

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-16/0340 of 16 April 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	fischer RM II
Product family to which the construction product belongs	Bonded fastener for use in concrete
Manufacturer	fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND
Manufacturing plant	fischerwerke
This European Technical Assessment contains	20 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330499-01-0601, Edition 04/2020
This version replaces	ETA-16/0340 issued on 17 June 2020

Page 2 of 20 | 16 April 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 16 April 2024

Specific Part

1 Technical description of the product

The fischer capsule system RM II is a bonded anchor for use in concrete consisting of a capsule RM II and a steel element according to Annex A2.

The capsule RM II is placed in the hole and the steel element is driven by machine with simultaneous hammering and turning.

The anchor rod is anchored via the bond between steel element, chemical mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 and B 4, C 1 to C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4
Displacements under short-term and long-term loading	See Annex C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

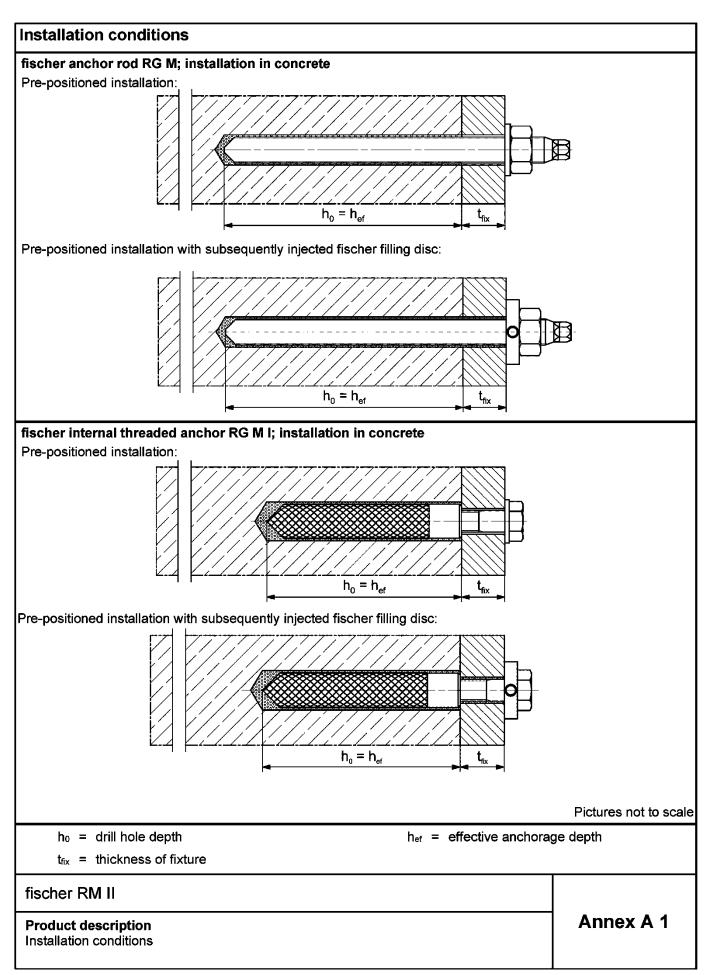
3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Page 4 of 20 | 16 April 2024

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 16 April 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Stiller

Overview product components	
Capsule RM II	
Size: 8, 10, 12, 16, 16E, 20/22, 24	
fischer anchor rod RG M	
Size: M8, M10, M12, M16, M20, M24	
fischer internal threaded anchor RG M I	
Size: M8, M10, M12, M16, M20	
Screw / threaded rod / washer / hexagon nut	
fischer filling disc with injection adapter	
fischer RM II – RG M Connector	
Size: M8, M10, M12, M16,	M20, M24
	Pictures not to scale
fischer RM II	
Product description Overview product components	Annex A 2

Page 7 of European Technical Assessment ETA-16/0340 of 16 April 2024

- ar i	Designation		Material						
1	Capsule RM II		Mortar, hardener, filler						
		Steel	Stainless steel R	High corrosion resistant steel HCR					
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015	acc. to EN 10088-1:201 Corrosion resistance clas CRC V acc. to EN 1993-1-4:2006+A1:20					
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2022 or hot dip galvanised ≥ 40 μm EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm ²	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ²	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 wit f _{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ²					
			Fracture elongation $A_5 > 8$ %,						
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, ISO 4042:2022 or hot dip galvanised ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014					
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 µm, ISO 4042:2022 or hot dip galvanised ≥ 40 µm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2014					
5	fischer internal threaded anchor RG M I	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 µm, ISO 4042:2022	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014					
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG M I	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, ISO 4042:2022 fracture elongation A ₅ > 8 %	$\begin{array}{c} \mbox{Property class} \\ 70 \\ \mbox{EN ISO 3506-1:2020} \\ 1.4401; 1.4404; 1.4578; \\ 1.4571; 1.4439; 1.4362 \\ \mbox{EN 10088-1:2014} \\ \mbox{fracture elongation} \\ \mbox{A}_5 > 8 \% \end{array}$	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014 fracture elongation A ₅ > 8 %					
7	fischer filling disc similar to DIN 6319-G	zinc plated ≥ 5 µm, ISO 4042:2022 or hot dip galvanised ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014					

