



## European Technical Assessment

ETA-05/0164  
of 16 December 2025

English translation prepared by DIBt - Original version in German language

### General Part

Technical Assessment Body issuing the  
European Technical Assessment:

Trade name of the construction product

Product family  
to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment  
contains

This European Technical Assessment is  
issued in accordance with Regulation (EU)  
No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Highbond-Anchor FHB II

Bonded fasteners and bonded expansion fastners for use  
in concrete

fischerwerke GmbH & Co. KG  
Otto-Hahn-Straße 15  
79211 Denzlingen  
GERMANY

fischerwerke

37 pages including 3 annexes which form an integral part  
of this assessment

EAD 330499-02-0601

ETA-05/0164 issued on 14 December 2017

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

## Specific Part

### 1 Technical description of the product

The fischer Highbond-Anchor FHB II is a torque controlled bonded fastener consisting of a mortar cartridge with mortar fischer FIS HB or fischer mortar capsule FHB II-P(F) and an anchor rod FHB II (Inject) – A L or FHB II (Inject) – A S with hexagon nut and washer.

The glass capsule is set into a drilled hole in the concrete. The special formed anchor rod is driven into the glass capsule by machine with simultaneous hammering and turning. For the injection system the anchor rod is placed into a drilled hole filled with injection mortar. The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A

### 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 and / or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                 | Performance             |
|------------------------------------------------------------------------------------------|-------------------------|
| Characteristic resistance to tension load (static and quasi-static loading)              | See Annex C1 to C8      |
| Characteristic resistance to shear load (static and quasi-static loading)                | See Annex C1 to C4      |
| Displacements under short-term and long-term loading                                     | See Annex C9 to C11     |
| Characteristic resistance and displacements for seismic performance categories C1 and C2 | No performance assessed |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance             |
|--------------------------|-------------------------|
| Reaction to fire         | Class A1                |
| Resistance to fire       | No performance assessed |

#### 3.3 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |

**4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base**

In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

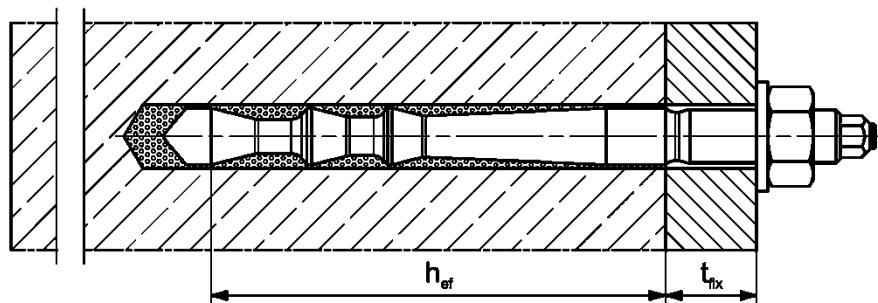
**5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document**

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

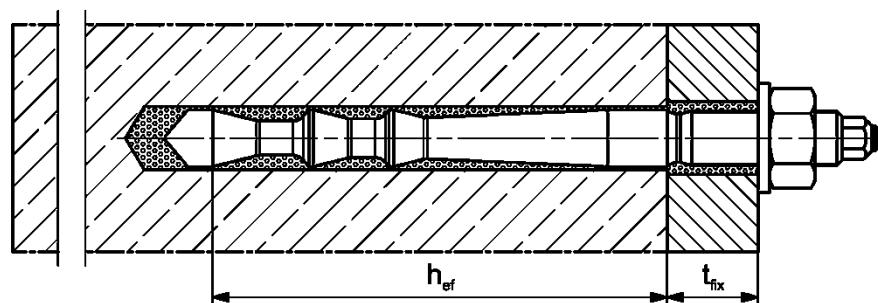
The following standards and documents are referred to in this European Technical Assessment:

|                              |                                                                                                                                                                                   |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EN 10088-1:2023              | Stainless steels - Part 1: List of stainless steels                                                                                                                               |
| EN 1993-1-4:2006 + A1:2015   | Eurocode 3: Design of steel structures - Part 1-4: General rules - Supplementary rules for stainless steels                                                                       |
| EN ISO 898-1:2013            | Mechanical properties of fasteners made of carbon steel and alloy steel- Part 1: Bolts, screws and studs with specified property classes- Coarse thread and fine pitch thread     |
| EN ISO 898-2:2022            | Fasteners – Mechanical properties of fasteners made of carbon steel alloy steel – Part 2: Nuts with specified property classes (ISO 898-2:2022)                                   |
| EN ISO 4042:2022             | Fastener- Electroplated coating systems                                                                                                                                           |
| EN ISO 10684-:2004 + AC:2009 | Fasteners - Hot dip galvanized coatings (ISO 10684:2004+Cor.1:2008)                                                                                                               |
| EN ISO 3506-1:2020           | Fasteners – Mechanical properties of corrosion-resistant stainless steel fasteners – Part 1: Bolts, screws and studs with specifies grades and property classes (ISO 3506-1:2020) |
| EN ISO 3506-2:2020           | Fasteners – Mechanical properties of corrosion-resistant stainless steel fasteners – Part 2: Nuts with specified grades and property classes (ISO 3506-2:2020)                    |
| EN 1992-1-1:2023             | Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings                                                                                       |
| EN 206:2013 + A2:2021        | Concrete - Specification, performance, production and conformity                                                                                                                  |
| EN 1992-4:2018               | Eurocode 2: Design of concrete structures - Part 4: Design of fastenings for use in concrete                                                                                      |
| DIN 976-1:2016               | Mechanische Verbindungselemente - Gewindegelenke - Teil 1: Metrisches Gewinde                                                                                                     |
| EN 10204:2004                | Metallic products – Types of inspection documents                                                                                                                                 |
| EOTA TR 055:2018-02          | Design of fastenings based on EAD 330232-00-0601, EAD 330499-00-0601 and EAD 330747-00-0601                                                                                       |
| EOTA TR 082:2024-04          | Design of bonded fasteners in concrete under fire conditions,                                                                                                                     |

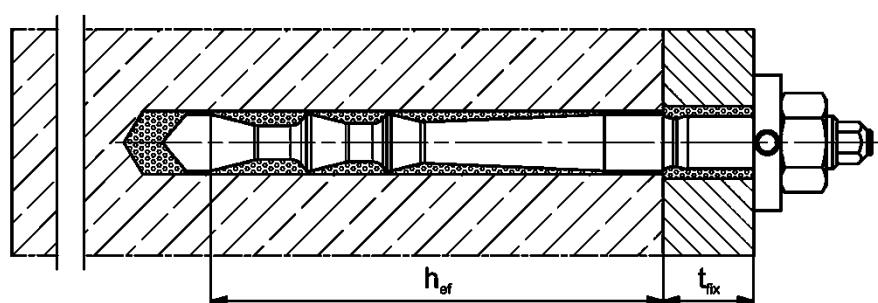
Issued in Berlin on 16 December 2025 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock  
Head of Section

*beglaubigt:*  
Stiller


## Installation conditions part 1

### fischer Highbond - Anchor FHB II - A L


#### Pre-positioned installation



#### Push through installation not with mortar capsule (annular gap filled with mortar)



#### Pre-positioned or push through installation with subsequently pressed filling disk (annular gap filled with mortar)



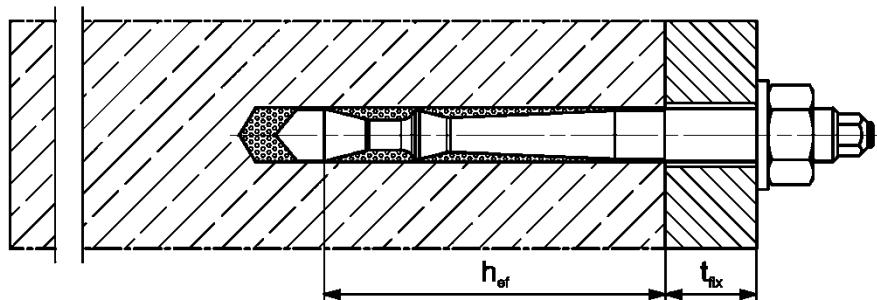
Figures not to scale

$h_{ef}$  = effective anchorage depth

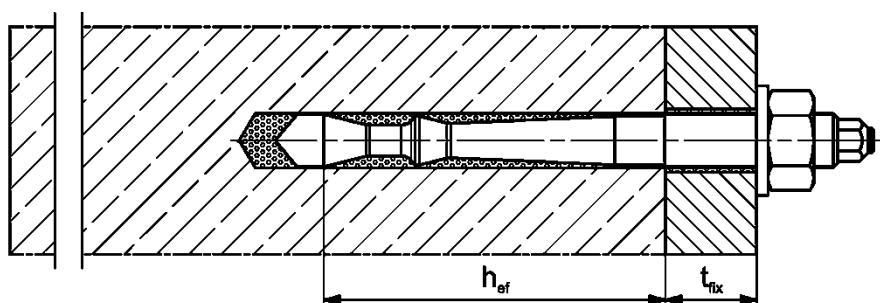
$t_{fix}$  = thickness of fixture

fischer Highbond-Anchor FHB II

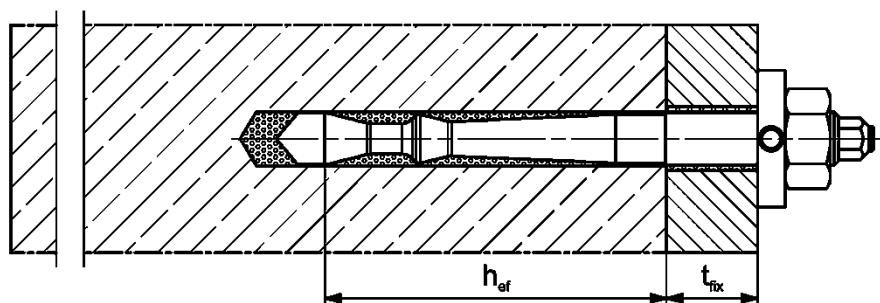
Product description


Installation conditions part 1; FHB II – A L

Annex A1


## Installation conditions part 2

### fischer Highbond - Anchor FHB II - A S


#### Pre-positioned installation



#### Push through installation



#### Pre-positioned or push through installation with subsequently pressed filling disk (annular gap filled with mortar)

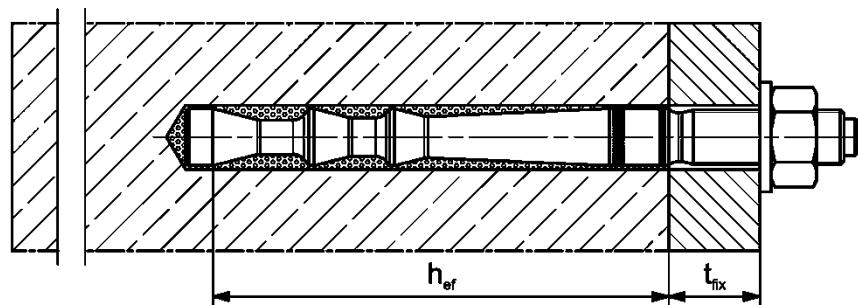


Figures not to scale

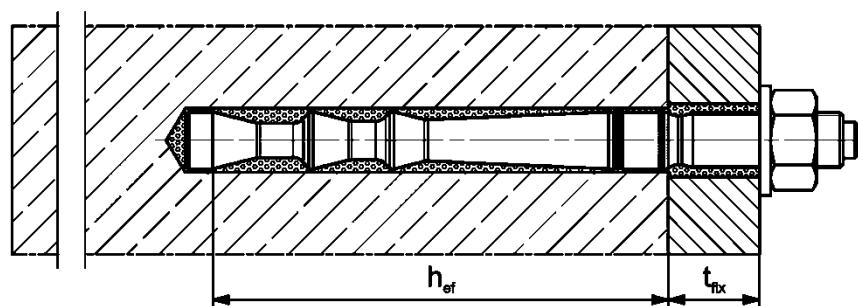
$h_{ef}$  = effective anchorage depth

$t_{fix}$  = thickness of fixture

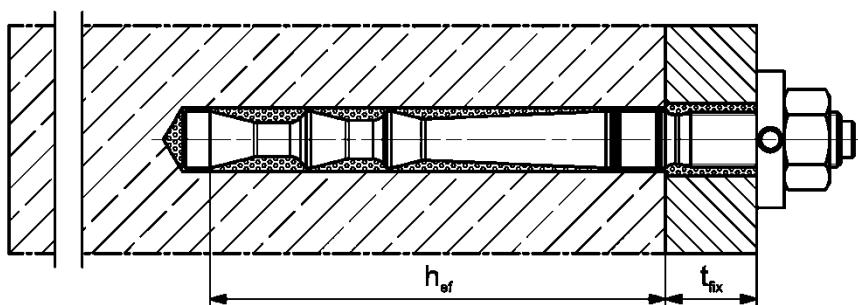
fischer Highbond-Anchor FHB II


**Product description**  
Installation conditions part 2; FHB II – A S

**Annex A2**


### Installation conditions part 3

#### fischer Highbond - Anchor FHB II Inject - A L


##### Pre-positioned installation



##### Push through installation not with mortar capsule (annular gap filled with mortar)



##### Pre-positioned or push through installation with subsequently pressed filling disk (annular gap filled with mortar)



