

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-15/0539 of 20 November 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Rebar connection with fischer FIS VL

Systems for post-installed rebar connections with mortar

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

19 pages including 3 annexes which form an integral part of this assessment

EAD 330087-01-0601, Edition 06/2021

ETA-15/0539 issued on 27 August 2015

European Technical Assessment ETA-15/0539

English translation prepared by DIBt

Page 2 of 19 | 20 November 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

2074198.25 8.06.01-350/21

Page 3 of 19 | 20 November 2025

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Rebar connection with injection system FIS VL" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 10 to 25 mm according to Annex A and injection mortar FIS VL are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C1
Characteristic resistance under seismic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z074198.25 8.06.01-350/21

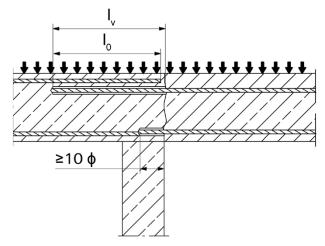
Page 4 of 19 | 20 November 2025

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

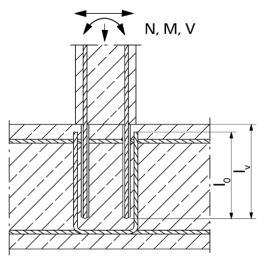
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 20 November 2025 by Deutsches Institut für Bautechnik

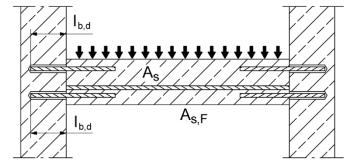
Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Z074198.25 8.06.01-350/21

Installation conditions and application examples reinforcing bars, part 1


Figure A1.1:

Overlap joint with existing reinforcement for rebar connections of slabs and beams


Figure A1.2:

Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed

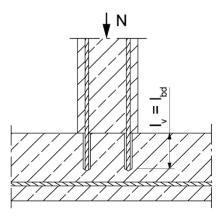
Figure A1.3:

End anchoring of slabs or beams (e.g. designed as simply supported)

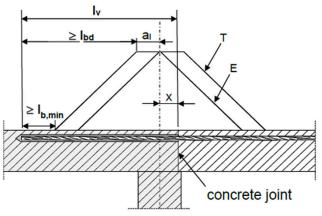
Figures not to scale

Rebar connection with injection system FIS VL

Product description
Installation conditions and application examples reinforcing bars, part 1


Annex A1

Installation conditions and application examples reinforcing bars, part 2


Figure A2.1:

Rebar connection for stressed primarily in compression

Figure A2.2:

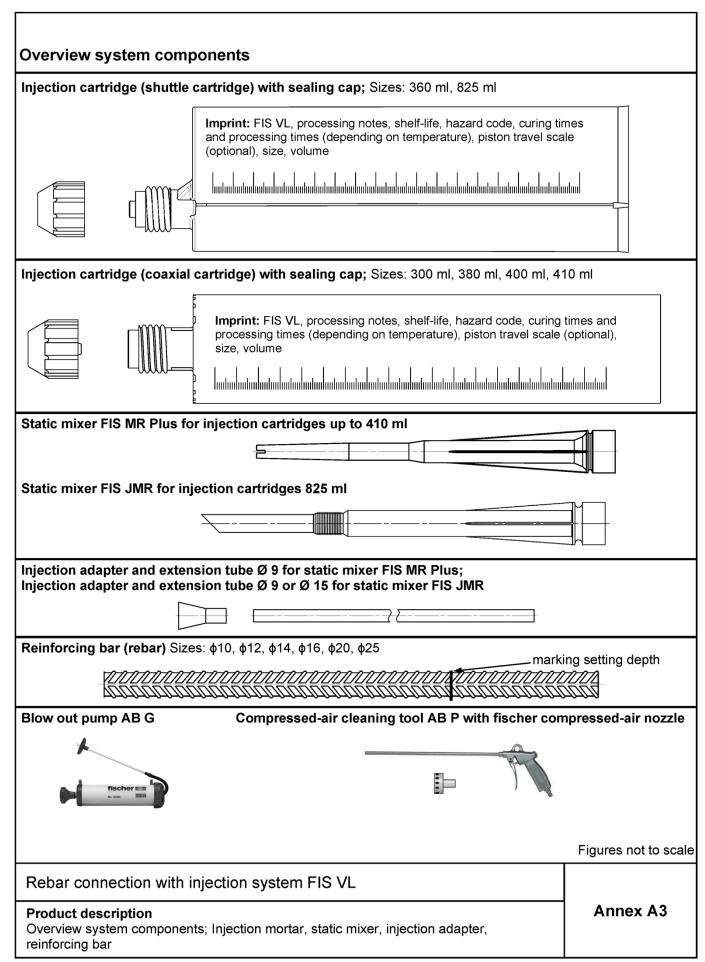
Anchoring of reinforcement to cover the enveloped line of acting tensile force in the bending member

