_{Rk,c}$	[kN] de	epending	on the compressive strength	ı f₀ (temperature range 50/80°C)
compressive strength f _b		se dition			
8 N/mm ²	w/w	w/d	0,9	1.5	2,0
O IV/IIIIII	d	/d	0,9	1,5	2,0
10 N/mm²	w/w	w/d	0,9	1.5	2,0
TO NATION	d/d		0,9	1,5	2,0
12 N/mm²	w/w	w/d	1,2	2,0	2,0
12 14/11111	d	/d	۱,۷	2,0	2,0

Factor for job site tests and displacements see annex C 33


fischer injection system FIS AB for masonry	
Performance Vertical perforated brick HLz, T10, T11, Characteristic resistance under tension and shear loading	Annex C 21

Vertical perforated brick HLz, FZ 7, filled with mineral wool, EN 771-1:2015

	Vertical perforated brick HLz, FZ 7, filled with mineral wool, EN 771-1:2011+A1:2015											
na [mm]	length L	width W	height H									
nis [mm]	248 425 248											
[kg/dm ³]	0,6											
[N/mm ²]		4/6/8										
Standard EN 771-1:2011+												
		[kg/dm³] 248 [N/mm²]	ons [mm] 248 425 [kg/dm³] 0,6									

Dimension see also Annex B 12

Table C22.1: Installation parameters (Pre-positioned anchorage with perforated sleeve FIS H K)

Anchor rod	M8	-		M8	M10	M8	M10	-		M12	M12	M12	
Internal threaded		M6	M8					M10 M	12				
anchor FIS E	-	11x	85		_		-	15x85	;	-	-	-	
Perforated sleeve FIS H K	12x85		16x	(85		16x	130	2	20x	85	20x130	20x200	

Anchor rod and internal t	thread	ded anchor FIS E with	perf	fora	ted	sleeve FIS H K

Max. installation torque	max T _{inst} [Nm]	2	5	2	5
--------------------------	----------------------------	---	---	---	---

General installation parameters

tanation parai		•
ce c _{min}		60
s _{min} II		80
s _{cr} II	[mm]	250
s _{min} ⊥		80
s cr ⊥		250
	Ce C _{min} S _{min} II S _{cr} II S _{min} ⊥	S _{min} I

Drilling method

Rotary drilling with carbide drill

Table C22.2: Group factors

Anchor rod		M8	M8 - M8 M10 M8 M10 - M12 M1						M12	M12		
Internal thread anchor FIS E	ed	-	- M6 M8 11x85			-	M10 M12	_	-	1		
Perforated sleeve FIS H K		12x85		162	k 85		16x	130	20	x85	20x130	20x200
		1,9										
Croup footor	α _{g,V} II							0	,9			
Group factor	$\frac{\alpha_{g,N} \perp}{\alpha_{g,N} \perp}$ [-]		1,0									
	$\alpha_{\sf g,V} oldsymbol{\perp}$							0	,7			·

fischer injection system FIS AB for masonry

Performance

Vertical perforated brick HLz, FZ 7, filled with mineral wool; dimensions, installation parameters

Vertical perforated brick HLz, FZ 7, filled with mineral wool, EN 771-1:2011+A1:2015

 Table C23.1:
 Characteristic resistance under tension loading (Pre-positioned anchorage)

Anchor rod	M8	- [M8	M10	M8	M10	-	M12	M12	M12
Internal threaded	_	М6	M8				_	M10 M12	_	_	_
anchor FIS E	_	11x85					_	15x85	_	_	-
Perforated sleeve FIS H K	12x85	16x85		16x	130	20	x85	20x130	20x200		