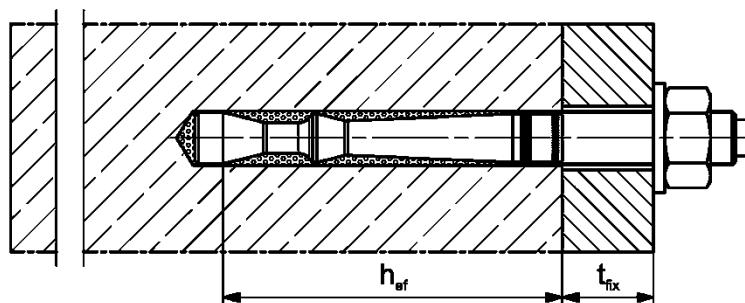
Figures not to scale

$h_{ef}$  = effective anchorage depth

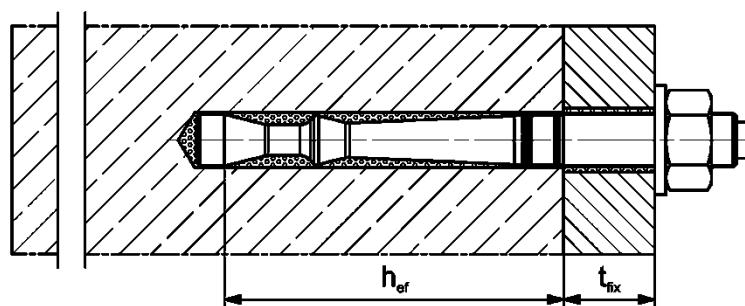
$t_{fix}$  = thickness of fixture

fischer Highbond-Anchor FHB II

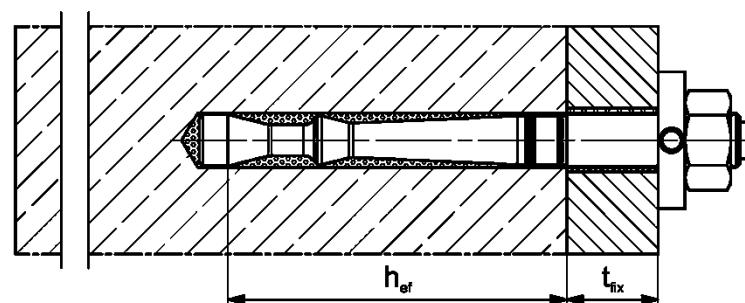
Product description


Installation conditions part 1; FHB II Inject – A L

Annex A3


## Installation conditions part 4

### fischer Highbond - Anchor FHB II Inject - A S


#### Pre-positioned installation



#### Push through installation



#### Pre-positioned or push through installation with subsequently pressed filling disk (annular gap filled with mortar)

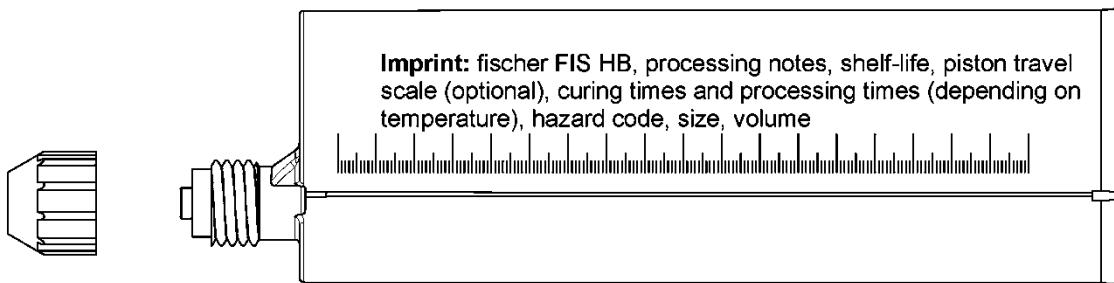


Figures not to scale

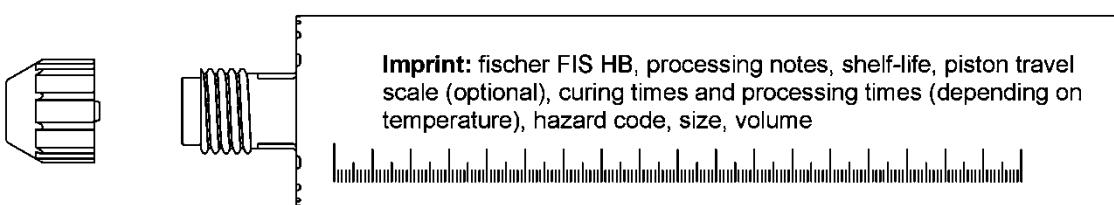
$h_{ef}$  = effective anchorage depth

$t_{fix}$  = thickness of fixture

fischer Highbond-Anchor FHB II


Product description

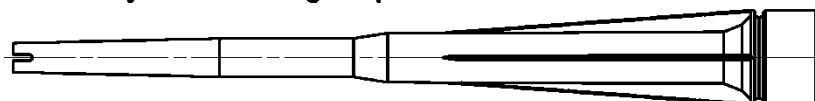
Installation conditions part 2; FHB II Inject – A S


Annex A4

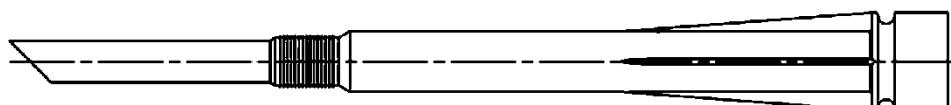
## Overview system components part 1

### Mortar cartridge (shuttle cartridge) with sealing cap; Size: 360 ml, 825 ml

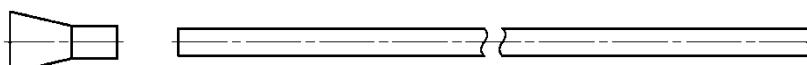



### Mortar cartridge (coaxial cartridge) with sealing cap; Size: 150 ml, 300 ml, 380 ml, 400 ml, 410 ml




### Mortar capsule




### Static mixer FIS MR Plus for injection cartridges up to 410 ml

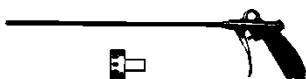


### Static mixer FIS JMR for injection cartridges with 825 ml



### Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS JMR




### Cleaning brush BS



### Blow-out pump ABG or



### ABP with cleaning nozzle

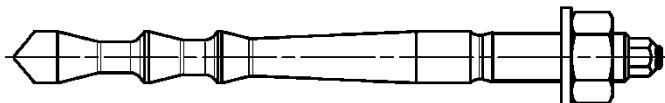


Figures not to scale

### fischer Highbond-Anchor FHB II

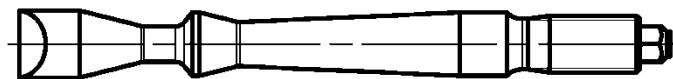
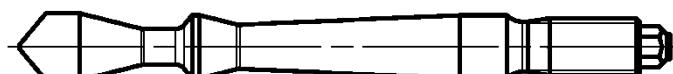
#### Product description

Overview system components part 1;  
cartridges / static mixer / accessories



#### Annex A5

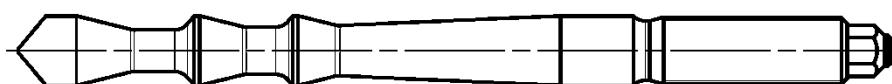
## Overview system components part 2

**fischer Highbond - Anchor rod; pre-assembled condition**



**fischer Highbond - Anchor rod FHB II - A L**

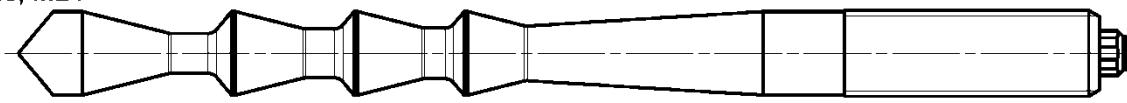
**fischer Highbond - Anchor rod FHB II - A S**




**Anchor rod FHB II - A L**

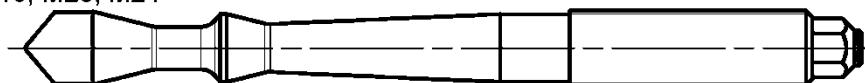
Size: M8



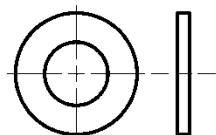

**Anchor rod FHB II - A L**

Size: M10, M12, M16

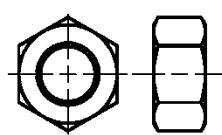



**Anchor rod FHB II - A L**

Size: M20, M24

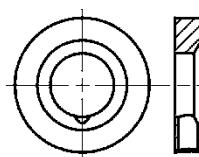



**Anchor rod FHB II - A S**

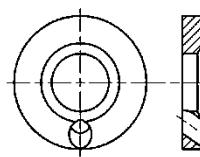

Size: M10, M12, M16, M20, M24



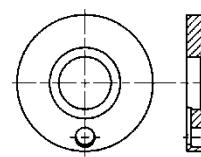
**Washer**




**Hexagon nut**




**fischer filling disk FFD**


radial



angular



axial

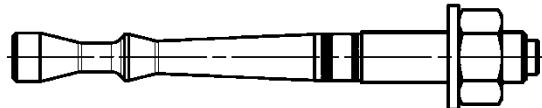


Figures not to scale

**fischer Highbond-Anchor FHB II**

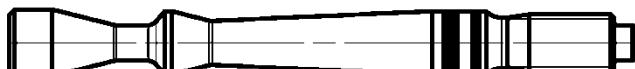
**Product description**

Overview system components part 2; steel components


**Annex A6**

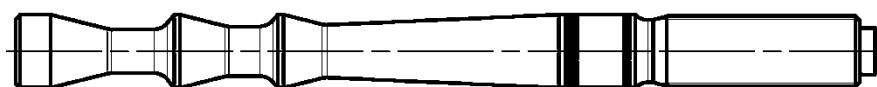
### Overview system components part 3

**fischer Highbond - Anchor rod; pre-assembled condition**


**fischer Highbond - Anchor rod FHB II Inject - A L**

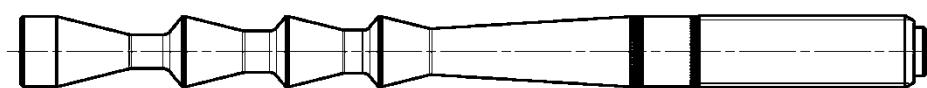
**fischer Highbond - Anchor rod FHB II Inject - A S**




**Anchor rod FHB II Inject - A L**

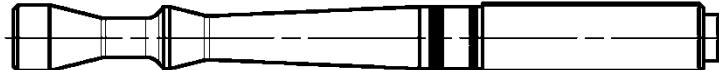
Size: M8




**Anchor rod FHB II Inject - A L**

Size: M10, M12, M16

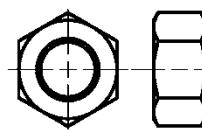



**Anchor rod FHB II Inject - A L**

Size: M20, M24

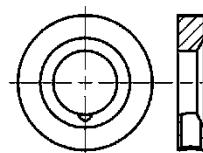


**Anchor rod FHB II Inject - A S**

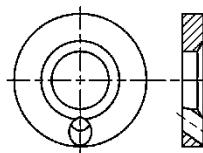

Size: M10, M12, M16, M20, M24



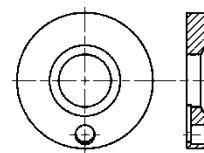
**Washer**




**Hexagon nut**




**fischer filling disk FFD**


radial



angular



axial



Figures not to scale

**fischer Highbond-Anchor FHB II**

**Product description**

Overview system components part 3; steel components

**Annex A7**

**Table A8.1: Materials**

| Part                                    | Designation                                                                                                     | Material                                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                 |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                       | Mortar cartridge                                                                                                | Mortar, hardener, filler                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                 |
| 2                                       | Mortar capsule                                                                                                  | Mortar, hardener, filler                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                 |
| Steel grade                             |                                                                                                                 | Steel                                                                                                                                                                 | Stainless steel R                                                                                                                                                                                             | High corrosion resistant steel HCR                                                                                                              |
|                                         |                                                                                                                 | zinc plated                                                                                                                                                           | acc. to EN 10088-1<br>Corrosion resistance class CRC III acc. to EN 1993-1-4                                                                                                                                  | acc. to EN 10088-1<br>Corrosion resistance class CRC V acc. to EN 1993-1-4                                                                      |
| 3                                       | fischer Highbond-Anchor rod<br>FHB II - A L or<br>FHB II - A S<br>FHB II - A L Inject or<br>FHB II - A S Inject | Property class 8.8;<br>EN ISO 898-1<br>zinc plated $\geq 5 \mu\text{m}$ ,<br>EN ISO 4042<br>$f_{uk} \leq 1000 \text{ N/mm}^2$<br>$A_s > 12 \%$<br>fracture elongation | Property class 80<br>EN ISO 3506-1<br>1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362;<br>1.4062, 1.4662, 1.4462<br>EN 10088-1<br>$f_{uk} \leq 1000 \text{ N/mm}^2$<br>$A_s > 12 \%$<br>fracture elongation | Property class 80<br>EN ISO 3506-1<br>1.4565; 1.4529<br>EN 10088-1<br>$f_{uk} \leq 1000 \text{ N/mm}^2$<br>$A_s > 12 \%$<br>fracture elongation |
| 4                                       | Washer<br>ISO 7089:2000                                                                                         | zinc plated $\geq 5 \mu\text{m}$<br>EN ISO 4042                                                                                                                       | 1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362;<br>EN 10088-1:2014                                                                                                                                      | 1.4565; 1.4529<br>EN 10088-1                                                                                                                    |
| 5                                       | Hexagon nut                                                                                                     | Property class 8;<br>EN ISO 898-2<br>zinc plated $\geq 5 \mu\text{m}$ ,<br>ISO 4042                                                                                   | Property class 70 or 80<br>EN ISO 3506-2<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362;<br>EN 10088-1                                                                                               | Property class 70 or 80<br>EN ISO 3506-2<br>1.4565; 1.4529<br>EN 10088-1                                                                        |
| 6                                       | fischer filling disk FFD                                                                                        | zinc plated $\geq 5 \mu\text{m}$ ,<br>EN ISO 4042                                                                                                                     | 1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362;<br>EN 10088-1                                                                                                                                           | 1.4565; 1.4529<br>EN 10088-1                                                                                                                    |
| fischer Highbond-Anchor FHB II          |                                                                                                                 |                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                                                                                                 |
| <b>Product description</b><br>Materials |                                                                                                                 |                                                                                                                                                                       | <b>Annex A8</b>                                                                                                                                                                                               |                                                                                                                                                 |