Specifica	tions of	intended use par	t 1							
Table B1.	.1: Ov	erview use and pe	erformance cate	egories						
Anchorages	subject to		RM II with							
			fischer ai RG	ternal t RG	nreaded anchor M I					
			<u> </u>							
Hammer dri standard dri		*************	Manı robotic-as fischer all s		Manual all sizes					
Hammer dri with hollow ((fischer "FH "Duster Exp "Speed Clea "TE-CD, TE- DreBo "D-PI DreBo "D-M	drill bit D", Heller ert"; Bosch an"; Hilti -YD", lus",		Nominal drill (d₀) 12 mn	bit diameter n to 28 mm		all si	zes			
Static and q	uasi static	uncracked concrete	all sizes		all siz	96				
oad, in		cracked concrete	M10, M12, M16, M20, M24	Tables: C1.1, C3.1,			Tables: C2.1, C3.1,			
Use	11	dry or wet concrete	all sizes	C4.1, C6.1	all size	es	C5.1, C6.2			
category	12	flooded hole	M12, M16, M20, M24		M8, M10,	, M16				
Installation of	direction		D3 (downwa	ard and horizontal install		ds (e.g	. overhead)			
Installation temperature)			T _{i,min} =-15 °C to	• T _{i,max} = +4(0°C				
		Temperature range	-40 °C to +40 °((max. short te max. long ter						
In-service temperature	•	Temperature range	-40 °C to +80 °((max. short te max. long ter						
		Temperature range	-40 °C to +120 °	C (max. short te max. long ter						
fischer R Intended I Specification	Use					Aı	nnex B 1			

Specifications of intended use part 2

Base materials:

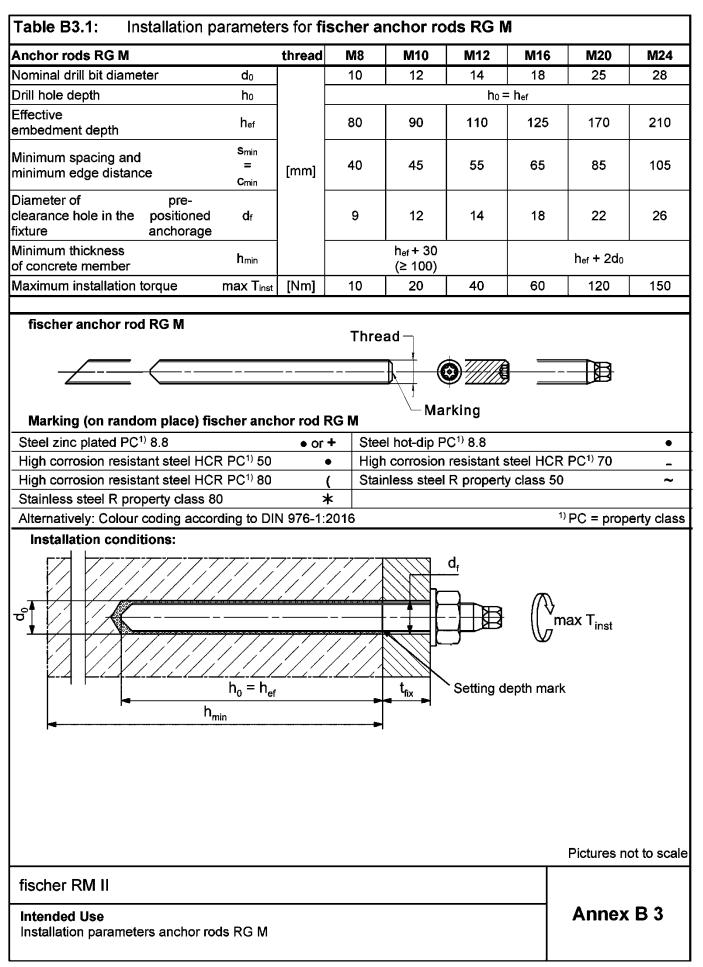
 Compacted reinforced or unreinforced normal weight concrete without fibres strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- For all other conditions according to EN1993-1-4:2006 + A1:2015 corresponding to corrosion resistance classes to Annex A 3 table A3.1.

Design:

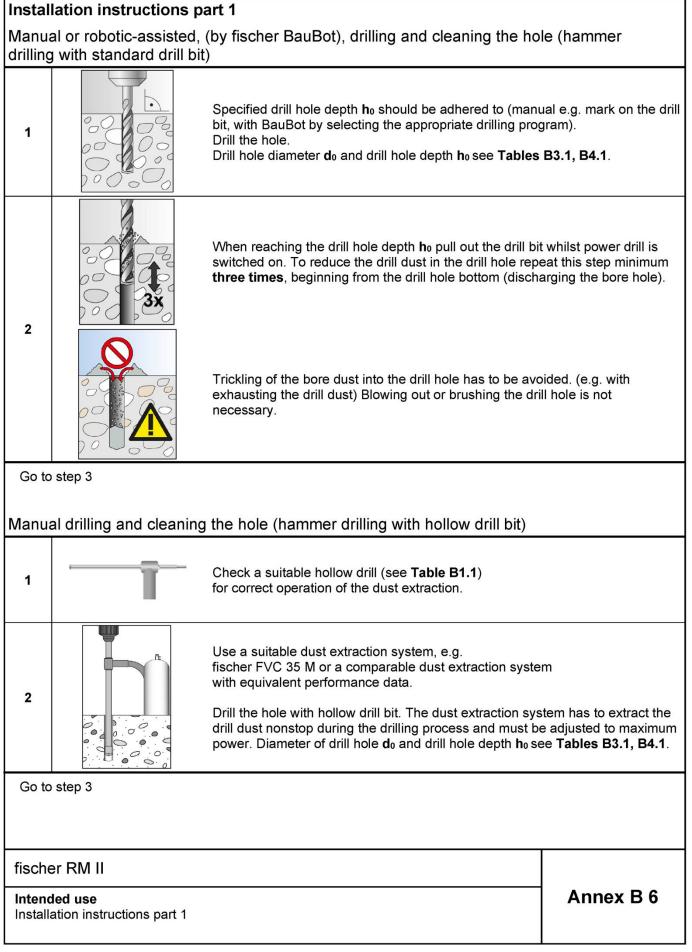
- · Anchorages have to designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.