		F1 N13 .1			4	5 11	E0/00/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
$\mathbf{N}_{Rk} = \mathbf{N}_{Rk,b}$	$= N_{Rk,p}$	<u>[KN] a</u>	epending	on the compressive	strengtn	t _b (temperature rai	1ge 50/80`	(C)
compressive strength f ь		se dition						
4 N/mm²	w/w	w/d	0,75	1,5	2,0	1,2	2,0	2,0
4 19/111111	d.	/d	0,9	1,5	2,0	1,5	2,0	2,5
6 N/mm²	w/w	w/d	0,9	1,5	2,0	1,5	2,5	2,5
0 14/111111	d.	/d	0,9	2,0	2,5	2,0	2,5	3,0
8 N/mm²	w/w	w/d	1,2	2,0	2,5	2,0	2,5	3,0
d/d		/d	1,2	2,0	3,0	2,0	3,0	3,5

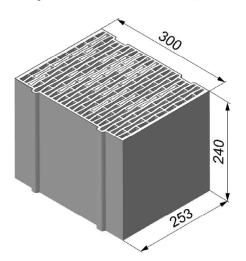
Factor for job site tests and displacements see annex C 33

 Table C23.1:
 Characteristic resistance under shear loading (Pre-positioned anchorage)

Anchor rod	M8	-	M8	M8	-	M12	M12	M12
Internal threaded anchor FIS E	-	M6 M8	_	-	M10 M12 15x85	_	-	1
Perforated sleeve FIS H K	12x85	12x85 16x8		16x130	20:	x85	20x130	20x200

$V_{Rk} = V_{Rk,t}$	V _{Rk} = V _{Rk,b} =V _{Rk,c} [kN] depending on the compressive strength f _b (temperature range 50/80°C)											
compressive strength f _b	1	se dition										
4 N/mm²	w/w	w/d	1.5	1.5								
4 19/111111	d	/d	1,5	1,5								
6 N/mm²	w/w	w/d	2.0	1 5								
d/d		/d	2,0	1,5								
8 N/mm²	w/w	w/d	2.5	2.0								
O IN/IIIIII	d/d		2,5	2,0								

Factor for job site tests and displacements see annex C 33


fischer injection system FIS AB for masonry

Performance
Vertical perforated brick HLz, FZ 7, filled with mineral wool;
Characteristic resistance under tension and shear loading

Annex C 23

Vertical perforated brick HLz, EN 771-1:2011+A1:2015

0											
Vertical perforated brick HLz, EN 771-1:2011+A1:2015											
Producer			e.g. Ziegelwerk Brenner								
Naminal dimana	iono Imm	Ţ	length L	width W	height H						
Nominal dimens	sions [mm	וי	253 300 240								
Density ρ	[kg/dm ²	³]	≥ 0,8								
Compressive strength f _b	[N/mm ²	²]	2/4/6								
Standard			EN 77	1-1:2011+A	1:2015						

Dimension see also Annex B 12

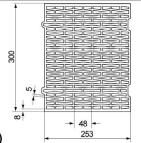


 Table C24.1:
 Installation parameters

(Pre-positioned anchorage with perforated sleeve FIS H K)

Anchor rod	М8	-		M8	M10	M8	M10		-	M12	M12
Internal threaded anchor FIS E	ı	M6 11x	M8 85	¢	-	19	-	M10	M12 x85	-	•
Perforated sleeve FIS H K	12x85	16x		k85		16x130		20x85		20x130	

Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K

Max. installation max T_{inst} [Nm]

General installation parameters

General	istaliation para	meter	•
Edge dista	ance c _{min}		60
Chaoina	$s_{min} \parallel = s_{cr} \parallel$	[mm]	255
Spacing	$s_{min} \perp = s_{cr} \perp$		240

Drilling method

Hammer drilling with hard metal hammer drill

Table C24.2: Group factors

Anchor rod		M8		-	M8	M10	M8	M10	10 -		M12	M12
Internal threade anchor FIS E	ed	-	M6 11	M8 x85		-	-		M10 M12 15x85		_	-
Perforated sleeve FIS H K		12x85		162	x85		16x130		20x85			20x130
Group factor	$ \begin{array}{c c} \alpha_{g,N} & II \\ \hline \alpha_{g,V} & II \\ \hline \alpha_{g,N} & \bot \end{array} $ [-]						;	2				

fischer injection system FIS AB for masonry	
Performance Vertical perforated brick HLz, dimensions, installation parameters	Annex C 24