**Specifications of intended use part 1**

**Table B1.1: Overview use and performance categories**

| Anchorage subject to                    |                                                                                   | fischer injection mortar FIS HB or capsule FHB II-P or FHB II-PF with ... |                                                               | fischer injection mortar FIS HB with ...                                                          |                                           |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|
|                                         |                                                                                   | FHB II- A L                                                               | FHB II - A S                                                  | FHB II Inject - A L                                                                               | FHB II Inject - A S                       |  |  |  |  |  |
| Hammer drilling with standard drill bit |  |                                                                           |                                                               | all sizes                                                                                         |                                           |  |  |  |  |  |
| Hammer drilling with hollow drill bit   |  |                                                                           |                                                               | all sizes<br>(fischer "FHD", Heller "Duster Expert", Bosch "Speed-Clean" or Hilti "TE-CD, TE-YD") |                                           |  |  |  |  |  |
| Diamond drilling                        |  | - <sup>1)</sup>                                                           | M16x95, M20x170, M24x170<br>(only with resin capsule allowed) | - <sup>1)</sup>                                                                                   | - <sup>1)</sup>                           |  |  |  |  |  |
| Static or quasi static load, in         | uncracked concrete                                                                | all sizes                                                                 | Tables:<br>C1.1,<br>C3.1,<br>C5.1<br>C9.1                     | Tables:<br>C2.1, C3.1,<br>C6.1, C7.1,<br>C7.2, C8.1,<br>C9.2,<br>C10.1,<br>C11.1,                 | Tables:<br>C1.1,<br>C3.1,<br>C5.1<br>C9.1 |  |  |  |  |  |
|                                         | cracked concrete                                                                  |                                                                           | all sizes                                                     | all sizes                                                                                         |                                           |  |  |  |  |  |
| Installation and use condition          | I1 dry or wet concrete                                                            | all sizes                                                                 |                                                               |                                                                                                   |                                           |  |  |  |  |  |
|                                         | I2 flooded hole                                                                   | all sizes<br>(only with resin capsule allowed)                            |                                                               | - <sup>1)</sup>                                                                                   |                                           |  |  |  |  |  |
| Seismic performance C1 and C2           |                                                                                   | - <sup>1)</sup>                                                           |                                                               | - <sup>1)</sup>                                                                                   |                                           |  |  |  |  |  |
| Installation direction                  | D3 (downwards, horizontal, and upwards (overhead) installation)                   |                                                                           |                                                               |                                                                                                   |                                           |  |  |  |  |  |
| Kind of installation                    | Pre-positioned anchor                                                             | all sizes                                                                 |                                                               | all sizes                                                                                         |                                           |  |  |  |  |  |
|                                         | Push through anchor                                                               | all sizes (only with injection mortar FIS HB allowed)                     |                                                               | all sizes                                                                                         |                                           |  |  |  |  |  |
| Installation temperature                | -5 °C to +40 °C                                                                   |                                                                           |                                                               |                                                                                                   |                                           |  |  |  |  |  |
| Service temperature                     | Temperature range I                                                               | -40 °C to +40 °C                                                          |                                                               | (max. short term temperature +40 °C and max. long term temperature +24 °C)                        |                                           |  |  |  |  |  |
|                                         | Temperature range II                                                              | -40 °C to +80 °C                                                          |                                                               | (max. short term temperature +80 °C and max. long term temperature +50 °C)                        |                                           |  |  |  |  |  |
| 1) no performance assessed              |                                                                                   |                                                                           |                                                               |                                                                                                   |                                           |  |  |  |  |  |
| fischer Highbond-Anchor FHB II          |                                                                                   |                                                                           |                                                               |                                                                                                   |                                           |  |  |  |  |  |
| Intended use<br>Specifications part 1   |                                                                                   |                                                                           |                                                               |                                                                                                   |                                           |  |  |  |  |  |
|                                         |                                                                                   |                                                                           |                                                               |                                                                                                   |                                           |  |  |  |  |  |
| Annex B1                                |                                                                                   |                                                                           |                                                               |                                                                                                   |                                           |  |  |  |  |  |

## Specifications of intended use part 2

### Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibre of strength classes C20/25 to C50/60 according to EN 206.

### Use conditions (Environmental conditions):

- Fastener intended for use in structures subject to dry, internal conditions (all materials).
- For all other conditions according to EN 1993-1-4 corresponding to corrosion resistance classes to **Annex A8 Table A8.1**.

### Design:

- Fastenings are designed in accordance with:  
EN 1992-4 and TR 082 from April 2024.
- The structural design is conducted under responsibility of a designer experienced in the field of anchorages and concrete works.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).

### Installation:

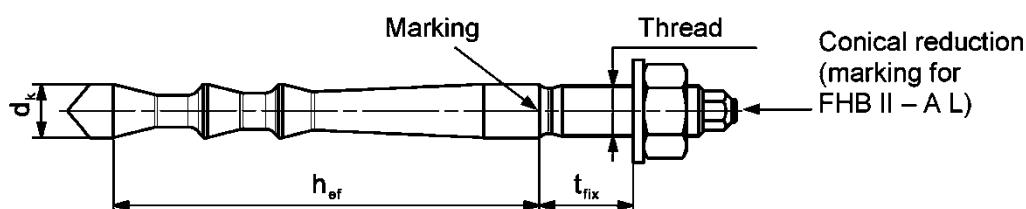
- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Overhead installation is allowed (necessary equipment see installation instruction).

fischer Highbond-Anchor FHB II

Intended use  
Specifications part 2

Annex B2

**Table B3.1: Installation parameters for Highbond - Anchor rods FHB II – A L**

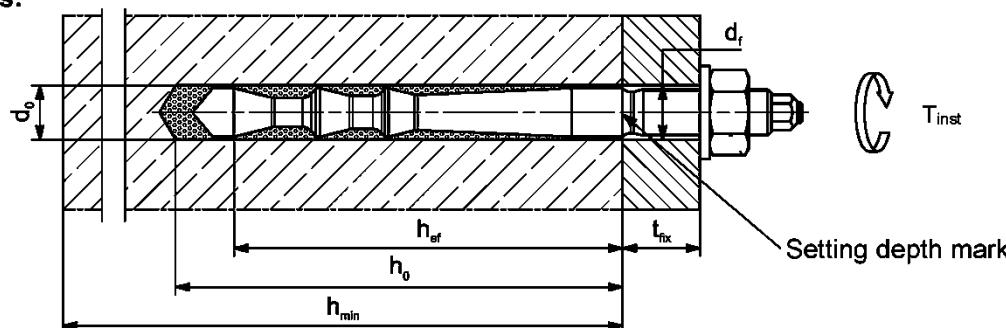

| Anchor rod FHB II – A L                                          | Thread                                             | M8x      | M10x      | M12x       |            | M16x       |            |            | M20x       | M24x       |
|------------------------------------------------------------------|----------------------------------------------------|----------|-----------|------------|------------|------------|------------|------------|------------|------------|
|                                                                  |                                                    | 60       | 95        | 100        | 120        | 125        | 145        | 160        | 210        | 210        |
| Corresponding mortar capsules<br><b>FHB II-P or FHB II-PF</b>    | [ - ]                                              | 8x<br>60 | 10x<br>95 | 12x<br>100 | 12x<br>120 | 16x<br>125 | 16x<br>145 | 16x<br>160 | 20x<br>210 | 24x<br>210 |
| Cone diameter $d_k$                                              |                                                    | 9,4      | 10,7      | 12,5       |            | 16,8       |            |            | 23,0       |            |
| Nominal drill hole diameter $d_0$                                |                                                    | 10       | 12        | 14         |            | 18         |            |            | 25         |            |
| Drill hole depth $h_0$                                           |                                                    | 75       | 110       | 115        | 135        | 140        | 160        | 175        | 235        |            |
| Effective anchorage depth $h_{ef}$                               |                                                    | 60       | 95        | 100        | 120        | 125        | 145        | 160        | 210        |            |
| Minimum spacing and<br>minimum edge distance $s_{min} = c_{min}$ | [mm]                                               | 40       |           | 50         |            | 55         | 60         | 70         | 90         |            |
| Diameter of<br>clearance hole<br>in the fixture <sup>1)</sup>    | pre-positioned<br>anchorage $d_f \leq$             | 9        | 12        | 14         |            | 18         |            |            | 22         | 26         |
| Min. thickness of concrete member                                | push through<br>anchorage <sup>2)</sup> $d_f \leq$ | 11       | 14        | 16         |            | 20         |            |            | 26         |            |
| Min. thickness of concrete member                                | $h_{min}$                                          | 100      |           | 140        |            | 170        | 190        | 220        | 280        |            |
| Installation torque moment                                       | $T_{inst}$ [Nm]                                    | 15       | 20        | 40         |            | 60         |            |            | 100        |            |
| Thickness of fixture                                             | $t_{fix} \leq$                                     | 1500     |           |            |            |            |            |            |            |            |
| fischer filling disk FFD <sup>3)</sup>                           | $\geq d_a$                                         | [mm]     | -         | 26         | 30         | 38         |            |            | 46         | 54         |
|                                                                  | $t_s$                                              |          | -         | 6          | 6          | 7          |            |            | 8          | 10         |

<sup>1)</sup> For larger clearance holes in the fixture see EN1992-4; 6.2.2.2

<sup>2)</sup> Only with mortar cartridge system FIS HB

<sup>3)</sup> Using fischer filling disk FFD reduces  $t_{fix}$  (usable length of the anchor)

#### fischer Highbond – Anchor rod FHB II – A L




**Marking:** work symbol, size of anchor, setting depth. e.g.:  M10x95

For stainless steel additional **A4** or **R**. For high corrosion resistant steel additional **C** or **HCR**.

For high corrosion resistant steel additional marking **C** or **HCR** also on the face side

#### Installation conditions:



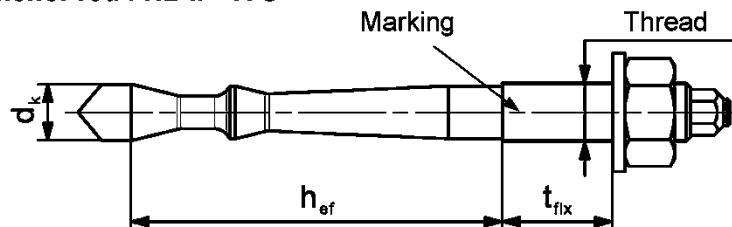
Figures not to scale

#### fischer Highbond-Anchor FHB II

##### Intended use

Installation parameters for Highbond-Anchor rods FHB II-A L

##### Annex B3

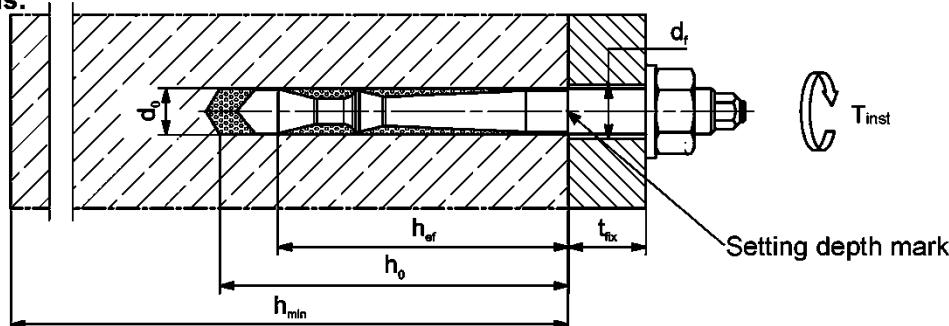

**Table B4.1: Installation parameters for Highbond – Anchor rods FHB II – A S**

| Anchor rod FHB II – A S                                          | Thread                                 | M10x      |           | M12x      | M16x      | M20x       | M24x       |
|------------------------------------------------------------------|----------------------------------------|-----------|-----------|-----------|-----------|------------|------------|
|                                                                  |                                        | 60        | 75        | 75        | 95        | 170        | 170        |
| Corresponding mortar capsules<br>FHB II-P or FHB II-PF           | [ - ]                                  | 10x<br>60 | 10x<br>75 | 12x<br>75 | 16x<br>95 | 20x<br>170 | 24x<br>170 |
| Cone diameter $d_k$                                              |                                        |           | 9,4       | 11,3      | 14,5      |            | 23,0       |
| Nominal drill hole diameter $d_0$                                |                                        |           | 10        | 12        | 16        |            | 25         |
| Drill hole depth $h_0$                                           |                                        | 75        | 90        | 90        | 110       |            | 190        |
| Effective anchorage depth $h_{ef}$                               |                                        | 60        | 75        | 75        | 95        |            | 170        |
| Minimum spacing and<br>minimum edge distance $s_{min} = c_{min}$ |                                        |           | 40        |           | 50        |            | 80         |
| Diameter of<br>clearance hole<br>in the fixture <sup>1)</sup>    | pre-positioned<br>anchorage $d_f \leq$ |           | 12        | 14        | 18        | 22         | 26         |
|                                                                  | push through<br>anchorage $d_f \leq$   |           | 12        | 14        | 18        |            | 26         |
| Min. thickness of concrete member                                | $h_{min}$                              | 100       | 120       |           | 150       |            | 240        |
| Installation torque moment                                       | $T_{inst}$ [Nm]                        |           | 15        | 30        | 50        |            | 100        |
| Thickness of fixture                                             | $t_{fix} \leq$                         |           |           | 1500      |           |            |            |
| fischer filling disk FFD <sup>2)</sup>                           | $\geq d_a$                             | [mm]      | 26        | 30        | 38        | 46         | 54         |
|                                                                  | $t_s$                                  |           | 6         | 6         | 7         | 8          | 10         |

<sup>1)</sup> For larger clearance holes in the fixture see EN1992-4; 6.2.2.2

<sup>2)</sup> Using fischer filling disk FFD reduces  $t_{fix}$  (usable length of the anchor)

**fischer Highbond – Anchor rod FHB II – A S**




**Marking:** work symbol, size of anchor, setting depth. e.g.: M10x75

For stainless steel additional **A4** or **R**. For high corrosion resistant steel additional **C** or **HCR**.