Installation:

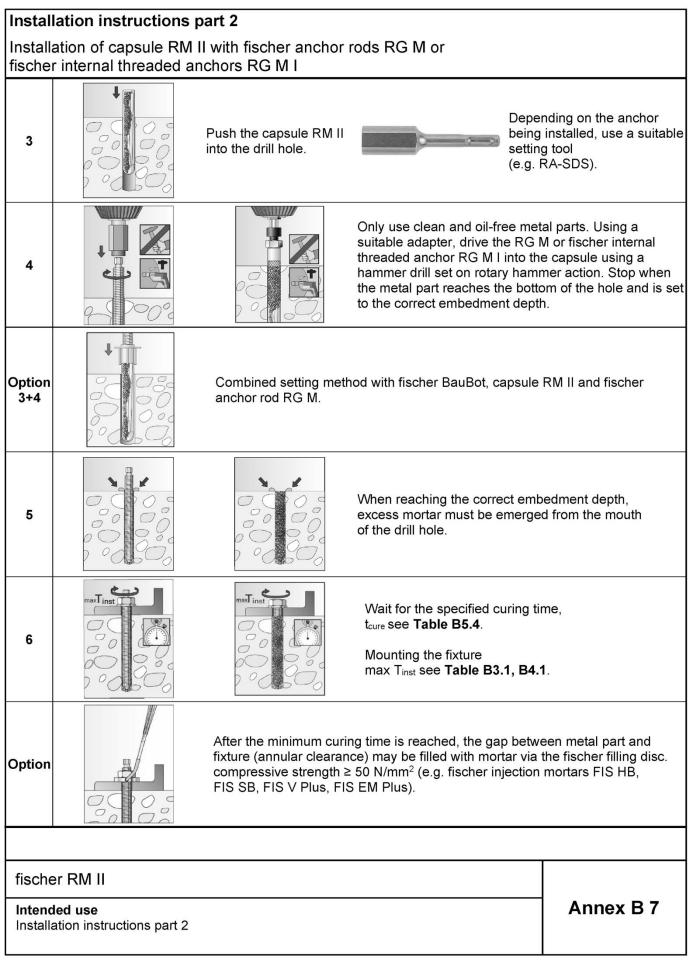
- Anchor installation has to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- For manual installation the anchorage depth should be marked and adhered to on installation.
- For robot-assisted installation using fischer BauBot, maintain the effective anchoring depth by selecting the appropriate installation program.
- Overhead installation is allowed.

fischer RM II

Intended Use Specifications part 2 Annex B 2


Internal threaded anchors RG	SMI th	nread	M8	M10	M12	M16	M20
Diameter of anchor	d = d _H		12	16	18	22	28
Nominal drill bit diameter	do		14	18	20	24	32
Drill hole depth	h₀			•	$h_0 = h_{ef} = L_H$		
Effective embedment depth (h _{ef} = L _H)	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	dr		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	I _{E,min}		8	10	12	16	20
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120
Retaining bolt or threaded ro strength class of Annex A 3, Installation conditions:			b = h _{ef}	must comply		nax T _{inst}	
fischer RM II						Pictures	s not to sca