Vertical perforated brick HLz, EN 771-1:2011+A1:2015

Table C25.1: Characteristic resistance under tension loading (Pre-positioned anchorage)

Anchor rod	M8	-		M8	M10	M8	M10		•	M12	M12
Internal threaded anchor FIS E	-	M6	M8 x85	-			-	M10		-	-
Perforated sleeve FIS H K	12x85	16:		x85	35		16x130		20	x85	20x130

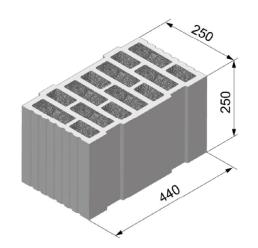
N _{Rk} = N _{Rk,b}	N _{Rk} = N _{Rk,b} = N _{Rk,p} [kN] depending on the compressive strength f _b (temperature range 50/80°C)												
compressive strength f _b	1	se dition											
2 N/mm²	w/w	w/d	0,5	0,5	0,4	0,5	0,4						
Z IN/IIIIII	d	/d	0,5	0,5	0,5	0,5	0,5						
4 N/mm²	w/w	w/d	0,9	0,9	0,9	0,9	0,9						
4 N/IIIII	d	/d	0,9	0,9	0,9	0,9	0,9						
6 N/mm²	w/w	w/d	1,5	1,5	1,2	1,5	1,2						
0 18/111111-	d	/d	1,5	1,5	1,5	1,5	1,5						

Factor for job site tests and displacements see annex C110

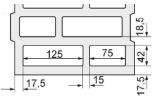
Table C25.1: Characteristic resistance under shear loading (Pre-positioned anchorage)

Anchor rod	М8	-		M8	M10	M8	M10	-	M12	M12
Internal threaded anchor FIS E	-	M6 11x	M8 85		-		-	M10 M12 15x85	_	•
Perforated sleeve FIS H K	12x85		162	x85		16x	130	20	x85	20x130

$V_{Rk} = V_{Rk,i}$	V _{Rk} = V _{Rk,b} =V _{Rk,c} [kN] depending on the compressive strength f _b (temperature range 50/80°C)										
compressive strength f _b	us cond	-									
2 N/mm²	w/w d/	w/d d	0,5	0,6							
4 N/mm²	w/w d/	w/d d	0,9	1,2							
6 N/mm²	w/w d/	w/d d	1,5	1,5							


fischer injection system FIS AB for masonry

Performance


Vertical perforated brick HLz, Characteristic resistance under tension and shear loading

Vertical perforated brick HLz, Porotherm W 44, filled with mineral wool, EN 771-1:2011+A1:2015

Vertical perforated brick HLz, Porotherm W 44, filled with mineral wool, EN 771-1:2011+A1:2015											
Producer			-								
Naminal dimana	one [m	1	length L	width W	height H						
Nominal dimensions		ш	250	440	250						
Density ρ	[kg/dr	n ³]		0,7							
Compressive strength f _b	[N/mr	n²]	6/8/10								
Standard			EN 771-1:2011+A1:2015								

M8 M10 M8 M10

80

250

Dimension see also Annex B 12

 Table C26.1:
 Installation parameters

 $s_{min} \perp$

Scr ⊥

M8

(Pre-positioned anchorage with perforated sleeve FIS H K)

