

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0197 of 30 January 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Upat UKA3 Plus Product family Bonded fastener for use in concrete to which the construction product belongs Manufacturer Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND Manufacturing plant Upat This European Technical Assessment 20 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330499-01-0601, Edition 04/2020 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-17/0197 issued on 3 April 2017

European Technical Assessment ETA-17/0197 English translation prepared by DIBt

Page 2 of 20 | 30 January 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 30 January 2023

Specific Part

1 Technical description of the product

The Upat UKA3 Plus is a bonded anchor for use in concrete consisting of a capsule Upat UKA3 Plus and a steel element according to Annex A2.

The capsule Upat UKA3 Plus is placed in the hole and the steel element is driven by machine with simultaneous hammering and turning.

The element is anchored via the bond between steel element, chemical mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 and B 4, C 1 to C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 3
Displacements under short-term and long-term loading	See Annex C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

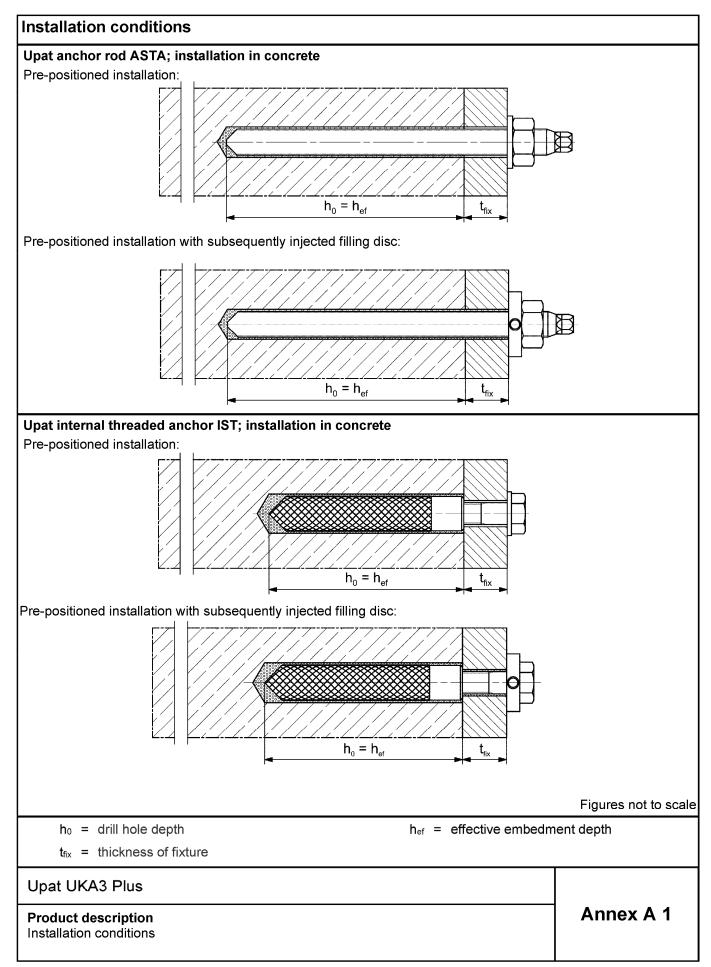
Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-17/0197 English translation prepared by DIBt

Page 4 of 20 | 30 January 2023

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 30 January 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Overview product components	
Capsule UKA3 Plus	
Size: 8, 10, 12, 16, 16E, 20/22, 24	
Upat Anchor rod ASTA	
Size: M8, M10, M12, M16, M20, M24	
Upat internal threaded anchor IST	
Size: M8, M10, M12, M16, M20	
Screw / threaded rod / washer / hexagon nut	
Filling disc with injection adapter	
	Figures not to scale
Upat UKA3 Plus	
Product description Overview product components	Annex A 2

Page 7 of European Technical Assessment ETA-17/0197 of 30 January 2023

English translation prepared by DIBt

	Designation		Material	
1	Capsule UKA3 Plus		Mortar, hardener, filler	
		Steel	Stainless steel R	High corrosion resistant steel HCR
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4: 2006+A1:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4: 2006+A1:201
2	Upat anchor rod ASTA	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009 f _{uk} ≤ 1000 N/mm ²	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ²	Property class 50 or 80 EN ISO 3506-1:2020 or property class 70 with f _{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ²
			Fracture elongation $A_5 > 8 \%$,	
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanized ≥ 40 µm EN ISO10684:2004+AC:2009	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised≥ 40 μm EN ISO10684:2004+AC:2009	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014
5	Upat internal threaded anchor IST	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014
6	Commercial standard screw or threaded rod for internal threaded anchor IST	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, ISO 4042:2018/Zn5/An(A2K) fracture elongation $A_5 > 8 \%$	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 fracture elongation A ₅ > 8 %	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014 fracture elongation A ₅ > 8 %
7	filling disc	zinc plated ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 µm EN ISO10684:2004+AC:2009	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014