(only post-installed rebar is plotted)

Key to Figure

- T Acting tensile force
- E Envelope of $M_{ed} / z + N_{ed}$ (see EN 1992-1-1:2011)
- x Distance between the theoretical point of support and concrete joint

Note to figure A1.1 to A1.3 and figure A2.1 to A2.2


In the figures no traverse reinforcement is plotted, the transverse reinforcement as required by EN 1992-1-1:2011 shall be present.

The shear transfer between old and new concrete shall be designed according to EN 1992-1-1:2011. Preparation of joints according to **Annex B3** of this document

Figures not to scale

Rebar connection with injection system FIS VL	
Product description Installation conditions and application examples reinforcing bars, part 2	Annex A2

Properties of reinforcing bars (rebar)

Figure A4.1:

- The minimum value of related rib area f_{R,min} according to EN 1992-1-1:2011
- The maximum outer rebar diameter over the ribs shall be:
 - The nominal diameter of the bar with rib ϕ + 2 · h (h ≤ 0,07 · ϕ)
 - o (ϕ : Nominal diameter of the bar; h_{rib} = rib height of the bar)

Table A4.1: Installation conditions for rebars

Nominal diameter of the bar		ф	101) 121)			21)	14	16	20	2!	5 ¹⁾
Nominal drill hole diameter	d ₀		12	14	14	16	18	20	25	30	35
Drill hole depth	h ₀		$h_0 = I_v$								
Effective embedment depth	l _v	[mm]	acc. to static calculation								
Minimum thickness of concrete member	h _{min}		l _v + 30 (≥ 100)								

¹⁾ Both drill hole diameters can be used.

Table A4.2: Materials of rebars

Designation	Reinforcing bar (rebar)
TEN 1997-1-17011 Annex C	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Figures not to scale

Rebar connection with injection system FIS VL

Product description
Properties and materials of reinforcing bars (rebar)

Annex A4

Anchorages subject to		FIS VL with					
	Reinforcing bar						
Hammer drilling or compressed air drilling with standard drill bit	а	II sizes					
Hammer drilling with hollow drill bit (fischer "FHD" & "FHD II", Heller "Duster Expert", Bosch "Speed Clean", Hilti "TE-CD, TE-YD")	Nominal drill bit diameter (d₀) 12 mm to 35 mm						
Use category I1 dry or we concrete	·	II sizes					
Characteristic resistance under static and quasi static loading, in uncracked concrete concrete concrete	all sizes	Tables: C1.1 C1.2 C1.3					
Characteristic resistance under seismic loading	,	_1)					
Installation direction	D3 (downward and horizon	tal and upwards (e.g. overhead))					
Installation temperature	T _{i,min} = 0 °C	to T _{i,max} = +40 °C					
Service Temperature range	-4U (.10 TOU (.	(max. short term temperature +80 °C max long term temperature +50 °C)					
Resistance to fire		_1)					
1) No performance assessed							