/oo.										l			–
Internal threaded anchor FIS E	d		-	M6	M8 x85	-	-		-	M10 M12	_	-	-
Perforated sleev	e FIS H I	〈	12x85		16	k 85		16x	(130	20	x85	20x130	20x200
Anchor rod and	internal	threac	ded ancho	r FIS	Ew	ith po	erfor	ated	sleev	e FIS H K	(
Max. installation torque	max T _{inst}	[Nm]	2 5 2 5 6					6					
General installat	ion para	meter	S							<u>'</u>			
Edge distance	C _{min}								6	0			
	s _{min} II		80										
Chasina	s _{cr} II	[mm]							25	50			
Spacing ——	6		80										

Drilling method

Anchor rod

Rotary drilling with carbide drill

Table C26.2: Group factors

Anchor rod		М8	-		M8	M10	M8	M10	-		M12	M12	M12
Internal threaded anchor FIS E		-	M6 11x	M8 x85		-		M10 15x	M12 85	-		-	
Perforated sleev	12x85		16)	(85		16x130		20x85		(85	20x130	20x200	
	α _{g,N} II	1,3											
Group factor	$\alpha_{g,V} II$	1,3											
Group factor	$\frac{\alpha_{g,N} \perp}{\alpha_{g,N} \perp}$ [-]	0,8											
	αg,∨⊥	1,3											

fischer injection system FIS AB for masonry

Performance

Vertical perforated brick HLz, Porotherm W 44, filled with mineral wool; dimensions, installation parameters

Vertical perforated brick HLz, Porotherm W 44, filled with mineral wool, EN 771-1:2011+A1:2015

 Table C27.1:
 Characteristic resistance under tension loading (Pre-positioned anchorage)

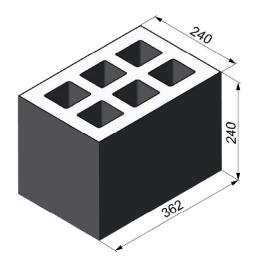
Anchor rod	M8	-		M8	M10	M8	M10		-	M12	M12	M12
Internal threaded		М6	M8				_		M12			
anchor FIS E	_	11x85			-		-	15	x85	-	-	-
Perforated sleeve FIS H K	12x85	16>		k 85		16x130		20>		x85	20x130	20x200

$N_{Rk} = N_{Rk,t}$	$N_{Rk} = N_{Rk,b} = N_{Rk,p}$ [kN] depending on the compressive strength f_b (temperature range 50/80°C)												
compressive strength f _b	cond												
6 N/mm²	w/w	w/d	1,5	1,2	1,5	2,5							
O N/IIIII	d,	⁄d	1,5	1,2	1,5	2,5							
8 N/mm²	w/w	w/d	1,5	1,2	1,5	2,5							
O IN/IIIIII	d/	⁄d	2,0	1,5	2,0	3,0							
10 N/mm²	w/w	w/d	2,0	1,5	2,0	3,0							
IO N/IIIII	d/	⁄d	2,0	1,5	2,0	3,5							

Factor for job site tests and displacements see annex C 33

Table C27.1: Characteristic resistance under shear loading (Pre-positioned anchorage)

Anchor rod	M8		-	M8	M10	M8	M10	-	M12	M12	M12
Internal threaded	-	M6	M8		-		-	M10 M12	-	-	-
Perforated sleeve FIS H K	12x85	11)		k85		16x	130	15x85 20)x85	20x130	20x200


$V_{Rk} = V_{Rk,i}$	V _{Rk} = V _{Rk,b} =V _{Rk,c} [kN] depending on the compressive strength f _b (temperature range 50/80°C)											
compressive strength f _b	use condition											
6 N/mm²	w/w w/d	0,9	1,2	0,9	1,2	1,2						
8 N/mm²	w/w w/d	0,9	1,5	0,9	1,5	1,2						
10 N/mm²	w/w w/d	1,2	1,5	1,2	1,5	1,5						

Factor for job site tests and displacements see annex C 33


fischer injection system FIS AB for masonry	
Performance Vertical perforated brick HLz, Porotherm W 44, filled with mineral wool; Characteristic resistance under tension and shear loading	Annex C 27