For high corrosion resistant steel additional marking **C** or **HCR** also on the face side

**Installation conditions:**

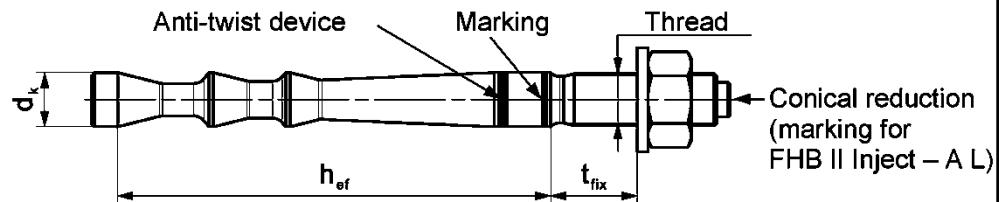


Figures not to scale

**fischer Highbond-Anchor FHB II**

**Intended use**  
Installation parameters for Highbond-Anchor rods FHB II-A S

**Annex B4**

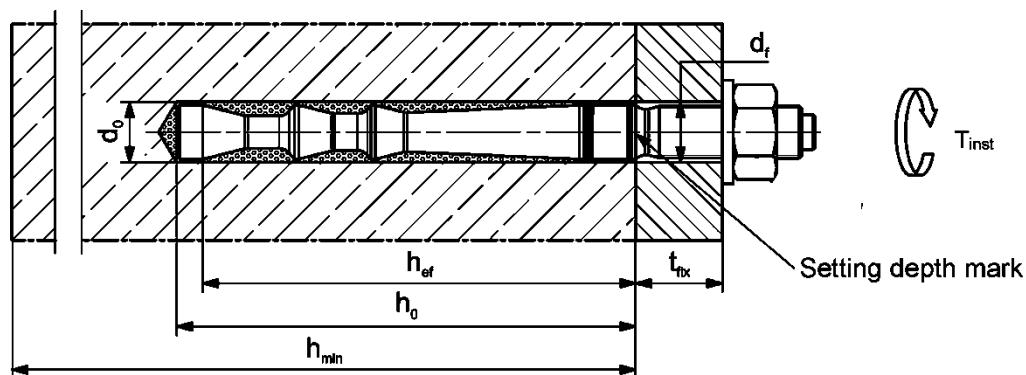

**Table B5.1: Installation parameters for Highbond – Anchor rods FHB II Inject – A L**

| Anchor rod FHB II Inject– A L                                 | Thread         | M8x                         | M10x       | M12x |     | M16x |     |     | M20x | M24x |
|---------------------------------------------------------------|----------------|-----------------------------|------------|------|-----|------|-----|-----|------|------|
|                                                               |                | 60                          | 95         | 100  | 120 | 125  | 145 | 160 | 210  | 210  |
| Cone diameter                                                 | [mm]           | 9,4                         | 10,7       | 12,5 |     | 16,8 |     |     | 23,0 |      |
| Nominal drill hole diameter                                   |                | 10                          | 12         | 14   |     | 18   |     |     | 25   |      |
| Drill hole depth                                              |                | 66                          | 101        | 106  | 126 | 131  | 151 | 166 | 216  |      |
| Effective anchorage depth                                     |                | 60                          | 95         | 100  | 120 | 125  | 145 | 160 | 210  |      |
| Minimum spacing and<br>minimum edge distance                  |                | $s_{min} = c_{min}$         |            | 40   |     | 55   | 60  | 70  | 90   |      |
| Diameter of<br>clearance hole<br>in the fixture <sup>1)</sup> |                | pre-positioned<br>anchorage | $d_f \leq$ | 14   |     | 18   |     |     | 22   | 26   |
| push through<br>anchorage                                     |                | $d_f \leq$                  |            | 16   |     | 20   |     |     | 26   |      |
| Min. thickness of concrete member                             | $h_{min}$      | 100                         | 140        |      | 170 | 190  | 220 | 280 |      |      |
| Installation torque moment                                    | $T_{inst}$     | [Nm]                        | 15         | 20   | 40  | 60   |     |     | 100  |      |
| Thickness of fixture                                          | $t_{fix} \leq$ | 1500                        |            |      |     |      |     |     |      |      |
| fischer filling disk FFD <sup>2)</sup>                        | $\geq d_a$     | [mm]                        | -          | 26   | 30  | 38   |     |     | 46   | 54   |
|                                                               | $t_s$          |                             | -          | 6    | 6   | 7    |     |     | 8    | 10   |

<sup>1)</sup> For larger clearance holes in the fixture see EN1992-4; 6.2.2.2

<sup>2)</sup> Using fischer filling disk FFD reduces  $t_{fix}$  (usable length of the anchor)

**fischer Highbond – Anchor rod FHB II Inject – A L**




**Marking:** work symbol, size of anchor, setting depth. e.g.:  M10x95

For stainless steel additional **A4** or **R**. For high corrosion resistant steel additional **C** or **HCR**.

For high corrosion resistant steel additional marking **C** or **HCR** also on the face side.

**Installation conditions:**



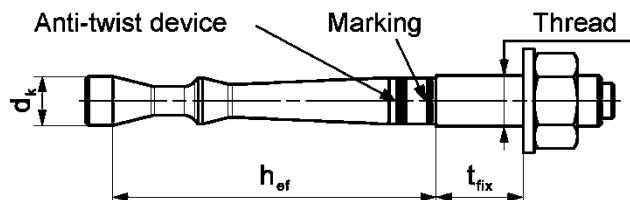
Figures not to scale

**fischer Highbond-Anchor FHB II**

**Intended use**

Installation parameters for Highbond-Anchor rods FHB II-A L

**Annex B5**

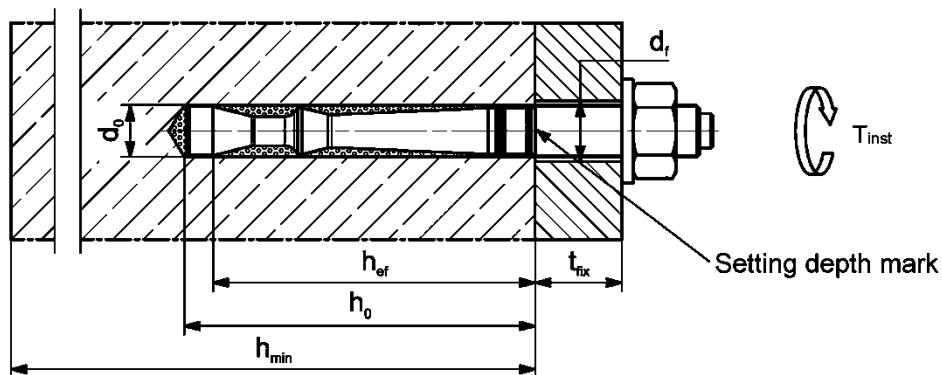

**Tabelle B6.1: Installation parameters for Highbond – Anchor rods FHB II Inject – A S**

| Anchor rod FHB II Inject – A S                                | Thread | M10x |     | M12x | M16x | M20x | M24x |
|---------------------------------------------------------------|--------|------|-----|------|------|------|------|
|                                                               |        | 60   | 75  | 75   | 95   | 170  | 170  |
| Cone diameter $d_k$                                           |        | 9,4  |     | 11,3 | 14,5 |      | 23,0 |
| Nominal drill hole diameter $d_0$                             |        | 10   |     | 12   | 16   |      | 25   |
| Drill hole depth $h_0$                                        |        | 66   | 81  | 81   | 101  |      | 176  |
| Effective anchorage depth $h_{ef}$                            |        | 60   | 75  | 75   | 95   |      | 170  |
| Minimum spacing and minimum edge distance $s_{min} = c_{min}$ | [mm]   | 40   |     | 50   | 80   |      |      |
| Diameter of pre-positioned anchorage $d_f \leq$               |        | 12   |     | 14   | 18   | 22   | 26   |
| clearance hole in the fixture <sup>1)</sup>                   |        | 12   |     | 14   | 18   | 26   |      |
| push through anchorage $d_f \leq$                             |        | 100  | 120 |      | 150  | 240  |      |
| Min. thickness of concrete member $h_{min}$                   |        |      |     |      |      |      |      |
| Installation torque moment $T_{inst}$                         | [Nm]   | 15   |     | 30   | 50   | 100  |      |
| Thickness of fixture $t_{fix} \leq$                           | 1500   |      |     |      |      |      |      |
| fischer filling disk FFD <sup>2)</sup> $\geq d_a$             | 26     |      | 30  | 38   | 46   | 54   |      |
| $t_s$                                                         | 6      |      | 6   | 7    | 8    | 10   |      |

<sup>1)</sup> For larger clearance holes in the fixture see EN1992-4; 6.2.2.2

<sup>2)</sup> Using fischer filling disk FFD reduces  $t_{fix}$  (usable length of the anchor)

**fischer Highbond – Anchor rod FHB II Inject – A S**




**Marking:** work symbol, size of anchor, setting depth. e.g.:  M10x75

For stainless steel additional A4 or R. For high corrosion resistant steel additional C or HCR.

For high corrosion resistant steel additional marking C or HCR also on the face side

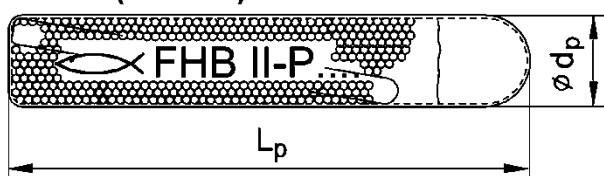
**Installation conditions:**



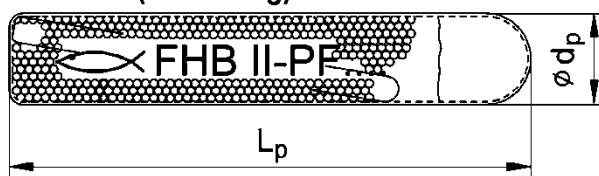
Figures not to scale

**fischer Highbond-Anchor FHB II**

**Intended use**


Installation parameters for Highbond-Anchor rods FHB II-A S

**Annex B6**


**Table B7.1: Dimensions of mortar capsules FHB II-P and FHB II-PF**

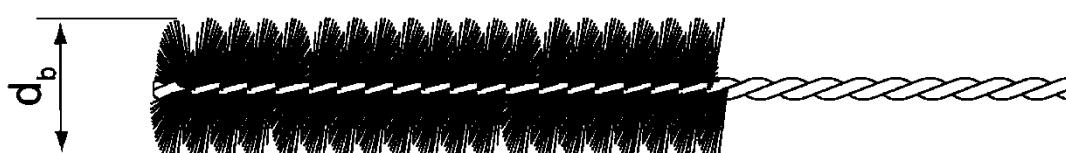
| Mortar capsule      |                 | 8x<br>60 | 10x<br>60 | 75  | 95 | 75 | 100  | 120  | 95  | 125 | 145 | 160 | 170 | 210  | 170 | 210 |
|---------------------|-----------------|----------|-----------|-----|----|----|------|------|-----|-----|-----|-----|-----|------|-----|-----|
| Length of capsule   | $L_p$           | 85       | 90        | 115 | 95 |    | 120  |      | 150 |     | 155 |     | 185 | 210  | 185 | 210 |
| Diameter of capsule | $\emptyset d_p$ |          | 9         |     | 11 |    | 12,5 | 14,5 |     | 17  |     |     |     | 21,5 |     |     |

**FHB II-P (standard)**



**FHB II-PF (fast curing)**




**Imprint:** work symbol, marking, anchor size and effective anchorage depth.

e.g.: FHB II-P 12x100 or  
 FHB II-PF 12x100

**Table B7.2: Parameters of the cleaning brush BS (steel brush; when using injection mortar or when using mortar capsules in diamond drilled holes)**

The size of the steel brush refers to the nominal drill hole diameter

|                     |       |      |    |    |    |    |    |    |
|---------------------|-------|------|----|----|----|----|----|----|
| Drill hole diameter | $d_0$ | [mm] | 10 | 12 | 14 | 16 | 18 | 25 |
| Brush diameter      | $d_b$ |      | 11 | 14 | 16 | 20 | 22 | 27 |



Figures not to scale

**fischer Highbond-Anchor FHB II**

**Intended use**  
Dimensions of mortar capsules; parameters of the cleaning brush

**Annex B7**

**Table B8.1: Maximum processing time of the mortar FIS HB and minimum curing time**

| Temperature at anchoring base <sup>1)</sup><br>[°C] | Maximum processing time<br>$t_{work}$ | Minimum curing time <sup>2)</sup><br>$t_{cure}$ |
|-----------------------------------------------------|---------------------------------------|-------------------------------------------------|
| -5 to 0 <sup>3)</sup>                               | -                                     | 6 h                                             |
| > 0 to 5 <sup>3)</sup>                              | -                                     | 3 h                                             |
| > 5 to 10                                           | 15 min                                | 90 min                                          |
| > 10 to 20                                          | 6 min                                 | 35 min                                          |
| > 20 to 30                                          | 4 min                                 | 20 min                                          |
| > 30 to 40                                          | 2 min                                 | 12 min                                          |

<sup>1)</sup> During the curing time of the mortar the temperature of the anchoring base may not fall below the listed minimum temperature

<sup>2)</sup> In wet concrete the curing time must be doubled

<sup>3)</sup> Minimal cartridge temperature +5 °C

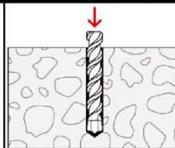
**Table B8.2: Minimum curing time for mortar capsules FHB II-P and FHB II-PF**

| Resin capsule FHB II-P (standard)                   |                                                 | Resin capsule FHB II-PF (fast curing)               |                                                 |
|-----------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| Temperature at anchoring base <sup>1)</sup><br>[°C] | Minimum curing time <sup>2)</sup><br>$t_{cure}$ | Temperature at anchoring base <sup>1)</sup><br>[°C] | Minimum curing time <sup>2)</sup><br>$t_{cure}$ |
| -5 to 0                                             | 4 h                                             | -5 to 0                                             | 8 min                                           |
| > 0 to 10                                           | 45 min                                          | > 0 to 10                                           | 6 min                                           |
| > 10 to 20                                          | 20 min                                          | > 10 to 20                                          | 4 min                                           |
| > 20                                                | 10 min                                          | > 20                                                | 2 min                                           |

<sup>1)</sup> During the curing time of the mortar the temperature of the anchoring base may not fall below the listed minimum temperature.

<sup>2)</sup> In wet concrete or water-filled holes the curing times must be doubled

fischer Highbond-Anchor FHB II

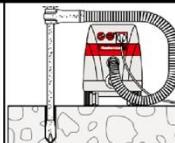

Intended use  
Processing times and curing times

Annex B8

## Installation instructions part 1; Installation with mortar capsule FHB II-P or FHB II-PF

### Drilling the hole (hammer drilling with standard drill bit)

1




Drill the hole with hammer drill.  
Drill hole diameter  $d_0$  and drill hole depth  $h_0$  see  
**Tables B3.1, B4.1.**  
Cleaning of the bore hole is not necessary.