Page 12 of European Technical Assessment ETA-16/0340 of 16 April 2024



tiameter dP mml 9,0 10,3 12,3 16,3 23,0 Capsule ength Lp 85 90 97 95 123 160 19 ###### K 90 97 95 123 160 19 ####################################	Capsule RM II	8	10	12	16	16 E	20/22	24
Capsule ength Lp 85 90 97 95 123 160 19 Image: Capsule CM Image: Capsule CAP Image: Capsule CA	diameter	· ·	10,5	12,5	1	6,5	2	3,0
KM II \mathcal{COP} L°L°L°Table B5.2: Assignment of resin capsule RM II to fischer anchor rod RG MAnchor rod RG MM8M10M12M16M20M2Effective anchorage depthhet[mm]8090110125170211Related capsule RM II[-]810121620/2224Table B5.3: Assignment of resin capsule RM II to the fischer internal threaded anchor RG M IInternal threaded anchor RG M1M8M10M12M16M20Effective anchorage depthhet[mm]9090125160200Related capsule RM II[-]10121616E24Table B5.4: Minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature -15 °C)Temperature in the ancoring base 	Caneula IT		90	97	95	123	160	190
Image: Second		8		®®® RM II				
Anchor rod RG M M8 M10 M12 M16 M20 M2 Effective anchorage depth her [mm] 80 90 110 125 170 211 Related capsule RM II [-] 8 10 12 16 20/22 24 Table B5.3: Assignment of resin capsule RM II to the fischer internal threaded anchor RG M I M8 M10 M12 M16 M20 Internal threaded anchor RG M I M8 M10 M12 M16 M20 Effective anchorage depth her [mm] 90 90 125 160 200 Related capsule RM II [-] 10 12 16 16E 24 Table B5.4: Minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature =.15 °C) Minimum curing time toure 16 h 20 15 to -10 30 h - - 5 10 h 2 > -10 to -5 16 h - - - 20 min <td></td> <td></td> <td></td> <td>Lp</td> <td></td> <td></td> <td></td> <td></td>				Lp				
Effective anchorage depth her [mm] 80 90 110 125 170 211 Related capsule RM II [-] 8 10 12 16 20/22 24 Table B5.3: Assignment of resin capsule RM II to the fischer internal threaded anchor RG M I M8 M10 M12 M16 M20 Internal threaded anchor RG M I M8 M10 M12 M16 M20 Effective anchorage depth her [mm] 90 90 125 160 200 Related capsule RM II [-] 10 12 16 16E 24 Table B5.4: Minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature -15 °C) Temperature in the ancoring base [°C] 30 h -		gnment of	-					1
anchorage depth nef [mm] 80 90 110 125 170 211 Related capsule RM II [-] 8 10 12 16 20/22 24 Table B5.3: Assignment of resin capsule RM II to the fischer internal threaded anchor RG M I M8 M10 M12 M16 M20 Internal threaded anchor RG M I M8 M10 M12 M16 M20 Effective anchorage depth her [mm] 90 90 125 160 200 Related capsule RM II [-] 10 12 16 16E 24 Table B5.4: Minimum curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature -15 °C) Minimum curing time teuring time of the mortar the concrete temperature -15 °C) Temperature in the ancoring base [°C] 30 h			M8	M10	M12	M16	M20	M24
Table B5.3: Assignment of resin capsule RM II to the fischer internal threaded anch RG M I Internal threaded anchor RG M I M8 M10 M12 M16 M20 Effective anchorage depth anchorage depth anchorage depth hef [mm] 90 90 125 160 200 Related capsule RM II [-] 10 12 16 16E 24 Table B5.4: Minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature -15 °C) Temperature in the ancoring base [°C] -15 to -10 30 h > -10 -5 16 h > -5 to -10 30 h > 0 to +5 45 min > +5 to +10 30 min > +5 to +10 30 min > +10 to +20 20 min > +20 to +30 5 min		h _{ef} [mm]	80	90	110	125	170	210
RG M I Internal threaded anchor RG M I M8 M10 M12 M16 M20 Effective anchorage depth her [mm] 90 90 125 160 200 Related capsule RM II [-] 10 12 16 16E 24 Table B5.4: Minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature -15 °C) Minimum curing time ancoring base [°C] Minimum curing time toure -15 to -10 30 h -	Related capsule RM II	[-]	8	10	12	16	20/22	24
Effective anchorage depth hef [mm] 90 90 125 160 200 Related capsule RM II [-] 10 12 16 16E 24 Table B5.4: Minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature -15 °C) Minimum curing time tcure Minimum curing time tcure -15 to -10 30 h - - 16 h -			resin caps	ule RM II to	o the fiscl	ner interr	al threaded	d ancho
anchorage depthhef[Imm]9090125160200Related capsule RM II[-]10121616E24Table B5.4: Minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature -15 °C)Temperature in the ancoring base [°C]Minimum curing time toure-15 to -10 -10 30 h> -10 to -5 16 h> -5 to 0 10 h> 0 to +5 45 min> +5 to +10 30 min> +10 to +20 20 min> +20 to +30 5 min	Internal threaded ancho	or RG M I	M8	M10	м	12	M16	M20
Table B5.4: Minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature -15 °C)Temperature in the ancoring base $[°C]$ Minimum curing time tcure-15to-10-15to-10-10to-5-5to0>-516 h>-545 min>+5to+5to+10>+50>+1030 min>+205 min		h _{ef} [mm]	90	90	1:	25	160	200
$\begin{array}{c c} \hline & & & \\ & & & \\ & & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \hline$	Related capsule RM II	[-]	10	12	1	6	16E	24
> -10 to -5 16 h > -5 to 0 10 h > 0 to $+5$ 45 min > $+5$ to $+10$ 30 min > $+10$ to $+20$ 20 min > $+20$ to $+30$ 5 min		mum curing	g time				not fall below t	the
> -5 to 0 10 h > 0 to $+5$ 45 min > $+5$ to $+10$ 30 min > $+10$ to $+20$ 20 min > $+20$ to $+30$ 5 min	(Durir listed Temperature in the ancoring base			nimal capsule	e temperatur	re -15 °C)		
> 0 to $+5$ 45 min > $+5$ to $+10$ 30 min > $+10$ to $+20$ 20 min > $+20$ to $+30$ 5 min	(Durir listed Temperature in the ancoring base [°C]			nimal capsule	e temperatur mum curing t _{cure}	re -15 °C)		
> +5 to +10 30 min > +10 to +20 20 min > +20 to +30 5 min	(Durin listed Temperature in the ancoring base [°C] -15 to -10 > -10 to -5			nimal capsule	e temperatur mum curing t _{cure} 30 h 16 h	re -15 °C)		
> +20 to +30 5 min	(Durin listed Temperature in the ancoring base [°C] -15 to -10 > -10 to -5 > -5 to 0			nimal capsule	e temperatur mum curing t _{cure} 30 h 16 h 10 h	re -15 °C)		
	(Durin listed Temperature in the ancoring base [°C] -15 to -10 > -10 to -5 > -5 to 0 > 0 to +5			nimal capsule	e temperatur mum curing t _{cure} 30 h 16 h 16 h 10 h 45 min	re -15 °C)		
> +30 to +40 3 min	(Durin listed Temperature in the ancoring base [°C] -15 to $-10> -10$ to $-5> -5$ to $0> 0$ to $+5> +5$ to $+10$			nimal capsule	e temperatur mum curing t _{cure} 30 h 16 h 16 h 10 h 45 min 30 min	re -15 °C)		
	(Durin listed) Temperature in the ancoring base [°C] -15 to $-10> -10$ to $-5> -5$ to $0> -5$ to $0> 0$ to $+5> +5$ to $+10> +10$ to $+20> +20$ to $+30$			nimal capsule	e temperatur mum curing t _{cure} 30 h 16 h 16 h 10 h 45 min 30 min 20 min 5 min	re -15 °C)		
fischer RM II	(Durin listed Temperature in the ancoring base [°C] -15 to $-10> -10$ to $-5> -5$ to $0> 0$ to $+5> -5$ to $+10> +5$ to $+10> +10$ to $+20> +20$ to $+30$			nimal capsule	e temperatur mum curing t _{cure} 30 h 16 h 16 h 10 h 45 min 30 min 20 min 5 min	re -15 °C)		