Specifications of intended use part 2

Anchorages subject to:

Static and quasi-static loading: reinforcing bar (rebar) size 10 mm to 25 mm;

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A2:2021
- Concrete strength classes C20/25 to C35/45 according to EN 206:2013+A2:2021
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+A2:2021
- Non-carbonated concrete

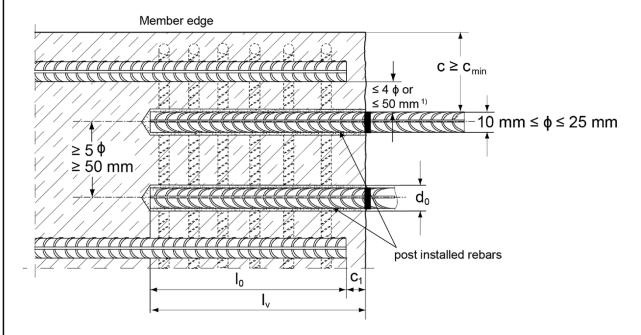
Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2011. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Design:

- The structural design according to EN 1992-1-1:2011, EN 1992-1-2:2011 and Annex B3 and B4 are conducted under responsibility of a designer expierenced in the field of anchorages and concrete works.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- The installation of post-installed rebar shall be done only by suitable trained installer and under Supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for Supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).


Rebar connection with injection system FIS VL	
Intended use Specifications part 2	Annex B2
236849.25	8.06.01-350/2

General construction rules for post-installed rebars

Figure B3.1:

- · Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2011.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

- $^{1)}$ If the clear distance between lapped bars exceeds 4 ϕ or 50 mm then the lap length shall be increased by the difference between the clear bar distance and the smaller 4 ϕ or 50 mm.
 - c concrete cover of post-installed rebar
 - c₁ concrete cover at end-face of existing rebar
 - c_{min} minimum concrete cover according to **Table B4.1** and to EN 1992-1-1:2011,

Section 4.4.1.2

- φ nominal diameter of reinforcing bar
- lo lap length, according to EN 1992-1-1:2011 for static loading
- I_{V} effective embedment depth, $\geq I_{0} + c_{1}$
- do nominal drill bit diameter, see Annex B5

Figures not to scale

Rebar connection with injection system FIS VL

Intended use
General construction rules for post-installed rebars

Annex B3

Table B4.1: Minimum concrete cover c _{min} 1) depending of the drilling method and the drilling tolerance								
Drilling method	nominal diameter of reinforcing	finimum concrete cover c _{min}						
	bar φ [mm]	Without drilling aid [mm]	With drillin	g aid [mm]				
Hammer drilling with standard drill	< 25	30 mm + 0,06 l _v ≥ 2 ф	30 mm + 0,02 l _v ≥ 2 φ					
bit or hollow drill bit	≥ 25	40 mm + 0,06 l _ν ≥ 2 φ	40 mm + 0,02 l _v ≥ 2 φ					
Compressed air	< 25	50 mm + 0,08 l _v	50 mm + 0,02 l _v	Drilling aid				
drilling	≥ 25	60 mm + 0,08 l _v ≥ 2 ф	60 mm + 0,02 l _ν ≥ 2 φ					

¹⁾ See Annex B3, figure B3.1

Note: The minimum concrete cover as specified in EN 1992-1-1:2011 must be observed.