Light-weight concrete hollow block Hbl, EN 771-3:2011+A1:2015

Light-weight concrete hollow block Hbl, EN 771-3:2011+A1:2015											
Producer				X = X							
Nominal dimens	ione	[mm]	length L	width W	height H						
Nominal diffiers	10115	נוווווון	362	240	240						
Density ρ	[kg	/dm³]		≥ 1,0							
Compressive strength f _b	[N/	/mm²]	4								
Standard			EN 77	1-3:2011+A	1:2015						

Dimension see also Annex B 12

Table C28.1: Installation parameters

(Pre-positioned anchorage with perforated sleeve FIS H)

Anchor rod	М8		-	M8	M10	M8	M10	-	M12	M12
Internal threaded anchor FIS E	-	M6 11:	M8 x85		•	3	-	M12 x85	-	-
Perforated sleeve FIS H K	12x85		16:	x85		16x	130	20:	k85	20x130

Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K

Max. installation torque max T_{inst} [Nm]

General installation parameters

Edge distar	nce c _{min}		60
	s _{min} II	[100
Spacing	s _{cr} II	[mm]	362
	$s_{min} \perp = s_{cr} \perp$		240

Drilling method

Hammer drilling with hard metal hammer drill

Table C28.2: Group factors

Anchor rod		M8		-	M8	M10	M8	M10		-	M12	M12
Internal threade	d	_	M6	M8		-		-		M12		-
anchor FIS E			11:	x85					15x85			
Perforated slee	ve FIS H K	12x85		162	k 85		16x	130		20:	k 85	20x130
	$\alpha_{g,N}$ II						1	,2				
Group factors	α _{g,V} II						1	,1				
Group factors	$\frac{\alpha_{g,N}\perp}{\alpha_{g,V}\perp}$ [-]						2	,0				

fischer injection system FIS AB for masonry

Performance

Light-weight concrete hollow block Hbl, dimensions, installation parameters

Light-weight concrete hollow block Hbl, EN 771-3:2011+A1:2015

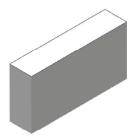
 Table C29.1:
 Characteristic resistance under tension loading (Pre-positioned anchorage)

Anchor rod	М8		-	M8	M10	M8	M10		-	M12	M12
Internal threaded anchor FIS E	-	M6	M8 x85		-		-		M12 x85	•	-
Perforated sleeve FIS H K	12x85		16x		x85		16x130 20		c 85	20x130	

$N_{Rk} = N_{Rk,b}$	= N _{Rk,p}	[kN] de	epending on the compressive strength f₀ (temperature range 50/80°C)
compressive strength f _b	1	se dition	
4 N/mm²	w/w	w/d	3,0
4 19/111111	d.	/d	3,0

 Table C29.2:
 Characteristic resistance under shear loading (Pre-positioned anchorage)

Anchor rod	М8		-	M8	M10	M8	M10	-	M12	M12
Internal threaded anchor FIS E	-	M6	M8 x85	-	-		-	 M12 x85	1	-
Perforated sleeve FIS H K	12x85		16:	x85		16x	130	20:	(85	20x130


$V_{Rk} = V_{Rk,b}$	$_{\rm c}$ = $V_{\rm Rk,c}$	[kN] de	epending on the compressive strength f₀ (temperature range 50/80°C)
compressive strength f _b		se dition	
4 N/mm ²	w/w	w/d /d	2,0

Factor for job site tests and displacements see annex C 33

fischer injection system FIS AB for masonry	
Performance Light-weight concrete hollow block Hbl, Characteristic resistance under tension and shear loading	Annex C 29

Autoclaved aerated concrete, EN 771-4:2011+A1:2015

Autoclaved aerated concrete, EN 771-4:2011+A1:2015											
Producer e.g. Ytong											
Density ρ	[kg/dm³]	0,35	0,5	0,65							
Compressive strength f _b	[N/mm²]	2	4	6							
Standard	EN 771-4:2011+A1:2015										