Anch	or rod RG M				M8	M10	M12	M16	M20	M24	
Beari	ng capacity under tens	ion load	d, ste	el fai	lure ³⁾		1				
<i>w</i>			4.8		15(13)	23(21)	33	63	98	141	
ISTIC N _{Rk,s}	Steel zinc plated	~	5.8		19(17)	29(27)	43	79	123	177	
Ce l	1999-9455 - Lun Control S, Safernia B, Angola H, Collega B, Robel A, Control H, Robel	Property class	8.8		29(27)	47(43)	68	126	196	282	
Characteristic resistance N _{Rk} ,	Stainless steel R and	ropert class	50	[kN]	19	29	43	79	123	177	
sist	high corrosion	с.	70		26	41	59	110	172	247	
و ر	resistant steel HCR		80		30	47	68	126	196	282	
artia	al factors ¹⁾					II					
			4.8				1,	50			
IOI:	Steel zinc plated	>	5.8				1,	50			
ial tac γ _{Ms,N}		ropert class	8.8				1,	50			
Tial , ∭	Stainless steel R and	Property class	50	[-]			2,	86			
Partial factor Y _{Ms,N}	high corrosion	ш	70				1,50 ²⁾	/ 1,87			
	resistant steel HCR		80				1,	60			
3eari	ng capacity under shea	r load,	steel	failu	re ³⁾						
vitho	out lever arm										
o ×			4.8		9(8)	14(13)	20	38	59	85	
Characteristic Characteristic Steel zinc plated Stainless steel R and high corrosion resistant steel HCR	Steel zinc plated	₹	5.8	[kN]	11(10)	17(16)	25	47	74	106	
		ropert class	8.8		15(13)	23(21)	34	63	98	141	
	Stainless steel R and	Property class	50	[[[]]]	9	15	21	39	61	89	
		70		13	20	30	55	86	124		
Ψ	resistant steel HCR		80		15	23	34	63	98	141	
	ity factor		k 7	[-]			1	,0			
	ever arm				N				1		
act. e M ^{0_{Rk,s}}			4.8		15(13)	30(27)	52	133	259	448	
act. e M ^o	Steel zinc plated	₽	5.8	• •	19(16)	37(33)	65	166	324	560	
arac		Property class	8.8	[Nm]	30(26)	60(53)	105	266	519	896	
Chara	Stainless steel R and	o D	50		19	37	65	166	324	560	
Char esistanc	high corrosion resistant steel HCR		70		26	52	92	232	454	784	
-			80		30	60	105	266	519	896	
artia	al factors ¹⁾		1.0					0.5			
Z	Ota al -in a relate d		4.8				2	25			
<pre>acto</pre>	Steel zinc plated	Ę.	5.8					25			
ial fa ∑ ^{Ms,∨}		Property class	8.8 50	[-]				25			
Partial factor Y ^{Ms,V}	Stainless steel R and	D D D			2,38 1,25 ²⁾ / 1,56						
ר	high corrosion resistant steel HCR		70 80					33			
²⁾ C ³⁾ V	n absence of other nation only for fischer RG M mac alues in brackets are vali alvanised standard threa	le of hig id for un	ations h cor dersi	rosior zed fis	scher anch	or rods RG	M with sm	aller stress	area A _s for	hot dip	
3	her RM II				,						