Table B4.2: Dispensers and cartridge sizes corresponding to maximum embedment depth $I_{v,max}$

reinforcing bars (rebar)	Manual dispenser	Accu and pneumatic dispenser (large)		
	< 50	> 500 ml		
φ [mm]	I _{v,max} / I _{e,g}	I _{v,max} / I _{e,ges,max} [mm]		
10		1000		
12	1000	1200		
14	1000	1000 1200		
16		1500		
20	700	1300		
25	700	1000	2000	

Table B4.3: Conditions for use static mixer without an extension tube

Nominal drill hole diameter	d ₀		10	12	14	16	18	20	24	25	30	35
Drill hole depth h₀ by	FIS MR Plus	[mm]	\	90	≤ 120	≤ 140	≤ 150	≤ 160	≤ 190		≤ 210	
using	FIS JMR		ı	-	≤ 90	≤ 160	≤ 180	≤ 190	≤ 2	20	≤ 2	50

Figures not to scale

Rebar connection with injection system FIS VL

Intended use
Minimum concrete cover;
dispenser and cartridge sizes corresponding to maximum embedment depth

Table B5.1: W	Table B5.1: Working times twork and curing times tcure							
Temperature in the anchorage base [°C]	Maximum working time ¹⁾ t _{work} FIS VL	Minimum curing time ²⁾ t _{cure} FIS VL						
0 to 5 3)	13 min	3 h						
> 5 to 10 ³⁾	9 min	90 min						
> 10 to 20	5 min	60 min						
> 20 to 30	4 min	45 min						
> 30 to 40 ⁴⁾	2 min	35 min						

¹⁾ Maximum time from the beginning of the injection to rebar setting and positioning.

Table B5.2: Installation tools for drilling and cleaning the bore hole and injection of the mortar

		Drilling an	Injection			
reinforcing bars (rebar)	Nominal drill bit diameter	Nominal drill bit diameter of cutting edge		Diameter of fischer compressed air nozzle	Diameter of extension tube	Injection adapter
φ [mm]	d ₀ [mm]	d _{cut} [mm]	d₀ [mm]	[mm]	[mm]	[colour]
10 ¹⁾	12	≤ 12,50	12,5	11	11	
	14	≤ 14,50	15	11	9	blue
12 ¹⁾	14	≤ 14,50	15		9	blue
12"	16	≤ 16,50	17	15		red
14	18	≤ 18,50	19			yellow
16	20	≤ 20,55	21,5	10		green
20	25	≤ 25,55	26,5	19	9 or 15	black
25 ¹⁾	30	≤ 30,55	32	20		grey
25"	35	≤ 35,70	37	28		brown

¹⁾ Both drill bit diameters can be used.

Rebar connection with injection system FIS VL

Intended use
Working times and curing times;
Installation tools for drilling and cleaning the bore hole and injection of the mortar

²⁾ For wet concrete the curing time must be doubled.

³⁾ If the temperature in the concrete falls below 10 °C the cartridge must be warmed up to +15 °C.

⁴⁾ If the temperature in the concrete exceeds 30 °C the cartridge must be cooled down to +15 °C up to 20 °C.

Safety regulations

Review the Safety Data Sheet (SDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with mortar FIS VL.

Important: Observe the instructions for use provided with each cartridge.

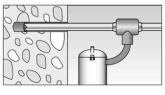
Installation instruction part 1; Installation with FIS VL

Hole drilling

Note: Before drilling, remove carbonized concrete; clean contact areas (see Annex B2) In case of aborted drill holes the drill hole shall be filled with mortar.

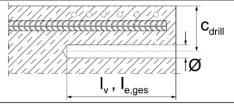
Hammer drilling or compressed air drilling

1a



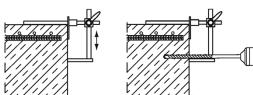
Drill the hole to the required embedment depth using a hammer drill with carbide drill bit set in rotation hammer mode or a pneumatic drill.

Drill bit sizes see Table B5.2.


Hammer drilling with hollow drill bit

Drill the hole to the required embedment depth using a hammer drill with hollow drill bit in rotation hammer mode. Dust extraction conditions see drill hole cleaning Annex B7.

Drill bit sizes see Table B5.2.



Measure and control concrete cover c $(c_{drill} = c + \emptyset / 2)$

Drill parallel to surface edge and to existing rebar.