Go to step 6

### Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1



Check a suitable hollow drill (see **Table B1.1**)  
for correct operation of the dust extraction.

2

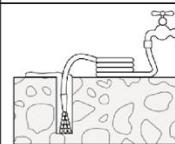



Use a suitable dust extraction system, e. g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.  
Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Diameter of drill hole  $d_0$  and drill hole depth  $h_0$  see **Tables B3.1, B4.1.**

Go to step 6

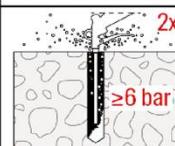
### Drilling and cleaning the drill hole (wet drilling with diamond drill bit)

1



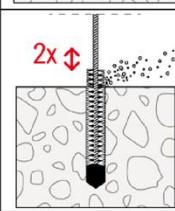

Drill the hole.  
Drill hole diameter  $d_0$  and nominal  
drill hole depth  $h_0$   
see **Table B3.1, B4.1.**




Break the drill core and remove it

2

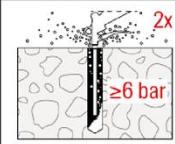



Flush the drill hole, until clear water emerges from the drill hole.

3



Blow out the drill hole twice, using oil-free compressed air ( $p \geq 6$  bar).


4



Brush the drill hole twice.  
Corresponding cleaning brush BS see **Table B7.2.**

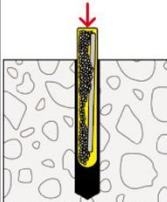
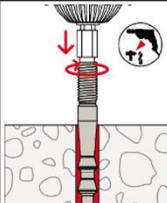
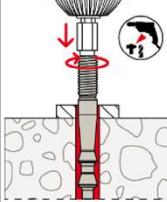
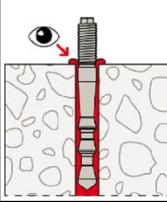
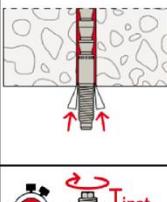
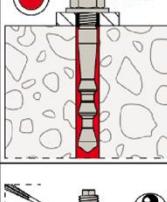
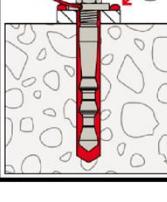


5



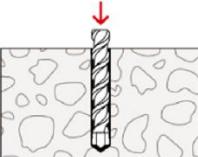
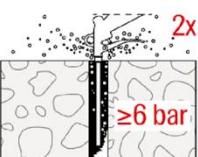
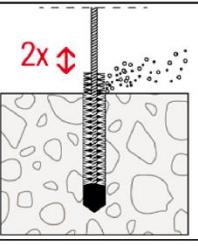
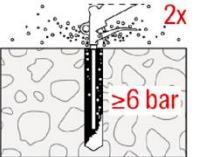
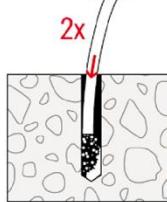
Blow out the drill hole twice, using oil-free compressed air ( $p \geq 6$  bar).

Go to step 6








fischer Highbond-Anchor FHB II

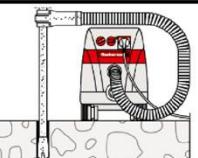
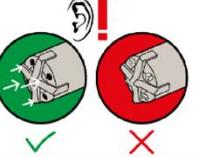
Intended use  
Installation instructions part 1; Installation with mortar capsule

Annex B9






## Installation instruction part 2; Installation with mortar capsule FHB II-P or FHB II-PF

### Installation Highbond-Anchor rod FHB II – A L and FHB II – A S

|                                                                                                          |                                                                                     |                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6                                                                                                        |    | Put the mortar capsule FHB II-P or FHB II-PF into the bore hole.                                                                                                                                                                                                                                                     |
| 7                                                                                                        |    | <b>Pre-positioned anchor:</b><br>Only use Highbond-Anchor rods <b>FHB II - A L</b> or <b>FHB II - A S</b> with <b>roof-shaped point</b> . Drive in the Anchor rod using a hammer drill or impact drill. When reaching the setting depth mark stop the drill immediately.                                             |
| 7                                                                                                        |    | <b>Push through anchor:</b><br>Only use Highbond-Anchor rods <b>FHB II – A S</b> with <b>roof-shaped point</b> . Drive in the anchor rod using a hammer drill or impact drill. When reaching the setting depth mark stop the drill immediately.                                                                      |
| 8                                                                                                        |  | After inserting the anchor, excess mortar must be emerged around the anchor (pre-positioned installation) or in the attached part (push-through installation).                                                                                                                                                       |
| 8a                                                                                                       |  | For overhead installations support the anchor rod with wedges.<br>(e.g. fischer centering wedges)                                                                                                                                                                                                                    |
| 9                                                                                                        |  | Wait for the specified curing time $t_{cure}$ see <b>Table B8.2</b> .<br>Mounting the fixture with $T_{inst}$ see <b>Tables B3.1, B4.1</b> .                                                                                                                                                                         |
| Option                                                                                                   |  | After the minimum curing time is reached, the gap between anchor and fixture (annular clearance) may be filled with mortar via the fischer filling disc FFD. compressive strength $\geq 50 \text{ N/mm}^2$ (e.g. FIS HB). ATTENTION: Using fischer filling disk FFD reduces $t_{fix}$ (usable length of the anchor). |
| fischer Highbond-Anchor FHB II                                                                           |                                                                                     | Annex B10                                                                                                                                                                                                                                                                                                            |
| Intended use<br>Installation instructions part 2; Installation with mortar capsule FHB II-P or FHB II-PF |                                                                                     |                                                                                                                                                                                                                                                                                                                      |



### Installation instructions part 3; Installation with injection mortar FIS HB

#### Drilling and cleaning the hole (hammer drilling with standard drill bit)

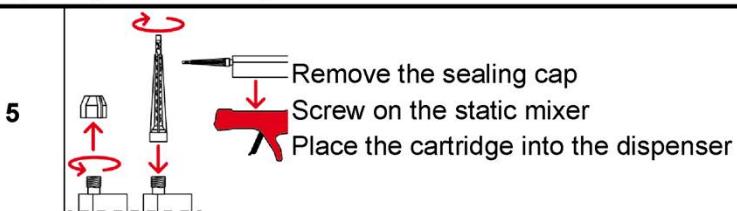
|                                                                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                 |                                                                                                                    | Drill the hole with hammer drill.<br>Drill hole diameter $d_0$ and drill hole depth $h_0$ see<br><b>Tables B3.1, B4.1, B5.1, B6.1.</b>                 |
| 2                                                                                                                                                                                                 |                                                                                                                    | Blow out the drill hole twice.<br>For drill hole diameter<br>$d_0 = 25$ mm with oil-free<br>compressed air ( $p \geq 6$ bar)<br>Use a cleaning nozzle. |
| <br>For drill hole diameter $d_0 < 25$ mm with<br>hand- blowout or oil-free compressed<br>air. ( $p \geq 6$ bar) |                                                                                                                                                                                                     |                                                                                                                                                        |
|                                                                                                                                                                                                   | If necessary, remove standing water out of the bore hole.                                                                                                                                           |                                                                                                                                                        |
| 3                                                                                                                                                                                                 |                                                                                                                   | Brush the bore hole twice.<br>Corresponding brushes<br>see <b>Table B7.2.</b>                                                                          |
| 4                                                                                                                                                                                                 |                                                                                                                  | Blow out the drill hole twice.<br>For drill hole diameter<br>$d_0 = 25$ mm with oil-free<br>compressed air ( $p \geq 6$ bar)<br>Use a cleaning nozzle. |
|                                                                                                                                                                                                   | <br>For drill hole diameter $d_0 < 25$ mm with<br>hand- blowout or oil-free compressed<br>air. ( $p \geq 6$ bar) |                                                                                                                                                        |

Go to step 5

#### Drilling and cleaning the hole (hammer drilling with hollow drill bit)

|   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 |  | Check a suitable hollow drill (see <b>Table B1.1</b> )<br>for correct operation of the dust extraction.                                                                                                                                                                                                                                                                                                                        |
| 2 |  | Use a suitable dust extraction system, e. g. fischer FVC 35 M or a comparable dust<br>extraction system with equivalent performance data.<br>Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust<br>nonstop during the drilling process and must be adjusted to maximum power. Diameter<br>of drill hole $d_0$ and drill hole depth $h_0$ see <b>Tables B3.1, B4.1, B5.1, B6.1.</b> |

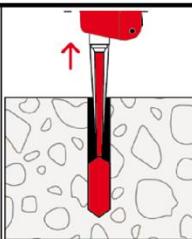
Go to step 5


fischer Highbond-Anchor FHB II

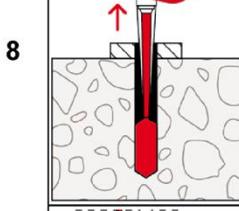
Intended use  
Installation instructions part 3; Installation with injection mortar

Annex B11

## Installation instruction part 4; Installation with injection mortar FIS HB


### Preparing the cartridge

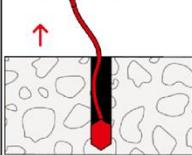



6 Ensuring that the spiral inside the mixer is clearly visible.

7 Extrude approximately 10 cm of material until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.

### Injection of the mortar




Fill approximately 2/3 of the drill hole with mortar. Exact quantity of mortar (travel scale on the cartridge) see instruction sheet. Fill the drill hole with mortar, always begin from the bottom of the hole to avoid bubbles.



#### Push-through installation:

By using Highbond-Anchor rods **FHB II - AL** or **FHB II Inject - AL** the drill hole in the fixture must be also filled with mortar.

By using Highbond-Anchor rods **FHB II - AS** or **FHB II Inject - AS** is this not necessary.



For drill hole depth  $\geq 170$  mm use an extension tube.

Go to step 9

fischer Highbond-Anchor FHB II

Intended use  
Installation instructions part 4; Installation with injection mortar

Annex B12

## Installation instruction part 5; Installation with injection mortar FIS HB

### Installation Highbond-Anchor rod FHB II (Inject)– A L and FHB II (Inject)– A S

|        |  |                                                                                                                                                                                                                                                                                                                           |
|--------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9      |  | Only use clean and oil-free anchor rods.<br>Push the anchor rod down to the bottom of the hole, turning it slightly while doing so.                                                                                                                                                                                       |
| 10     |  | <b>Pre-positioned anchor:</b><br>After inserting the anchor rod, surplus mortar must be escaped from the fixture.<br><b>Push through anchor:</b><br>After inserting the anchor rod, surplus mortar must be escaped from the bore hole or must be visible in the fixture.                                                  |
|        |  | For overhead installations support the anchor rod with wedges.<br>(e.g. fischer centering wedges)                                                                                                                                                                                                                         |
| 11     |  | Wait for the specified curing time $t_{cure}$ see <b>Table B8.1</b> .<br>Mounting the fixture with $T_{inst}$ see <b>Tables B3.1, B4.1, B5.1, B6.1</b> .                                                                                                                                                                  |
| Option |  | After the minimum curing time is reached, the gap between anchor and fixture (annular clearance) may be filled with mortar by using the fischer filling disc FFD. compressive strength $\geq 50 \text{ N/mm}^2$ (e.g. FIS HB). ATTENTION: Using fischer filling disk FFD reduces $t_{fix}$ (usable length of the anchor). |

fischer Highbond-Anchor FHB II

Intended use  
Installation instructions part 5; Installation with injection mortar

Annex B13

**Table C1.1: Characteristic resistance to steel failure under tension / shear loading of Highbond-Anchor FHB II – A L and FHB II Inject – A L**

| Anchor rod FHB II – A L and FHB II Inject – A L                                                                                                         |                                    | M8x  | M10x               | M12x              |       | M16x |       | M20x            | M24x  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------|--------------------|-------------------|-------|------|-------|-----------------|-------|--|--|--|--|--|
| <b>Characteristic resistance to steel failure under tension loading</b>                                                                                 |                                    | 60   | 95                 | 100               | 120   | 125  | 145   | 160             | 210   |  |  |  |  |  |
| Characteristic resistance<br>$N_{RK,s}$                                                                                                                 | Steel, zinc plated                 | 24,2 | 34,4               | 49,8              |       | 96,6 |       | 137,6           |       |  |  |  |  |  |
|                                                                                                                                                         | Stainless steel R                  | [kN] | 24,2               | 34,4              | 49,8  |      | 96,6  |                 | 137,6 |  |  |  |  |  |
|                                                                                                                                                         | High corrosion resistant steel HCR |      |                    |                   | 137,6 |      |       |                 |       |  |  |  |  |  |
| <b>Partial factors<sup>1)</sup></b>                                                                                                                     |                                    | [-]  | Steel, zinc plated | 1,5 <sup>1)</sup> |       |      |       |                 |       |  |  |  |  |  |
| $\gamma_{Ms,N}$                                                                                                                                         | Stainless steel R                  |      |                    | 1,5 <sup>1)</sup> |       |      |       |                 |       |  |  |  |  |  |
|                                                                                                                                                         | High corrosion resistant steel HCR |      |                    | 1,5 <sup>1)</sup> |       |      |       |                 |       |  |  |  |  |  |
| Anchor rod FHB II – A L and FHB II Inject – A L                                                                                                         |                                    | M8x  | M10x               | M12x              |       | M16x |       | M20x            | M24x  |  |  |  |  |  |
|                                                                                                                                                         |                                    | 60   | 95                 | 100               | 120   | 125  | 145   | 160             | 210   |  |  |  |  |  |
| <b>Characteristic resistance to steel failure under shear loading</b>                                                                                   |                                    |      |                    |                   |       |      |       |                 |       |  |  |  |  |  |
| <b>without lever arm</b>                                                                                                                                |                                    |      |                    |                   |       |      |       |                 |       |  |  |  |  |  |
| Characteristic Resistance<br>$V^0_{RK,s}$                                                                                                               | Steel, zinc plated                 | [kN] | 13,7               | 20,8              | 30,3  |      | 56,3  |                 | 87,90 |  |  |  |  |  |
|                                                                                                                                                         | Stainless steel R                  |      | 15,2               | 23,2              | 33,7  |      | 62,7  |                 | 126,9 |  |  |  |  |  |
|                                                                                                                                                         | High corrosion resistant steel HCR |      |                    |                   | 97,9  |      | 141,0 |                 |       |  |  |  |  |  |
| <b>with lever arm</b>                                                                                                                                   |                                    |      |                    |                   |       |      |       |                 |       |  |  |  |  |  |
| Characteristic resistance<br>$M^0_{RK,s}$                                                                                                               | Steel, zinc plated                 | [Nm] | 31,0               | 62,0              | 105,0 |      | 266,0 |                 | 519,0 |  |  |  |  |  |
|                                                                                                                                                         | Stainless steel R                  |      | 31,0               | 62,0              | 266,0 |      | 896,0 |                 |       |  |  |  |  |  |
|                                                                                                                                                         | High corrosion resistant steel HCR |      |                    |                   | 519,0 |      | 896,0 |                 |       |  |  |  |  |  |
| <b>Partial factors</b>                                                                                                                                  |                                    |      |                    |                   |       |      |       |                 |       |  |  |  |  |  |
| Partial factor <sup>1)</sup>                                                                                                                            | $\gamma_{Ms,V}$                    | [-]  | 1,25 <sup>1)</sup> |                   |       |      |       |                 |       |  |  |  |  |  |
| <sup>1)</sup> In absence of other national regulations                                                                                                  |                                    |      |                    |                   |       |      |       |                 |       |  |  |  |  |  |
| <b>fischer Highbond-Anchor FHB II</b>                                                                                                                   |                                    |      |                    |                   |       |      |       | <b>Annex C1</b> |       |  |  |  |  |  |
| <b>Performances</b><br>Characteristic resistance to steel failure under tension / shear loading of Highbond-Anchor FHB II – A L and FHB II Inject – A L |                                    |      |                    |                   |       |      |       |                 |       |  |  |  |  |  |