Internal threaded	l anch	or RG M I			M8	M10	M12	M16	M20	
Bearing capacity	unde	r tension lo	oad, ste	el fail	ure					
		Property	5.8		19	29	43	79	123	
Characteristic	NI	class	8.8	[kN]	29	47	68	108	179	
bearing capacity with screw	N _{Rk,s}	Property	R		26	41	59	110	172	
		class 70	HCR		26	41	59	110	172	
Partial safety fac	tors ¹⁾									
		Property	5.8				1,50			
Partial safety	What he	class	8.8	[-]	1,50					
factor	γMs,N	Property	R	[]]	1,87					
Boaring canacity up		class 70	HCR				1,87			
Bearing capacity		r shear loa	d, steel	failur	е					
without lever arm	า									
Characteristic bearing capacity V ⁰ with screw		Property	5.8		9,2	14,5	21,1	39,2	62,0	
	V ⁰ Rk,s	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0	
	V IXK,5	Property	R	[]	12,8	20,3	29,5	54,8	86,0	
		class 70	HCR	_	12,8	20,3	29,5	54,8	86,0	
Ductility factor			k 7	[-]			1,0			
with lever arm										
Characteristic		Property	5.8		20	39	68	173	337	
bending moment	M ⁰ RKs	class	8.8	[Nm]	30	60	105	266	519	
with screw	IVI IXK,S	Property	R	[]	26	52	92	232	454	
20 50		class 70	HCR		26	52	92	232	454	
Partial safety fac	tors ¹⁾									
		Property	5.8				1,25			
Partial safety	γMs,V	class	8.8	[-]			1,25			
factor	11013, V	Property	R				1,56			
		class 70	HCR				1,56			
¹⁾ In absence of	other	national reg	ulations	;						

fischer RM II Performances Annex C 2 Characteristic values for steel failure under tension / shear load of fischer internal Annex C 2

Table C3.1:	Characteristic	value	es for	concrete	failure ur	nder tensi	on / she	ar load				
Size						Alls	izes					
Tension load												
Installation factor	or	γinst	[-]			See annex	C 4 to C	5				
Factors for the	e compressive stren	gth of	conci	rete > C20	/25							
	C25/30					1,	02					
Increasing	C30/37			1,04								
factor for τ_{Rk}	C35/45)1(r 1			1,	07					
τ _{Rk (X/Y)} =	C40/50	Ψ_{c}	[-]			1,	08					
Ψc ·TRk (C20/25)	C45/55					1,	09					
φο (in((020/20))	C50/60					1,	10					
Splitting failur	е											
	h / h _{ef} ≥ 2,0					1,0	h _{ef}					
Edge distance	2,0 > h / h _{e f} > 1,3	Ccr,sp	[mm]			4,6 h _{ef}	- 1,8 h					
	h / h _{ef} ≤ 1,3					2,20	3 h _{ef}	M20 M2 20 24				
Spacing		Scr,sp				2 c	cr,sp					
Concrete cone	e failure											
Uncracked con	crete	$\mathbf{k}_{ucr,N}$	[-]			11	,0					
Cracked concre	ete	k cr,N				7	,7					
Edge distance		Ccr,N	[mm]			1,5	h _{ef}					
Spacing		Scr,N	[]			2 0	cr,N					
Factors for su	stained tension load											
Factor		Ψ^{0}_{sus}	[-]			-	1)					
Shear load												
All installation c	conditions	γinst	[-]			1	,0					
Concrete pry-c	out failure											
Factor for pry-o	out failure	k ₈	[-]			2	,0					
Concrete edge	e failure											
Effective length shear loading	of fastener in	lf	[mm]	for o	d _{nom} ≤ 24 m	m: min (h _{ef} ;	12 d _{nom})					
Calculation dia	ameters											
Size				M8	M10	M12	M16	M20	M24			
fischer anchor r	rods	d		8	10	12	16	20	24			
fischer internal threade	ed anchors RG M I	d _{nom}	[mm]	12	16	18	22	28	_2)			
	nance assessed be not part of the asse	essme	nt									
fischer RM				kanaila (ak				Annex	c C 3			

Combined pullout Calculation diamete Uncracked concre				M8	M10	M12	M16	M20	M24
	and concre	ete cone	failure						A.
Uncracked concre	ər	d	[mm]	8	10	12	16	20	24
	ete			<u></u>		ð		÷	
Characteristic bor	nd resistand	e in un	cracked co	oncrete C	20/25				
Hammer-drilling wit	th standard o	drill bit o	r hollow dri	ll bit (dry a	ind wet con	icrete)			
Tem I: 24 °	C / 40 °C			12,5	12,5	12,5	12,5	12,5	12,5
perature II: 50 °	C / 80 °C	τRk,ucr	[N/mm ²]	12,0	12,0	12,0	12,0	12,0	12,0
range III: 72 °	C / 120 °C			10,5	10,5	10,5	10,5	10,5	10,5
Hammer-drilling wit	th standard o	drill bit o	r hollow dril	l bit (flood	ed hole)				
	C / 40 °C			_1)	_1)	12,5	12,5	12,5	12,5
	C / 80 °C	$ au_{Rk,ucr}$	[N/mm ²]	_1)	_1)	12,0	12,0	12,0	12,0
range III: 72 °	C / 120 °C			_1)	_1)	10,5	10,5	10,5	10,5
Installation factor	S		· ·					•	
Dry and wet concre	ete	1 ()	[-] -			1	,2		
Flooded hole		γinst	<u>[</u>]	_1)	_1)		1	,4	
Cracked concrete			(1) V.						
Characteristic bor									
Hammer-drilling wit	th standard o	drill bit o	<u>r hollow dri</u> l	l bit (dry a	ind wet con	icrete)			
Tem I: 24 °	C / 40 °C			_1)	4,5	4,5	4,5	4,5	4,5
	C / 80 °C	TRk,cr	[N/mm ²]	_1)	4,0	4,0	4,0	4,0	4,0
III: 72°	C / 120 °C			_1)	3,5	3,5	3,5	3,5	3,5
Hammer-drilling wit	th standard o	drill bit o	r hollow dril	l bit (flood	ed hole)				
L: 24 °	C / 40 °C			_1)	_1)	4,5	4,5	4,5	4,5
perature II: 50 °	C / 80 °C	TRk,cr	[N/mm ²]	_1)	_1)	4,0	4,0	4,0	4,0
range III [.] 72 °	C / 120 °C			_1)	_1)	3,5	3,5	3,5	3,5
	s		· ·					×*	
				_1)			1,2		
Installation factors Dry and wet concre Flooded hole	ete	Yinst	[-] -	_1)	_1)			,4	