Where applicable use drilling aid.

2

For holes $I_v > 20$ cm use drilling aid. Three different options can be considered:

- A) drilling aid
- B) Slat or spirit level
- C) Visual check

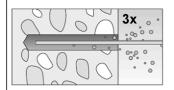
Minimum concrete cover c_{min} see Table B4.1.

Rebar connection with injection system FIS VL

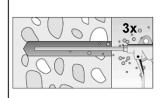
Intended use

Safety regulations; Installation instruction part 1, hole drilling

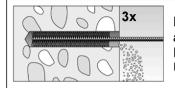
Annex B6



Installation instruction part 2; Installation with FIS VL

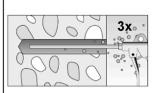

Drill hole cleaning

Hammer or compressed air drilling



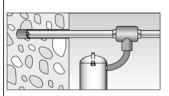
Clean the drill hole: For $d_0 < 18$ mm and depths I_v resp. $I_{e,ges} \le 12 \cdot \phi$ blow out the hole three times by hand.

For $d_0 > 18$ mm and depths I_v resp. $I_{e,ges} > 12 \cdot \varphi$ blow out the hole three times with oil-free compressed air (p ≥ 6 bar). Use suitable compressed-air nozzle (see Table B5.2).


3a

Brush drill hole three times; for drill hole diameters $d_0 \ge 30$ mm attach brush to a power tool and brush hole with a speed of max. 550 revolutions per minute. For deep holes a brush extension is mandatory. Use suitable brushes (see **Table B5.2**).

Clean the drill hole: For $d_0 < 18$ mm and depths I_v resp. $I_{e,ges} \le 12 \cdot \phi$ blow out the hole three times by hand.



For $d_0 > 18$ mm and depths I_v resp. $I_{e,ges} > 12 \cdot \varphi$ blow out the hole three times with oil-free compressed air (p \geq 6 bar) Use suitable compressed-air nozzle (see **Table B5.2**).

Hammer drilling with hollow drill bit

3b

Use a suitable dust extraction system, e. g.

fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power.

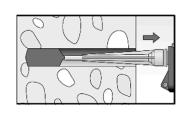
No further drill hole cleaning necessary.

Rebar connection with injection system FIS VL

Intended use

Installation instruction part 2, drill hole cleaning

Annex B7



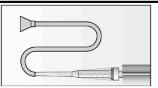
Installation instruction part 3; Installation with FIS VL reinforcing bars (rebar) and cartridge preparation Before use, make asure that the rebar is dry and free of oil or other residue. Mark the embedment depth I_V (e.g. with tape) 4 Insert rebar in borehole, to verify drill hole depth and setting depth I_v resp. I_{e,ges.} Twist off the sealing cap Twist on the static mixer (the spiral in the static mixer must be 5 clearly visible). Place the cartridge into a suitable dispenser. 6 Press out approximately 10 cm of mortar until the resin is 7 permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed. Rebar connection with injection system FIS VL Annex B8 Intended use Installation instruction part 3, reinforcing bars (rebar) and cartridge preparation

Installation instruction part 4; Installation with FIS VL

Injection of the mortar without extension tube

Inject the mortar from the back of the hole towards the front and slowly withdraw the static mixer step by step with each trigger pull. Avoid bubbles.

Fill holes approximately 2/3 full, to ensure that the annular gap between the rebar and the concrete will be completely filled with adhesive over the entire embedment length.


The conditions for mortar injection without extension tube can be found in **Table B4.3**.

8a

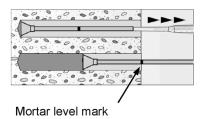
After injecting, release the dispenser. This will prevent further mortar discharge from the static mixer.

Injection of the mortar with extension tube

Assemble static mixer FIS MR Plus or FIS JMR, extension tube and appropriate injection adapter (see **Table B5.2**).