**Table C2.1: Characteristic resistance to steel failure under tension / shear loading of Highbond-Anchor FHB II – A S and FHB II Inject – A S**

| Anchor rod FHB II – A S / FHB II Inject – A S                                                                                       |                                       | M10x | M12x | M16x               | M20x  | M24x  |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|------|--------------------|-------|-------|
|                                                                                                                                     |                                       | 60   | 75   | 75                 | 95    | 170   |
| <b>Characteristic resistance to steel failure under tension loading</b>                                                             |                                       |      |      |                    |       |       |
| Characteristic resistance<br>$N_{Rk,s}$                                                                                             | Steel, zinc plated                    | [kN] | 24,2 | 34,4               | 61,6  | 128,5 |
|                                                                                                                                     | Stainless steel R                     |      | 24,2 | 34,4               | 61,6  | 128,5 |
|                                                                                                                                     | High corrosion<br>resistant steel HCR |      |      |                    |       |       |
| <b>Partial factors<sup>1)</sup></b>                                                                                                 |                                       |      |      |                    |       |       |
| Partial factor<br>$\gamma_{Ms,N}$                                                                                                   | Steel, zinc plated                    | [-]  |      | 1,5 <sup>1)</sup>  |       |       |
|                                                                                                                                     | Stainless steel R                     |      |      | 1,5 <sup>1)</sup>  |       |       |
|                                                                                                                                     | High corrosion<br>resistant steel HCR |      |      | 1,5 <sup>1)</sup>  |       |       |
| <b>Splitting failure</b>                                                                                                            |                                       |      |      |                    |       |       |
| Anchor rod FHB II – A S / FHB II Inject – A S                                                                                       |                                       | M10x | M12x | M16x               | M20x  | M24x  |
|                                                                                                                                     |                                       | 60   | 75   | 75                 | 95    | 170   |
| <b>Characteristic resistance to steel failure under shear loading</b>                                                               |                                       |      |      |                    |       |       |
| Characteristic<br>Resistance<br>$V^0_{Rk,s}$                                                                                        | Steel, zinc plated                    | [kN] | 19,7 | 27,3               | 50,8  | 80,3  |
|                                                                                                                                     | Stainless steel R                     |      | 24,1 | 33,7               | 62,7  | 97,9  |
|                                                                                                                                     | High corrosion<br>resistant steel HCR |      | 24,1 | 33,7               | 62,7  | 97,9  |
| <b>With lever arm</b>                                                                                                               |                                       |      |      |                    |       |       |
| Characteristic<br>resistance<br>$M^0_{Rk,s}$                                                                                        | Steel, zinc plated                    | [Nm] | 62,0 | 105,0              | 266,0 | 519,0 |
|                                                                                                                                     | Stainless steel R                     |      | 62,0 | 105,0              | 266,0 | 519,0 |
|                                                                                                                                     | High corrosion<br>resistant steel HCR |      |      |                    |       |       |
| <b>Partial factors<sup>1)</sup></b>                                                                                                 |                                       |      |      |                    |       |       |
| Partial factor                                                                                                                      | $\gamma_{Ms,V}$                       | [-]  |      | 1,25 <sup>1)</sup> |       |       |
| <sup>1)</sup> In absence of other national regulations                                                                              |                                       |      |      |                    |       |       |
| <b>fischer Highbond-Anchor FHB II</b>                                                                                               |                                       |      |      |                    |       |       |
| <b>Performances</b>                                                                                                                 |                                       |      |      |                    |       |       |
| Characteristic resistance to steel failure under tension / shear loading of<br>Highbond-Anchor FHB II – A S and FHB II Inject – A S |                                       |      |      |                    |       |       |
| <b>Annex C2</b>                                                                                                                     |                                       |      |      |                    |       |       |

**Table C3.1: Characteristic resistance to concrete failure under tension / shear loading for Highbond-Anchor FHB II – A L and FHB II Inject – A L**

| Size                                                                                                                             |  | All sizes    |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--|--------------|------------|---------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-----|-----|-----|--|--|--|--|--|--|
| <b>Tension loading</b>                                                                                                           |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
| Installation factor $\gamma_{inst}$ [-] See Annex C5 to C8                                                                       |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
| <b>Factors for the compressive strength of concrete &gt; C20/25</b>                                                              |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
| Increasing factor $\psi_c$ for cracked or uncracked concrete                                                                     |  | $\Psi_c$ [-] |            | C25/30<br>C30/37<br>C35/45<br>C40/50<br>$N_{Rk,p} = \psi_c \cdot N_{Rk,p} (C20/25)$<br>C45/55<br>C50/60 |             |             |             |             |     |     |     |  |  |  |  |  |  |
| <b>Anchor rod FHB II - A L and FHB II Inject - A L</b>                                                                           |  |              | <b>M8x</b> | <b>M10x</b>                                                                                             | <b>M12x</b> | <b>M16x</b> | <b>M20x</b> | <b>M24x</b> |     |     |     |  |  |  |  |  |  |
|                                                                                                                                  |  |              | 60         | 95                                                                                                      | 100         | 120         | 125         | 145         | 160 | 210 | 210 |  |  |  |  |  |  |
| <b>Splitting failure</b>                                                                                                         |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
| Spacing $s_{cr,sp}$                                                                                                              |  | $[mm]$       |            | 300                                                                                                     | 476         | 380         | 600         | 375         | 500 | 580 | 630 |  |  |  |  |  |  |
| Edge distance $c_{cr,sp}$                                                                                                        |  |              |            | 150                                                                                                     | 238         | 190         | 300         | 188         | 250 | 290 | 315 |  |  |  |  |  |  |
| <b>Pullout and splitting failure in uncracked concrete C20/25</b>                                                                |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
| Characteristic resistance $N_{Rk,p}$ [kN]                                                                                        |  |              |            | 15                                                                                                      | 35          | 40          | 50          | 75          | 75  | 95  | 148 |  |  |  |  |  |  |
| Spacing $s_{cr,sp}$                                                                                                              |  | $[mm]$       |            | 3,0 $h_{ef}$                                                                                            |             |             |             |             |     |     |     |  |  |  |  |  |  |
| Edge distance $c_{cr,sp}$                                                                                                        |  |              |            | 1,5 $h_{ef}$                                                                                            |             |             |             |             |     |     |     |  |  |  |  |  |  |
| <b>Concrete cone failure</b>                                                                                                     |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
| Uncracked concrete $k_{ucr,N}$                                                                                                   |  | $[-]$        |            | 11,0                                                                                                    |             |             |             |             |     |     |     |  |  |  |  |  |  |
| Cracked concrete $k_{cr,N}$                                                                                                      |  |              |            | 7,7                                                                                                     |             |             |             |             |     |     |     |  |  |  |  |  |  |
| Edge distance $c_{cr,N}$                                                                                                         |  | $[mm]$       |            | 1,5 $h_{ef}$                                                                                            |             |             |             |             |     |     |     |  |  |  |  |  |  |
| Spacing $s_{cr,N}$                                                                                                               |  |              |            | 3,0 $h_{ef}$                                                                                            |             |             |             |             |     |     |     |  |  |  |  |  |  |
| <b>Shear loading</b>                                                                                                             |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
| Installation factor $\gamma_{inst}$ [-]                                                                                          |  |              |            | 1,0                                                                                                     |             |             |             |             |     |     |     |  |  |  |  |  |  |
| <b>Concrete pry-out failure</b>                                                                                                  |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
| Factor for pry-out failure $k_8$ [-]                                                                                             |  |              |            | 2,0                                                                                                     |             |             |             |             |     |     |     |  |  |  |  |  |  |
| <b>Concrete edge failure</b>                                                                                                     |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
| <b>Anchor rod FHB II - A L and FHB II Inject - A L</b>                                                                           |  |              | <b>M8x</b> | <b>M10x</b>                                                                                             | <b>M12x</b> | <b>M16x</b> | <b>M20x</b> | <b>M24x</b> |     |     |     |  |  |  |  |  |  |
|                                                                                                                                  |  |              | 60         | 95                                                                                                      | 100         | 120         | 125         | 145         | 160 | 210 | 210 |  |  |  |  |  |  |
| Effective length of fastener in shear loading $l_f$                                                                              |  | $[mm]$       |            | 60                                                                                                      | 95          | 100         | 120         | 125         | 144 | 200 |     |  |  |  |  |  |  |
| Calculation diameter $d_{nom}$                                                                                                   |  |              |            | 10                                                                                                      | 12          | 14          | 18          |             |     | 25  |     |  |  |  |  |  |  |
| <b>fischer Highbond-Anchor FHB II</b>                                                                                            |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
| <b>Performances</b>                                                                                                              |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
| Characteristic resistance to concrete failure under tension / shear loading Highbond-Anchor FHB II – A L and FHB II Inject – A L |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |
| <b>Annex C3</b>                                                                                                                  |  |              |            |                                                                                                         |             |             |             |             |     |     |     |  |  |  |  |  |  |

**Table C4.1: Characteristic resistance to concrete failure under tension / shear loading for fischer Highbond-Anchor FHB II – A S and FHB II Inject – A S**

| Size                                                                                                                                |                 | All sizes    |              |              |      |      |      |      |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--------------|--------------|------|------|------|------|--|--|--|--|--|
| <b>Tension loading</b>                                                                                                              |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| Installation factor $\gamma_{inst}$ [-] See Annex C5 to C8                                                                          |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| <b>Factors for the compressive strength of concrete &gt; C20/25</b>                                                                 |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| Increasing factor $\psi_c$ for cracked or uncracked concrete                                                                        | C25/30          | $\psi_c$ [-] |              |              | 1,12 |      |      |      |  |  |  |  |  |
|                                                                                                                                     | C30/37          |              |              |              | 1,22 |      |      |      |  |  |  |  |  |
|                                                                                                                                     | C35/45          |              |              |              | 1,32 |      |      |      |  |  |  |  |  |
|                                                                                                                                     | C40/50          |              |              |              | 1,41 |      |      |      |  |  |  |  |  |
| $N_{RK,p} = \psi_c \cdot N_{RK,p} (C20/25)$                                                                                         | C45/55          |              |              |              | 1,50 |      |      |      |  |  |  |  |  |
|                                                                                                                                     | C50/60          |              |              |              | 1,58 |      |      |      |  |  |  |  |  |
| <b>Splitting failure</b>                                                                                                            |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| Anchor rod FHB II - A S and FHB II Inject - A S                                                                                     |                 |              | M10x         |              | M12x | M16x | M20x | M24x |  |  |  |  |  |
|                                                                                                                                     |                 |              | 60           | 75           | 75   | 95   | 170  | 170  |  |  |  |  |  |
| <b>Splitting failure</b>                                                                                                            |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| Spacing                                                                                                                             | $s_{cr,sp}$     | [mm]         | 300          |              | 340  | 510  |      |      |  |  |  |  |  |
| Edge distance                                                                                                                       | $c_{cr,sp}$     |              |              | 150          |      | 170  | 255  |      |  |  |  |  |  |
| <b>Pullout and splitting failure in uncracked concrete C20/25</b>                                                                   |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| Characteristic resistance                                                                                                           | $N_{RK,p}$      | [kN]         | 15           | 21           | 25   | 40   | 109  |      |  |  |  |  |  |
| Spacing                                                                                                                             | $s_{cr,sp}$     | [mm]         | 3,0 $h_{ef}$ |              |      |      |      |      |  |  |  |  |  |
| Edge distance                                                                                                                       | $c_{cr,sp}$     |              |              | 1,5 $h_{ef}$ |      |      |      |      |  |  |  |  |  |
| <b>Concrete cone failure</b>                                                                                                        |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| Uncracked concrete                                                                                                                  | $k_{ucr,N}$     | $[-]$        | 11,0         |              |      |      |      |      |  |  |  |  |  |
| Cracked concrete                                                                                                                    | $k_{cr,N}$      |              |              | 7,7          |      |      |      |      |  |  |  |  |  |
| Edge distance                                                                                                                       | $c_{cr,N}$      |              |              | 1,5 $h_{ef}$ |      |      |      |      |  |  |  |  |  |
| Spacing                                                                                                                             | $s_{cr,N}$      |              |              | 3 $h_{ef}$   |      |      |      |      |  |  |  |  |  |
| <b>Shear loading</b>                                                                                                                |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| Installation factor                                                                                                                 | $\gamma_{inst}$ | [-]          | 1,0          |              |      |      |      |      |  |  |  |  |  |
| <b>Concrete pry-out failure</b>                                                                                                     |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| Factor for pry-out failure                                                                                                          | $k_8$           | [-]          | 2,0          |              |      |      |      |      |  |  |  |  |  |
| <b>Concrete edge failure</b>                                                                                                        |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| Anchor rod FHB II - A S and FHB II Inject - A S                                                                                     |                 |              | M10x         |              | M12x | M16x | M20x | M24x |  |  |  |  |  |
|                                                                                                                                     |                 |              | 60           | 75           | 75   | 95   | 170  | 170  |  |  |  |  |  |
| Effective length of fastener in shear loading                                                                                       | $l_f$           | $[mm]$       | 60           | 75           | 75   | 95   | 170  |      |  |  |  |  |  |
| Calculation diameter                                                                                                                | $d_{nom}$       |              |              | 10           |      | 12   | 16   | 25   |  |  |  |  |  |
| <b>fischer Highbond-Anchor FHB II</b>                                                                                               |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| <b>Performances</b>                                                                                                                 |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| Characteristic resistance to concrete failure under tension / shear loading<br>Highbond-Anchor FHB II – A S and FHB II Inject – A S |                 |              |              |              |      |      |      |      |  |  |  |  |  |
| <b>Annex C4</b>                                                                                                                     |                 |              |              |              |      |      |      |      |  |  |  |  |  |