Table C	25.1		hreade	d ancho			nd concrete r drilled hole		
Internal t	hrea	aded anchors R	G M I		M8	M10	M12	M16	M20
Combine	d pu	llout and concr	ete cone	failure					
Calculatio	on di	ameter	d	[mm]	12	16	18	22	28
Jncrack	ed c	oncrete		ž		÷	÷		
Characte	eristi	c bond resistan	ce in un	cracked c	oncrete C20)/25			
Hammer-	drilli	ng with standard	drill bit o	hollow dr	<u>ill bit (dry an</u>	d wet concret	<u>e)</u>	I	1
Tem- perature range	I:	24 °C / 40 °C			11	11	11	11	11
	II:	50 °C / 80 °C	- τRk,ucr -	[N/mm ²]	10,5	10,5	10,5	10,5	10,5
	111:	72 °C / 120 °C			9,5	9,5	9,5	9,5	9,5
-lammer-	drilli	ng with standard	drill bit o	hollow dr	ill bit (floode	d hole)		1	1
Tem- perature	I:	24 °C / 40 °C			11	11	_1)	11	_1)
	II:	50 °C / 80 °C	τRk,ucr	[N/mm ²]	10,5	10,5	_1)	10,5	_1)
range	III:	72 °C / 120 °C			9,5	9,5	_1)	9,5	_1)
nstallati	on fa	actors				·			
Dry and wet concrete			[-]			1,2	1	1	
-looded h	nole		· γinst	L]	1	,4	_1)	1,4	_1)
Cracked									
		c bond resistan							
Hammer-		ng with standard	drill bit o	r hollow dr					
Tem-	I:	24 °C / 40 °C	÷		4,5	4,5	4,5	4,5	4,5
perature range	II:	50 °C / 80 °C	τRk,cr	[N/mm ²]	4,0	4,0	4,0	4,0	4,0
ange	III:	72 °C / 120 °C			3,5	3,5	3,5	3,5	3,5
-lammer-	drilli	ng with standard	drill bit o	hollow dr	ill bit (flooded	d hole)			
Tem- perature	I:	24 °C / 40 °C		[N/mm ²]	4,5	4,5	_1)	4,5	_1)
	II:	50 °C / 80 °C	TRk,cr		4,0	4,0	_1)	4,0	_1)
range	III:	72 °C / 120 °C			3,5	3,5	_1)	3,5	_1)
nstallati									
Dry and wet concrete		Yinst	[-]	1,2					
Flooded hole ¹⁾ No performance assessed				1	,4	-1)	1,4	_1)	
fischer	RN	1							
	erist	e s ic values for com chors RG M I	bined pu	ll-out and	concrete failu	ure for fischer	internal		ex C 5