Table C30.1: Installation parameters

Internal threaded anchor FIS E	Anchor re	od		IV	18	М	10	М	12						
Anchor rod and internal threaded anchor FIS E without perforated sleeve	Internal t	hreaded anchor								M6					
Effective anchorage depth hef [mm] 100 200 100 200 100 200 85 Max. installation max T _{inst} [Nm] 1 8 2 12 2 16 1 2 General installation parameters Edge distance C _{min} S _{cr} II = S _{min} II h _{ef} =200mm S _{cr} III S _{cr} ⊥ = S _{min} ⊥ h _{ef} =200mm	FIS E			'	•	'	•	'	-	112	x85	15	ĸ85		
anchorage depth	Anchor re	od and internal t	hread	led ancl	hor FIS	E witho	ut perfo	rated sl	eeve						
torque		e depth h _{ef}	[mm]	100	200	100	200	100	200		85				
		allation max T _{inst}	[Nm]	1	8	2	12	2	16	1 2			2		
$Spacing = S_{cr} I = S_{min} I \\ h_{ef} = 200mm \\ S_{min} I \\ h_{ef} = 200mm \\ S_{cr} I = S_{min} I \\ S_{cr} I = S_{min} I \\ h_{ef} = 200mm \\ S_{min} I \\ h_{ef} = 200mm \\ S_{min} I \\ h_{ef} = 200mm \\ S_{min} I \\ S_{cr} I = S_{min} I \\ S_{$	General i	nstallation para	meter	s											
	Edge dista	ance c _{min}						10	00						
		$s_{cr} \parallel = s_{min} \parallel$						2	50						
$Spacing = \begin{bmatrix} S_{min} & II \\ h_{ef} = 200mm \\ S_{cr} & II \\ \hline S_{cr} & \bot = S_{min} & \bot \\ h_{ef} = 200mm \\ S_{min} & \bot \\ h_{ef} = 200mm \\ S_{min} & \bot \end{bmatrix} = \begin{bmatrix} S_{min} & II \\ S_{cr} & \bot & \vdots \\ S_{cr}$		h _{ef} =200mm						8	ın.						
$ \begin{array}{c c} & & & & & & & & \\ Spacing & & & & & & \\ \hline S_{cr} \perp = s_{min} \perp & & & & \\ \hline h_{ef} = 200mm & & & & \\ \hline b_{ef} = 200mm & & & & \\ \hline \end{array} $		s _{min} II													
Spacing $ \frac{S_{cr} \Pi}{S_{cr} \bot = S_{min} \bot} $ $ \frac{S_{cr} \Pi}{S_{cr} \bot = S_{min} \bot} $ $ \frac{S_{cr} \Pi}{S_{min} \bot} $ $ \frac{S_{cr} \Pi}{S_{min} \bot} $ $ \frac{S_{cr} \Pi}{S_{cr} \bot = S_{min} \bot} $								3x	hef						
S _{cr} ⊥ = S _{min} ⊥ 250 h _{ef} =200mm S _{min} ⊥ 80	Snacing	S _{cr} II	[mm]												
S _{min} ⊥ b _o =200mm	Opacing	$s_{cr} \perp = s_{min} \perp$						2	50						
		h _{ef} =200mm						0	0						
h _{ef} =200mm		s _{min} ⊥						0	.0						
		h _{ef} =200mm		3x h _{ef}											
S _{cr} ⊥		S cr ⊥							riet						

Drilling method

Hammer drilling with hard metal hammer drill

fischer injection system FIS AB for masonry

Performance
Autoclaved aerated concrete, dimensions, installation parameters

Annex C 30

Table C31.1: Group factors for autoclaved aerated concrete (Compressive strength $f_b = 2 \text{ N/mm}^2$)