**Table C5.1: Characteristic resistance to pullout failure under tension / shear loading in uncracked or cracked concrete C20/25 for Highbond-Anchor FHB II – A L and FHB II Inject – A L; working life 50 years**

| Anchor rod FHB II - A L <sup>1)</sup><br>FHB II Inject - A L <sup>2)</sup> | M8<br>60 | M10<br>95 | M12<br>100 | M12<br>120 | M16<br>125 | M16<br>145 | M20<br>160 | M20<br>210 | M24<br>210 |
|----------------------------------------------------------------------------|----------|-----------|------------|------------|------------|------------|------------|------------|------------|
|----------------------------------------------------------------------------|----------|-----------|------------|------------|------------|------------|------------|------------|------------|

**Characteristic resistance for pullout failure**

|                      |   |      |   |    |    |    |    |    |
|----------------------|---|------|---|----|----|----|----|----|
| Calculation diameter | d | [mm] | 8 | 10 | 12 | 16 | 20 | 24 |
|----------------------|---|------|---|----|----|----|----|----|

**Uncracked concrete**

**Characteristic resistance in uncracked concrete C20/25**

Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete / water-filled hole)

|                   |                                       |                                        |      |      |      |      |      |      |       |       |       |
|-------------------|---------------------------------------|----------------------------------------|------|------|------|------|------|------|-------|-------|-------|
| Temperature range | I: 24 °C / 40 °C<br>II: 50 °C / 80 °C | $N_{Rk,p,ucr,50}$ [N/mm <sup>2</sup> ] | 15,9 | 34,9 | 44,9 | 51,1 | 97,4 | 97,4 | 100,9 | 148,2 | 148,2 |
|-------------------|---------------------------------------|----------------------------------------|------|------|------|------|------|------|-------|-------|-------|

**Installation factors**

|                                               |                 |     |                   |     |
|-----------------------------------------------|-----------------|-----|-------------------|-----|
| Dry or wet concrete                           |                 |     | 1,0 <sup>3)</sup> | 1,0 |
| Water filled hole<br>(only for resin capsule) | $\gamma_{inst}$ | [-] | 1,2               | 1,0 |

**Cracked concrete**

**Characteristic resistance in cracked concrete C20/25**

Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete / water-filled hole)

|                   |                                       |                                       |      |      |      |      |      |      |       |       |       |
|-------------------|---------------------------------------|---------------------------------------|------|------|------|------|------|------|-------|-------|-------|
| Temperature range | I: 24 °C / 40 °C<br>II: 50 °C / 80 °C | $N_{Rk,p,cr,50}$ [N/mm <sup>2</sup> ] | 15,9 | 34,9 | 44,9 | 51,1 | 82,5 | 97,4 | 100,9 | 148,2 | 148,2 |
|-------------------|---------------------------------------|---------------------------------------|------|------|------|------|------|------|-------|-------|-------|

**Installation factors**

|                                               |                 |     |                   |     |
|-----------------------------------------------|-----------------|-----|-------------------|-----|
| Dry or wet concrete                           |                 |     | 1,0 <sup>3)</sup> | 1,0 |
| Water filled hole<br>(only for resin capsule) | $\gamma_{inst}$ | [-] | 1,2               | 1,0 |

<sup>1)</sup> Highbond-Anchor rod FHB II - A L with resin capsule FHB II-P / FHB II-PF or injection mortar FIS HB

<sup>2)</sup> Highbond-Anchor rod FHB II Inject - A L with injection mortar FIS HB

<sup>3)</sup> With mortar capsule  $\gamma_{inst} = 1,2$

fischer Highbond-Anchor FHB II

**Performances**

Characteristic resistance to pullout failure under tension / shear  
Highbond-Anchor FHB II – A L and FHB II Inject – A L, working life 50 years

**Annex C5**

**Table C6.1: Characteristic resistance to pullout failure under tension / shear loading in uncracked or cracked concrete C20/25 for fischer Highbond-Anchor FHB II – A S and FHB II Inject – A S; working life 50 years**

| Anchor rod FHB II - A S <sup>1)</sup><br>FHB II Inject - A S <sup>2)</sup> | M10x | M12x | M16x | M20x | M24x |     |
|----------------------------------------------------------------------------|------|------|------|------|------|-----|
| Calculation diameter d [mm]                                                | 60   | 75   | 75   | 95   | 170  | 170 |

**Characteristic resistance for pullout failure**

|                      |   |      |    |    |    |    |    |
|----------------------|---|------|----|----|----|----|----|
| Calculation diameter | d | [mm] | 10 | 12 | 16 | 20 | 24 |
|----------------------|---|------|----|----|----|----|----|

**Uncracked concrete**

**Characteristic resistance in uncracked concrete C20/25**

Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete / water-filled hole)

|                   |                                       |                                        |      |      |      |      |       |       |
|-------------------|---------------------------------------|----------------------------------------|------|------|------|------|-------|-------|
| Temperature range | I: 24 °C / 40 °C<br>II: 50 °C / 80 °C | $N_{Rk,p,ucr,50}$ [N/mm <sup>2</sup> ] | 15,9 | 21,4 | 27,1 | 57,9 | 135,7 | 135,7 |
|-------------------|---------------------------------------|----------------------------------------|------|------|------|------|-------|-------|

**Installation factors**

|                                               |  |                 |                   |     |
|-----------------------------------------------|--|-----------------|-------------------|-----|
| Dry or wet concrete                           |  | $\gamma_{inst}$ | 1,0 <sup>3)</sup> | 1,0 |
| Water filled hole<br>(only for resin capsule) |  |                 | 1,2               | 1,0 |

**Cracked concrete**

**Characteristic resistance in cracked concrete C20/25**

Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)

|                   |                                       |                                       |      |      |      |      |       |       |
|-------------------|---------------------------------------|---------------------------------------|------|------|------|------|-------|-------|
| Temperature range | I: 24 °C / 40 °C<br>II: 50 °C / 80 °C | $N_{Rk,p,cr,50}$ [N/mm <sup>2</sup> ] | 15,9 | 21,4 | 26,2 | 42,6 | 123,3 | 123,3 |
|-------------------|---------------------------------------|---------------------------------------|------|------|------|------|-------|-------|

**Installation factors**

|                                               |  |                 |                   |     |
|-----------------------------------------------|--|-----------------|-------------------|-----|
| Dry or wet concrete                           |  | $\gamma_{inst}$ | 1,0 <sup>3)</sup> | 1,0 |
| Water filled hole<br>(only for resin capsule) |  |                 | 1,2               | 1,0 |

<sup>1)</sup> Highbond-Anchor rod FHB II - A S with resin capsule FHB II-P / FHB II-PF or injection mortar FIS HB

<sup>2)</sup> Highbond-Anchor rod FHB II Inject - A S with injection mortar FIS HB

<sup>3)</sup> With mortar capsule  $\gamma_{inst} = 1,2$

fischer Highbond-Anchor FHB II

**Performances**

Characteristic resistance to pullout failure under tension / shear loading  
Highbond-Anchor FHB II – A L and FHB II Inject – A L; working life 50 years

**Annex C6**

**Table C7.1: Characteristic resistance to pullout failure under tension / shear loading in uncracked or cracked concrete C20/25 for Highbond-Anchor rods FHB II - A S with resin capsule FHB II-P or FHB II-PF in diamond drilled holes; working life 50 years**

| Highbond-Anchor rod FHB II - A S <sup>1)</sup>                    | M16x95                              | M20x170                       | M24x170 |       |
|-------------------------------------------------------------------|-------------------------------------|-------------------------------|---------|-------|
| <b>Characteristic resistance to pull-out failure</b>              |                                     |                               |         |       |
| Calculation diameter d [mm]                                       | 16                                  | 25                            |         |       |
| <b>Uncracked concrete</b>                                         |                                     |                               |         |       |
| <b>Characteristic resistance in uncracked concrete C20/25</b>     |                                     |                               |         |       |
| <u>Diamond-drilling (dry or wet concrete / water-filled hole)</u> |                                     |                               |         |       |
| Temperature range                                                 | I 24 °C / 40 °C<br>II 50 °C / 80 °C | N <sub>Rk,p,ucr,50</sub> [kN] | 51,5    | 118,5 |
| <b>Cracked concrete</b>                                           |                                     |                               |         |       |
| <b>Characteristic resistance in cracked concrete C20/25</b>       |                                     |                               |         |       |
| <u>Diamond-drilling (dry or wet concrete / water-filled hole)</u> |                                     |                               |         |       |
| Temperature range                                                 | I 24 °C / 40 °C<br>II 50 °C / 80 °C | N <sub>Rk,p,cr,50</sub> [kN]  | 42,8    | 101,4 |
| <b>Installation factors</b>                                       |                                     |                               |         |       |
| Dry or wet concrete                                               |                                     |                               | 1,2     |       |
| Water-filled hole                                                 | γ <sub>inst</sub> [-]               |                               | 1,2     |       |

<sup>1)</sup> Highbond-Anchor rod FHB II - A S with resin capsule FHB II-P / FHB II-PF

**Table C7.2: Characteristic resistance to pullout failure under tension / shear loading in uncracked or cracked concrete C20/25 for Highbond-Anchor rods FHB II - A S with resin capsule FHB II-P or FHB II-PF in diamond drilled holes; working life 100 years**

| Highbond-Anchor rod FHB II - A S <sup>1)</sup>                    | M16x95                              | M20x170                        | M24x170 |       |
|-------------------------------------------------------------------|-------------------------------------|--------------------------------|---------|-------|
| <b>Characteristic resistance to pull-out failure</b>              |                                     |                                |         |       |
| Calculation diameter d [mm]                                       | 16                                  | 25                             |         |       |
| <b>Uncracked concrete</b>                                         |                                     |                                |         |       |
| <b>Characteristic resistance in uncracked concrete C20/25</b>     |                                     |                                |         |       |
| <u>Diamond-drilling (dry or wet concrete / water-filled hole)</u> |                                     |                                |         |       |
| Temperature range                                                 | I 24 °C / 40 °C<br>II 50 °C / 80 °C | N <sub>Rk,p,ucr,100</sub> [kN] | 51,5    | 118,5 |
| <b>Cracked concrete</b>                                           |                                     |                                |         |       |
| <b>Characteristic resistance in cracked concrete C20/25</b>       |                                     |                                |         |       |
| <u>Diamond-drilling (dry or wet concrete / water-filled hole)</u> |                                     |                                |         |       |
| Temperature range                                                 | I 24 °C / 40 °C<br>II 50 °C / 80 °C | N <sub>Rk,p,cr,100</sub> [kN]  | 36,0    | 86,0  |
| <b>Installation factors</b>                                       |                                     |                                |         |       |
| Dry or wet concrete                                               |                                     |                                | 1,2     |       |
| Water-filled hole                                                 | γ <sub>inst</sub> [-]               |                                | 1,2     |       |

<sup>1)</sup> Highbond-Anchor rod FHB II - A S with resin capsule FHB II-P / FHB II-PF

fischer Highbond-Anchor FHB II

**Performances**  
Characteristic resistance to pull-out failure for Highbond-Anchor rods FHB II - A S in diamond drilled holes; working life 50 or 100 years

**Annex C7**

**Table C8.1: Characteristic resistance to pull-out failure for Highbond-Anchor rods FHB II - A S with resin capsule FHB II-P / FHB II-PF or injection mortar FIS HB and FHB II Inject - A S with injection mortar FIS HB in hammer drilled holes; working life 100 years**

| Anchor rod FHB II - A S <sup>1)</sup><br>FHB II Inject - A S <sup>2)</sup>                                                                                                        | M16x95                              | M20x170                        | M24x170         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|-----------------|
| <b>Characteristic resistance to pull-out failure</b>                                                                                                                              |                                     |                                |                 |
| Calculation diameter d [mm]                                                                                                                                                       | 16                                  | 25                             |                 |
| <b>Uncracked concrete</b>                                                                                                                                                         |                                     |                                |                 |
| <b>Characteristic resistance in uncracked concrete C20/25</b>                                                                                                                     |                                     |                                |                 |
| Hammer-drilling with standard or hollow drill bit (dry or wet concrete / water-filled hole)                                                                                       |                                     |                                |                 |
| Temperature range                                                                                                                                                                 | I 24 °C / 40 °C<br>II 50 °C / 80 °C | N <sub>Rk,p,ucr,100</sub> [kN] | 52,4<br>118,5   |
| <b>Cracked concrete</b>                                                                                                                                                           |                                     |                                |                 |
| <b>Characteristic resistance in cracked concrete C20/25</b>                                                                                                                       |                                     |                                |                 |
| Hammer-drilling with standard or hollow drill bit (dry or wet concrete / water-filled hole)                                                                                       |                                     |                                |                 |
| Temperature range                                                                                                                                                                 | I 24 °C / 40 °C<br>II 50 °C / 80 °C | N <sub>Rk,p,cr,100</sub> [kN]  | 36,0<br>86,0    |
| <b>Installation factors</b>                                                                                                                                                       |                                     |                                |                 |
| Dry or wet concrete                                                                                                                                                               |                                     |                                | 1,0             |
| Water-filled hole<br>(only with resin capsule)                                                                                                                                    | γ <sub>inst</sub>                   | [-]                            | 1,0             |
| <sup>1)</sup> Highbond-Anchor rod FHB II - A S with resin capsule FHB II-P / FHB II-PF or injection mortar FIS HB                                                                 |                                     |                                |                 |
| <sup>2)</sup> Highbond-Anchor rod FHB II Inject - A S with injection mortar FIS HB                                                                                                |                                     |                                |                 |
| fischer Highbond-Anchor FHB II                                                                                                                                                    |                                     |                                |                 |
| <b>Performances</b><br>Characteristic resistance to pull-out failure for Highbond-Anchor rods FHB II - A S or FHB II - A S Inject in hammer drilled holes; working life 100 years |                                     |                                | <b>Annex C8</b> |