Mortar level mark

Mark the required mortar level I_m and embedment depth I_v resp. $I_{e,ges}$ with tape or marker on the injection extension tube.


a) Estimation:

$$l_m = \frac{1}{2} \cdot l_v \, resp. \, l_m = \frac{1}{2} \cdot l_{e,qes} \, [mm]$$

b) Precise equation for optimum mortar volume:

$$l_m = l_v \, resp. \, l_{e,ges} \, \left((1,2 \, \cdot \, \frac{d_s^2}{d_0^2} - 0,2) \right)$$
[mm]

8b



Insert injection adapter to back of the hole. Begin injection allowing the pressure of the injected adhesive mortar to push the injection adapter towards the front of the hole. Do not actively pull out!

Fill holes approximately 2/3 full, to ensure that the annular gap between the rebar and the concrete will be completely filled with adhesive over the embedment length.

When using an injection adapter continue injection until the mortar level mark $I_{\mbox{\scriptsize m}}$ becomes visible.

Maximum embedment depth see Table B4.2.

After injecting, release the dispenser. This will prevent further mortar discharge from static mixer.

Rebar connection with injection system FIS VL

Intended use

Installation instruction part 4, mortar injection

Annex B9

Installation instruction part 5; Installation with FIS VL Insert rebar Insert the rebar slowly twisted into the borehole until the embedment mark is reached. 9 Recommendation: Rotation back and forth of the reinforcement bar makes pushing easy. For overhead installation, support the rebar and secure it from falling till mortar 10 started to harden, e.g. using wedges. After installing the rebar the annular gap must be completely filled with mortar. Proper installation Desired embedment depth is reached lv, resp. le,ges: 11 embedment mark at concrete surface Excess mortar flows out of the borehole after the rebar has been fully inserted up to the embedment mark. Observe the working time "twork" (see Table B5.1), which varies according to temperature of base material. Minor adjustments to the rebar position may be performed during the working time 12 Full load may be applied only after the curing time "tcure" has elapsed (see Table B5.1). Rebar connection with injection system FIS VL **Annex B10** Intended use Installation instruction part 5, insert rebar

Minimum anchorage length and minimum lap length

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1:2011 shall be multiplied by the relevant amplification factor α_{lb} according to **Table C1.1.**

Table C1.1: Amplification factor α_{lb} related to concrete strength class and drilling method

Hammer drilling, hollow drilling and compressed air drilling					
Rebar	Amplification factor α _{lb}				
	Concrete strength class				
φ [mm]	C20/25	C25/30	C30/37	C35/45	
10 to 25	1,0				

Table C1.2: Bond efficiency factor k_b related to concrete strength class and drilling method

Hammer drilling, hollow drilling and compressed air drilling							
Rebar	Bond efficiency factor k₀						
	Concrete strength class						
φ [mm]	C20/25	C25/30	C30/37	C35/45			

10 to 25 1,0

Table C1.3: Design values of the bond strength f_{bd,PIR} in N/mm² related to concrete strength class and drilling method for good bond conditions

 $f_{bd,PIR} = k_b \cdot f_{bd}$

f_{bd}: Design value of the bond strength in N/mm² considering the concrete strength classes and

the rebar diameter for good bond condition (for all other bond conditions multiply the values

by $\eta_1 = 0.7$)

and recommended partial factor γ_c = 1,5 according to EN 1992-1-1: 2011

k_b: Bond efficiency factor according to **Table C1.2**

Hammer drilling, hollow drilling and compressed air drilling

Rebar φ [mm]	Bond strength f _{bd,PIR} [N/mm²]				
	Concrete strength class				
	C20/25	C25/30	C30/37	C35/45	
10 to 25	2,3	2,7	3,0	3,4	

Rebar connection with injection system FIS VL

Performance
Amplification factor α_{lb} , bond efficiency factor k_b , design values of the bond strength $f_{bd,PIR}$