Anchor rod		M8	M10	M12	-				-	•
Internal three	Internal threaded anchor FIS E			_	M6	M8	M10	M12		
Internal threat	ueu aliciloi Fi3 E	-	-	-	11>	11x85 15x8		c 85		
	h _{ef} =200 α _{g,N} II		1,6			1)	_	1)		
	h _{ef} =200 α _{g,V} II				1)	_1)				
Group factors	$\alpha_{g,N} \parallel, \alpha_{g,V} \parallel$			2			•			
Group ractors	$\frac{\log_{N}(N) \log_{N}(N)}{\log_{N}(N)} = \frac{\log_{N}(N)}{\log_{N}(N)}$		1,6		_	1)	_	1)		
	h _{ef} =200 α _{g,V} ⊥		0,8	-	1)	_	_1)			
	$\alpha_{g,N} \perp, \alpha_{g,V} \perp$			2						

¹⁾ No performance assessed

Table C31.2: Group factors for autoclaved aerated concrete (Compressive strength $f_b = 4 \text{ N/mm}^2$)

Anchor rod		M8	M10	M12	-	-	
Internal threaded anchor FIS E				M6 M8	M10 M12		
			-	-	11x85	15x85	
	h _{ef} =200 $lpha_{g,N}$ II		0,7		_1)	_1)	
	h _{ef} =200 α_{gV} II		2,0		_1)	_1)	
Croup footors	$\alpha_{g,N} \parallel, \alpha_{gV} \parallel$			2			
Group factors	$\frac{\log_{g,N}(1),\log_{g,N}(1)}{\ln_{ef}=200\alpha_{g,N}(1)}$ [-]		0,7		_1)	_1)	
	h _{ef} =200 α _{g,} ∨⊥		1,2		_1)	_1)	
	$\alpha_{g,N} \perp, \alpha_{gV} \perp$						

¹⁾ No performance assessed

Table C31.3: Group factors for autoclaved aerated concrete (Compressive strength $f_b = 6 \text{ N/mm}^2$)

Anchor rod		M8	M10 M12		-	-	
Internal threaded ancher FIS F		_		M6 M8	M10 M12		
internal threat	Internal threaded anchor FIS E		-	-	11x85	15x85	
	h _{ef} =200 α _{g,N} II		0,7		_1)	_1)	
	h _{ef} =200 α _{g,V} II		2,0	_1)	_1)		
Group factors	$\alpha_{g,N} \parallel, \alpha_{g,V} \parallel$			•	·		
Group lactors	$\frac{\log_{\text{N}}(N)}{\log_{\text{ef}}(N)} = \frac{\log_{\text{N}}(N)}{\log_{\text{ef}}(N)} = \frac{\log_{\text{N}}(N)}{\log_{\text{N}}(N)} = $		0,7	_1)	_1)		
	h _{ef} =200 α _{g,V} ⊥		1,2	_1) _1)			
	$\alpha_{g,N}\perp$, $\alpha_{g,V}\perp$						

¹⁾ No performance assessed

fischer injection system FIS AB for masonry	
Performance Autoclaved aerated concrete, Group factors	Annex C 31

Autoclaved aerated concrete, EN 771-4:2011+A1:2015

Table C32.1: Characteristic resistance under tension loading

Anchor rod			IV.	18	М	10	М	12				
Internal threanchor FIS E				-		-	- M6 M8 M10 11x85 15				M12 <85	
N _{Rk} =	N _{Rk,b} =	N _{Rk,p}	[kN] de	pending	on the c	ompress	ive strer	gth f₅ (te	emperatu	ıre range	50/80°C)
compressive	us	se				Effective	anchora	ge depth	h _{ef} [mm]			
strength f _b	cond	lition	100	200	100	200	100	100 200			85	
2 N/mm ²	w/w	w/d	1,5	2,0	1,5	3,0	1,5	3,0	1	,5	1,	5
2 N/MM-	d/	′d	1,5	3,0	1,5	3,5	2,0	4,0	1,5 1,5			5
4 N/mm ²	w/w	w/d	2,0	1,5	2,5	3,5	2,5	3,5	2	,0	1,	5
4 N/MM-	d/	′d	2,0	3,0	3,0	5,0	2,5	5,0	2,0 1,5			5
6 N/mm ²	w/w	w/d	3,0	2,5	4,5	5,0	4,5	7,0	3	,5	2,	5
6 N/MM-	d/	′d	3,5	4,0	5,0	7,0	5,0	9,0	3	,5	2,	5