**Table C9.1: Displacements for Highbond-Anchor rod FHB II - A L and FHB II Inject- A L; working life 50 years**

| Anchor rod FHB II - A L<br>and FHB II Inject -A L                                                                                           |         | M8    | M10   | M12   |                                                             | M16   |       | M20   | M24   |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|-------|-------------------------------------------------------------|-------|-------|-------|-------|--|--|--|--|--|--|--|--|
| <b>Displacement-Factors for tension loading <sup>1)</sup></b>                                                                               |         |       |       |       |                                                             |       |       |       |       |  |  |  |  |  |  |  |  |
| <b>Uncracked concrete; Temperature range I and II</b>                                                                                       |         |       |       |       |                                                             |       |       |       |       |  |  |  |  |  |  |  |  |
| $\delta_{N0}$ -Factor                                                                                                                       | [mm/kN] | 0,026 | 0,024 | 0,019 | 0,016                                                       | 0,012 | 0,010 | 0,008 | 0,008 |  |  |  |  |  |  |  |  |
|                                                                                                                                             |         | 0,224 | 0,102 | 0,079 | 0,070                                                       | 0,052 | 0,042 | 0,036 | 0,024 |  |  |  |  |  |  |  |  |
| <b>Cracked concrete; Temperature range I and II</b>                                                                                         |         |       |       |       |                                                             |       |       |       |       |  |  |  |  |  |  |  |  |
| $\delta_{N\infty}$ -Factor                                                                                                                  | [mm/kN] | 0,105 | 0,053 | 0,049 | 0,037                                                       | 0,026 | 0,021 | 0,018 | 0,012 |  |  |  |  |  |  |  |  |
|                                                                                                                                             |         | 0,224 | 0,112 | 0,104 | 0,079                                                       | 0,074 | 0,059 | 0,051 | 0,034 |  |  |  |  |  |  |  |  |
| <b>Displacement-Factors for shear loading <sup>2)</sup></b>                                                                                 |         |       |       |       |                                                             |       |       |       |       |  |  |  |  |  |  |  |  |
| <b>Uncracked or cracked concrete; Temperature range I and II</b>                                                                            |         |       |       |       |                                                             |       |       |       |       |  |  |  |  |  |  |  |  |
| Steel, zinc plated                                                                                                                          |         |       |       |       |                                                             |       |       |       |       |  |  |  |  |  |  |  |  |
| $\delta_{V0}$ -Factor                                                                                                                       | [mm/kN] | 0,185 | 0,101 | 0,075 |                                                             | 0,040 |       | 0,070 | 0,048 |  |  |  |  |  |  |  |  |
|                                                                                                                                             |         | 0,277 | 0,151 | 0,116 |                                                             | 0,062 |       | 0,106 | 0,073 |  |  |  |  |  |  |  |  |
| Stainless steel R                                                                                                                           |         |       |       |       |                                                             |       |       |       |       |  |  |  |  |  |  |  |  |
| $\delta_{V\infty}$ -Factor                                                                                                                  | [mm/kN] | 0,137 | 0,075 | 0,057 |                                                             | 0,061 |       | 0,063 | 0,043 |  |  |  |  |  |  |  |  |
|                                                                                                                                             |         | 0,205 | 0,113 | 0,088 |                                                             | 0,092 |       | 0,095 | 0,066 |  |  |  |  |  |  |  |  |
| High corrosion resistant steel HCR                                                                                                          |         |       |       |       |                                                             |       |       |       |       |  |  |  |  |  |  |  |  |
| $\delta_{V0}$ -Factor                                                                                                                       | [mm/kN] | 0,164 | 0,090 | 0,067 |                                                             | 0,067 |       | 0,066 | 0,062 |  |  |  |  |  |  |  |  |
|                                                                                                                                             |         | 0,247 | 0,135 | 0,104 |                                                             | 0,101 |       | 0,100 | 0,093 |  |  |  |  |  |  |  |  |
| 1) Calculation of effective displacement:                                                                                                   |         |       |       |       | 2) Calculation of effective displacement:                   |       |       |       |       |  |  |  |  |  |  |  |  |
| $\delta_{N0} = \delta_{N0}\text{-Factor} \cdot N$                                                                                           |         |       |       |       | $\delta_{V0} = \delta_{V0}\text{-Factor} \cdot V$           |       |       |       |       |  |  |  |  |  |  |  |  |
| $\delta_{N\infty} = \delta_{N\infty}\text{-Factor} \cdot N$                                                                                 |         |       |       |       | $\delta_{V\infty} = \delta_{V\infty}\text{-Factor} \cdot V$ |       |       |       |       |  |  |  |  |  |  |  |  |
| N = acting tension loading                                                                                                                  |         |       |       |       | V = acting shear loading                                    |       |       |       |       |  |  |  |  |  |  |  |  |
| fischer Highbond-Anchor FHB II                                                                                                              |         |       |       |       |                                                             |       |       |       |       |  |  |  |  |  |  |  |  |
| <b>Performances</b><br>Displacements for Highbond-Anchor rod Highbond-Anchor rod FHB II - A L, FHB II Inject- A L and working life 50 years |         |       |       |       |                                                             |       |       |       |       |  |  |  |  |  |  |  |  |
| <b>Annex C9</b>                                                                                                                             |         |       |       |       |                                                             |       |       |       |       |  |  |  |  |  |  |  |  |

**Table C10.1: Displacements for Highbond-Anchor rod FHB II - A S and FHB II Inject- A S; working life 50 years**

| Anchor rod FHB II – A S and FHB II Inject -A S                                                                                              | M10     | M12   | M16                                                         | M20   | M24   |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------------------------------------------------------------|-------|-------|--|--|--|--|
|                                                                                                                                             | 60      | 95    | 75                                                          | 95    | 210   |  |  |  |  |
| <b>Displacement-Factors for tension loading <sup>1)</sup></b>                                                                               |         |       |                                                             |       |       |  |  |  |  |
| <b>Uncracked concrete; Temperature range I and II</b>                                                                                       |         |       |                                                             |       |       |  |  |  |  |
| $\delta_{N0}$ -Factor                                                                                                                       | [mm/kN] | 0,026 | 0,020                                                       | 0,016 | 0,009 |  |  |  |  |
|                                                                                                                                             |         | 0,224 | 0,167                                                       | 0,132 | 0,078 |  |  |  |  |
| <b>Cracked concrete; Temperature range T2</b>                                                                                               |         |       |                                                             |       |       |  |  |  |  |
| $\delta_{N0}$ -Factor                                                                                                                       | [mm/kN] | 0,105 | 0,029                                                       | 0,028 | 0,026 |  |  |  |  |
|                                                                                                                                             |         | 0,224 | 0,167                                                       | 0,159 | 0,112 |  |  |  |  |
| <b>Displacement-Factors for shear loading <sup>2)</sup></b>                                                                                 |         |       |                                                             |       |       |  |  |  |  |
| <b>Uncracked or cracked concrete; Temperature range I and II</b>                                                                            |         |       |                                                             |       |       |  |  |  |  |
| Steel, zinc plated                                                                                                                          | [mm/kN] | 0,128 | 0,118                                                       | 0,052 | 0,061 |  |  |  |  |
|                                                                                                                                             |         | 0,191 | 0,181                                                       | 0,079 | 0,092 |  |  |  |  |
| <b>Stainless steel R</b>                                                                                                                    |         |       |                                                             |       |       |  |  |  |  |
| $\delta_{V0}$ -Factor                                                                                                                       | [mm/kN] | 0,087 | 0,057                                                       | 0,061 | 0,063 |  |  |  |  |
|                                                                                                                                             |         | 0,130 | 0,088                                                       | 0,092 | 0,095 |  |  |  |  |
| <b>High corrosion resistant steel HCR</b>                                                                                                   |         |       |                                                             |       |       |  |  |  |  |
| $\delta_{V0}$ -Factor                                                                                                                       | [mm/kN] | 0,104 | 0,067                                                       | 0,067 | 0,066 |  |  |  |  |
|                                                                                                                                             |         | 0,157 | 0,104                                                       | 0,101 | 0,100 |  |  |  |  |
| 1) Calculation of effective displacement:                                                                                                   |         |       | 2) Calculation of effective displacement:                   |       |       |  |  |  |  |
| $\delta_{N0} = \delta_{N0}\text{-Factor} \cdot N$                                                                                           |         |       | $\delta_{V0} = \delta_{V0}\text{-Factor} \cdot V$           |       |       |  |  |  |  |
| $\delta_{N\infty} = \delta_{N\infty}\text{-Factor} \cdot N$                                                                                 |         |       | $\delta_{V\infty} = \delta_{V\infty}\text{-Factor} \cdot V$ |       |       |  |  |  |  |
| N = acting tension loading                                                                                                                  |         |       | V = acting shear loading                                    |       |       |  |  |  |  |
| <b>fischer Highbond-Anchor FHB II</b>                                                                                                       |         |       |                                                             |       |       |  |  |  |  |
| <b>Performances</b><br>Displacements for Highbond-Anchor rod Highbond-Anchor rod FHB II - A S, FHB II Inject- A S and working life 50 years |         |       |                                                             |       |       |  |  |  |  |
| <b>Annex C10</b>                                                                                                                            |         |       |                                                             |       |       |  |  |  |  |

**Table C11.1: Displacements for Highbond-Anchor rod FHB II - A S in diamond drilled holes; working life 50 years**

| Anchor rod FHB II – A S /<br>FHB II Inject - A S                 |         | M16x95 | M20x170 | M24x170 |  |
|------------------------------------------------------------------|---------|--------|---------|---------|--|
| <b>Displacement-Factors for tension loading <sup>1)</sup></b>    |         |        |         |         |  |
| <b>Uncracked concrete; Temperature range I and II</b>            |         |        |         |         |  |
| $\delta_{N0}$ -Factor                                            | [mm/kN] | 0,030  | 0,020   | 0,016   |  |
|                                                                  |         | 0,120  | 0,045   | 0,045   |  |
| <b>Cracked concrete; Temperature range T2</b>                    |         |        |         |         |  |
| $\delta_{N0}$ -Factor                                            | [mm/kN] | 0,030  | 0,020   | 0,016   |  |
|                                                                  |         | 0,120  | 0,045   | 0,045   |  |
| <b>Displacement-Factors for shear loading <sup>2)</sup></b>      |         |        |         |         |  |
| <b>Uncracked or cracked concrete; Temperature range I and II</b> |         |        |         |         |  |
| $\delta_{V0}$ -Factor                                            | [mm/kN] | 0,02   | 0,02    | 0,02    |  |
|                                                                  |         | 0,03   | 0,03    | 0,03    |  |

<sup>1)</sup> Calculation of effective displacement:

$$\delta_{N0} = \delta_{N0}\text{-Factor} \cdot N$$

$$\delta_{N\infty} = \delta_{N\infty}\text{-Factor} \cdot N$$

N = acting tension loading

<sup>2)</sup> Calculation of effective displacement:

$$\delta_{V0} = \delta_{V0}\text{-Factor} \cdot V$$

$$\delta_{V\infty} = \delta_{V\infty}\text{-Factor} \cdot V$$

V = acting shear loading

**Table C11.2: Displacements for Highbond-Anchor rod FHB II - A S and FHB II Inject - A S; working life 100 years**

| Anchor rod FHB II – A S /<br>FHB II Inject - A S                 |         | M16x95 | M20x170 | M24x170 |  |
|------------------------------------------------------------------|---------|--------|---------|---------|--|
| <b>Displacement-Factors for tension loading <sup>1)</sup></b>    |         |        |         |         |  |
| <b>Uncracked concrete; Temperature range I and II</b>            |         |        |         |         |  |
| $\delta_{N0}$ -Factor                                            | [mm/kN] | 0,030  | 0,020   | 0,016   |  |
|                                                                  |         | 0,120  | 0,045   | 0,045   |  |
| <b>Cracked concrete; Temperature range I and II</b>              |         |        |         |         |  |
| $\delta_{N0}$ -Factor                                            | [mm/kN] | 0,030  | 0,020   | 0,016   |  |
|                                                                  |         | 0,120  | 0,045   | 0,045   |  |
| <b>Displacement-Factors for shear loading <sup>2)</sup></b>      |         |        |         |         |  |
| <b>Uncracked or cracked concrete; Temperature range I and II</b> |         |        |         |         |  |
| $\delta_{V0}$ -Factor                                            | [mm/kN] | 0,02   | 0,02    | 0,02    |  |
|                                                                  |         | 0,03   | 0,03    | 0,03    |  |

<sup>1)</sup> Calculation of effective displacement:

$$\delta_{N0} = \delta_{N0}\text{-Factor} \cdot N$$

$$\delta_{N\infty} = \delta_{N\infty}\text{-Factor} \cdot N$$

N = acting tension loading

<sup>2)</sup> Calculation of effective displacement:

$$\delta_{V0} = \delta_{V0}\text{-Factor} \cdot V$$

$$\delta_{V\infty} = \delta_{V\infty}\text{-Factor} \cdot V$$

V = acting shear loading

fischer Highbond-Anchor FHB II

**Performances**

Displacements for Highbond-Anchor rod Highbond-Anchor rod FHB II - A S, FHB II Inject- A S and working life 50 years or 100 years

**Annex C11**