Anchor ro	d RG M	M8	M10	M12	M16	M20	M24
Displacem	nent-Factors	for tension lo	ad ¹⁾			•	
Uncracked	d or cracked	concrete; Ter	nperature rang	e I, II, III			
δ _{N0-Factor}	mm/(N/mm²)]-	0,07	0,08	0,09	0,10	0,11	0,12
δN∞-Factor	1111/(14/11111)]	0,13	0,14	0,15	0,17	0,17	0,18
Displacem	nent-Factors	for shear load	2)				
Uncracked	d or cracked	concrete; Ter	nperature rang	e I, II, III			
δ V0-Factor	[mm/kN]	0,18	0,15	0,12	0,09	0,07	0,06
δ∨∞-Factor		0,27	0,22	0,18	0,14	0,11	0,09
¹⁾ Calcula	ation of effectiv	ve displaceme	nt:	²⁾ Calculation	on of effective	displacement:	
$\delta_{N0} = \delta_{N0-Factor} \cdot \tau$ $\delta_{V0} = \delta_{V0-Factor} \cdot V$							
$\delta_{N\infty} = \delta_{I}$	N∞-Factor ⁺ τ			$\delta_{V\infty} = \delta_{V\infty}$	-Factor · V		
(τ: acting bond strength under tension load) (V: acting shear load)							
,	-	-	ion load) for fischer i l			rs RG M I	
Table C6	6.2: Dis	-		nternal threa		rs RG M I M16	M20
Table C6 Internal th anchor RG	6.2: Disp rreaded G M I	placements	for fischer in M10	nternal threa	aded ancho		M20
Table C6 Internal th anchor RG Displacem	6.2: Disp readed 3 M I nent-Factors	olacements M8 for tension lo	for fischer in M10	nternal threa	aded ancho		M20
Table C6 Internal thi anchor RG Displacem Uncracked	6.2: Disp readed 3 M I nent-Factors d or cracked	olacements M8 for tension lo	for fischer in M10 ad ¹⁾	nternal threa M e I, II, III	aded ancho		M20
Table C6 Internal th anchor RG Displacem Uncracked δ _{N0-Factor} [n	6.2: Disp readed 3 M I nent-Factors	olacements M8 for tension lo concrete; Ten	for fischer in M10 ad ¹⁾ nperature rang	nternal threa M e I, II, III 0,	aded ancho	M16	
Table C6 Internal th anchor RG Displacem Uncracked δΝο-Factor δΝ∞-Factor	6.2: Disp readed S M I nent-Factors d or cracked mm/(N/mm ²)]	olacements M8 for tension lo concrete; Ten 0,09	for fischer in M10 ad ¹⁾ nperature rang 0,10 0,15	nternal threa M e I, II, III 0,	aded ancho	M16 0,11	0,19
Table C6 Internal thi anchor RG Displacem Uncracked δ _{N0-Factor} [n δ _{N∞-Factor}	6.2: Disp readed 3 M I hent-Factors d or cracked mm/(N/mm ²)] hent-Factors	olacements M8 for tension lo concrete; Ten 0,09 0,13 for shear load	for fischer in M10 ad ¹⁾ nperature rang 0,10 0,15	nternal threa M e I, II, III 0, 0,	aded ancho	M16 0,11	0,19
Table C6 Internal thi anchor RG Displacem Uncracked δ _{N0-Factor} [n δ _{N∞-Factor}	6.2: Disp readed S M I nent-Factors d or cracked mm/(N/mm ²)] nent-Factors d or cracked	olacements M8 for tension lo concrete; Ten 0,09 0,13 for shear load	for fischer in M10 ad ¹⁾ nperature rang 0,10 0,15	nternal threa M e I, II, III 0, 0, e I, II, III	aded ancho	M16 0,11	0,19
Table C6 Internal thi anchor RG Displacem Uncracked δNo-Factor [n Displacem Uncracked δνo-Factor	6.2: Disp readed 3 M I hent-Factors d or cracked mm/(N/mm ²)] hent-Factors	olacements M8 for tension lo concrete; Ten 0,09 0,13 for shear load concrete; Ten	for fischer in M10 ad ¹⁾ nperature rang 0,10 0,15 12) nperature rang	nternal threa M e I, II, III 0, 0, e I, II, III	aded ancho 12 10 15 08	M16 0,11 0,17	0,19 0,19
Table C6 Internal the anchor RG Displacem Uncracked δN∞-Factor [n Displacem Uncracked δV0-Factor δV∞-Factor	6.2: Disp readed 5 M I nent-Factors d or cracked mm/(N/mm ²)] nent-Factors d or cracked [mm/kN]	olacements M8 for tension lo concrete; Ten 0,09 0,13 for shear load concrete; Ten 0,12	for fischer in M10 ad ¹⁾ nperature rang 0,10 0,15 12) nperature rang 0,09 0,14	nternal threa M e I, II, III 0, 0, e I, II, III 0, 0, 0,	aded ancho 12 10 15 08 12	M16 0,11 0,17 0,07	0,19 0,19 0,05 0,08
Table C6 Internal the anchor RG Displacem Uncracked SN0-Factor [n Displacem Uncracked SV0-Factor SV∞-Factor 1) Calcula	6.2: Disp readed 5 M I nent-Factors d or cracked mm/(N/mm ²)] nent-Factors d or cracked [mm/kN]	M8 for tension lo concrete; Ten 0,09 0,13 for shear load concrete; Ten 0,12 0,18	for fischer in M10 ad ¹⁾ nperature rang 0,10 0,15 12) nperature rang 0,09 0,14	nternal threa M e I, II, III 0, 0, e I, II, III 0, 0, 2) Calcu	aded ancho 12 10 15 08 12	M16 0,11 0,17 0,07 0,10	0,19 0,19 0,05 0,08
Table C6 Internal the anchor RG Displacem Uncracked δ_{N0} -Factor Displacem Uncracked δ_{N0} -Factor Displacem Uncracked δ_{V0} -Factor δ_{V0} -Factor $\delta_{V\infty}$ -Factor 1) Calcula $\delta_{N0} = \delta_N$	6.2: Disp readed 5 M I nent-Factors d or cracked mm/(N/mm ²)] nent-Factors d or cracked [mm/kN]	M8 for tension lo concrete; Ten 0,09 0,13 for shear load concrete; Ten 0,12 0,18	for fischer in M10 ad ¹⁾ nperature rang 0,10 0,15 12) nperature rang 0,09 0,14	nternal threa Μ e I, II, III 0, 0, e I, II, III 0, 0, 2) Calcu δ _{V0} =	aded ancho 12 10 15 08 12 lation of effect	M16 0,11 0,17 0,07 0,10	0,19 0,19 0,05 0,08

fischer RM II	
Performances Displacements for anchor rods RGM and fischer internal threaded anchors RG M I	Annex C 6