Table C32.2: Characteristic resistance under shear loading

Anchor rod		IV	18	M	10	M	12	-			
Internal thre	aded	-		-		-		M6	M8	M10	M12
anchor FIS E	•							11)	x85	15x85	
V _{Rk} =	$V_{Rk,b} = V_{Rk,c}$	[kN] dep	ending (on the co	ompress	ive stren	gth fb (te	mperatu	ire range	50/80°C)
compressive	use				Effective	anchora	ge depth	h _{ef} [mm]			
strength f _b	condition	100	200	100	200	100	200	85			
2 N/mm ²	2 N/2 w/w w/d		1,2	1,2	1,2	1,5	1,2	1.2		1,5	
2 N/IIIII	d/d	1,2	1,2	1,4	1,2	1,5	1,2		1,2		1,5
4 N/mm ²	w/w w/d	2.5	2.0	2.0	2.0	2.5	2.0		2.0		2.5
4 N/IIIII	d/d	2,5	2,0	2,0	2,0	2,5	2,0	2,0			2,5
6 N/mm ²	w/w w/d	2.0	2,5	3.0	3,0	3,5	4,0		2.5		2.5
O IN/IIIIII	d/d	3,0	2,5	3,0	3,0	3,5	4,0		2,5		3,5

Factor for job site tests and displacements see annex C 33

fischer injection system FIS AB for masonry	
Performance Autoclaved aerated concrete, Characteristic resistance under	Annex C 32
tension and shear loading	

$\beta\text{-factors}$ for job site tests; displacements

Table C33.1: β-factors for job site tests

use condition		w/w and w/d	d/d	
temperature range		50/80	50/80	
Material	Size			
	M8	0,57		
	M10	0,59	0,96	
solid units	M12 FIS E 11x85	0,60		
	FIS E 15x85	0,62		
	FIS H 16x85 K	0,55		
hollow units	all sizes	0,86	0,96	
Autoclaved aerated concrete cylindrical drill hole all sizes		0,73	0,81	

Table C33.2: Displacements

Material	N [kN]	δ N ₀ [mm]	δ N ∞ [mm]	V [k N]	δV_0 [mm]	δ V ∞ [mm]
solid units and autoclaved aerated concrete hef=100mm	N _{Rk} 1,4 * γ _{Mm}	0,03	0,06	V _{Rk} 1,4 * γ _{Mm}	0,82	0,88
hollow units	N _{Rk} 1,4 * γ _{Mm}	0,48	0,96		1,71	2,56
solid brick Mz NF annex C 4 - C 7	N _{Rk} 1,4 * γ _{Mm}	0,74	1,48	V _{Rk} 1,4 * γ _{Mm}	1,23	1,85
solid brick KS NF annex C 14 / C 15	N _{Rk} 1,4 * γ _{Mm}	0,20	0,40	V _{Rk} 1,4 * γ _{Mm}	0,91	1,37
AAC h _{ef} =200 mm annex C 30 - C 33	N _{Rk} 1,4 * γ мm	1,03	2,06	V _{Rk} 1,4 * γ _{Mm}	1,25	1,88

For anchorage in autoclaved aerated concrete, the partial factor γ_{MAAC} shall be used instead of γ_{Mm} .

fischer injection system FIS AB for masonry	
Performance β-factors for job site tests; displacements	Annex C 33