Z1611.23

Specifications of	_					
	verview use and pe	erformance cate	-			
Fastenings subject to		Upat an		B Plus with		eaded anchor
		AS			IS⁻	
Hammer drilling with standard drill bit	######################################		all s	izes		
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max")		Nominal drill (d₀) 12 mm			all siz	zes
Static and quasi static	uncracked concrete	all sizes		all size		
loading, in	cracked concrete	M10, M12, M16, M20, M24	Tables:		es	Tables: C2.1, C3.1,
Use 11	dry or wet concrete	all sizes	C1.1, C3.1, C4.1, C6.1	all size	es	C5.1, C6.2
category I2	water filled hole	M12, M16, M20, M24		M8, M10,	, M16	
Seismic performance	C1	_ 1)		_1)	
category Installation direction	02		ard and horizontal		rds (e.g.	overhead)
Installation temperature			install T _{i,min} =-15 °C to		0 °C	
	Temperature range	-40 °C to +40 °C	(max. short te max. long ter			
In-service temperature	Temperature range	-40 °C to +80 °C	(max. short te max. long ter			
	Temperature range	-40 °C to +120 °	C (max. short te max. long ter			
¹⁾ No performance as	ssessed					
Upat UKA3 Plus						
Intended Use Specifications part 1					Ar	nex B 1

Specifications of intended use part 2

Base materials:

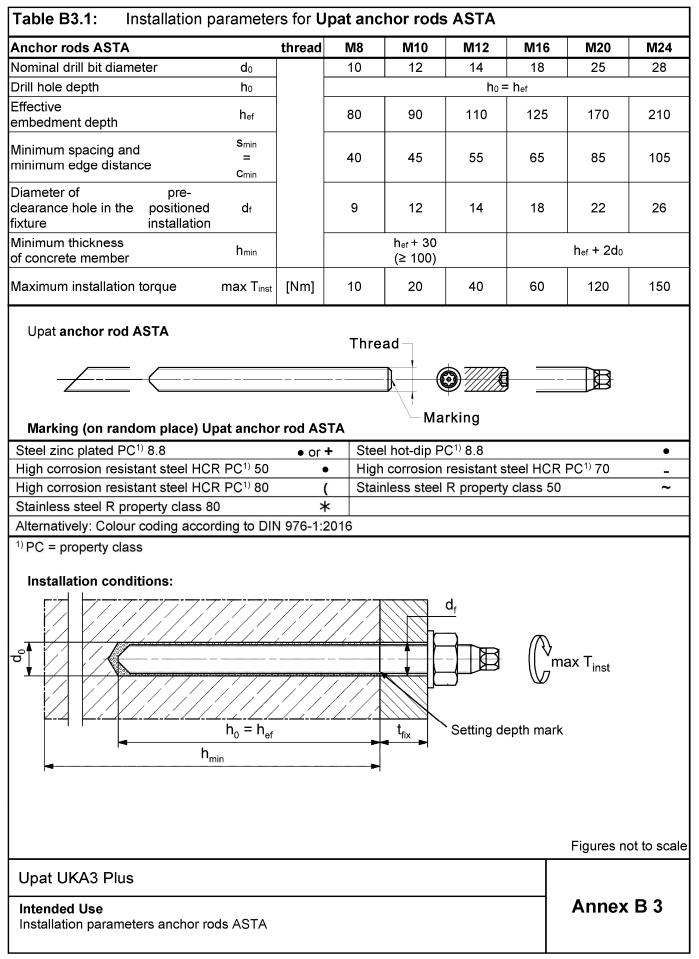
Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 3 Table 3.1.

Design:

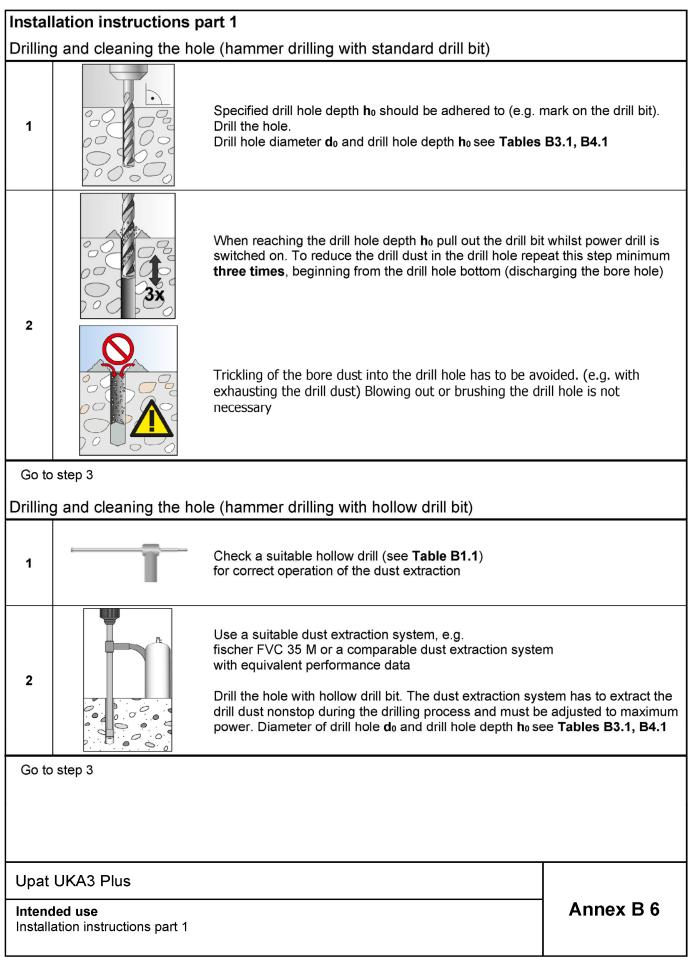
- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.


Installation:

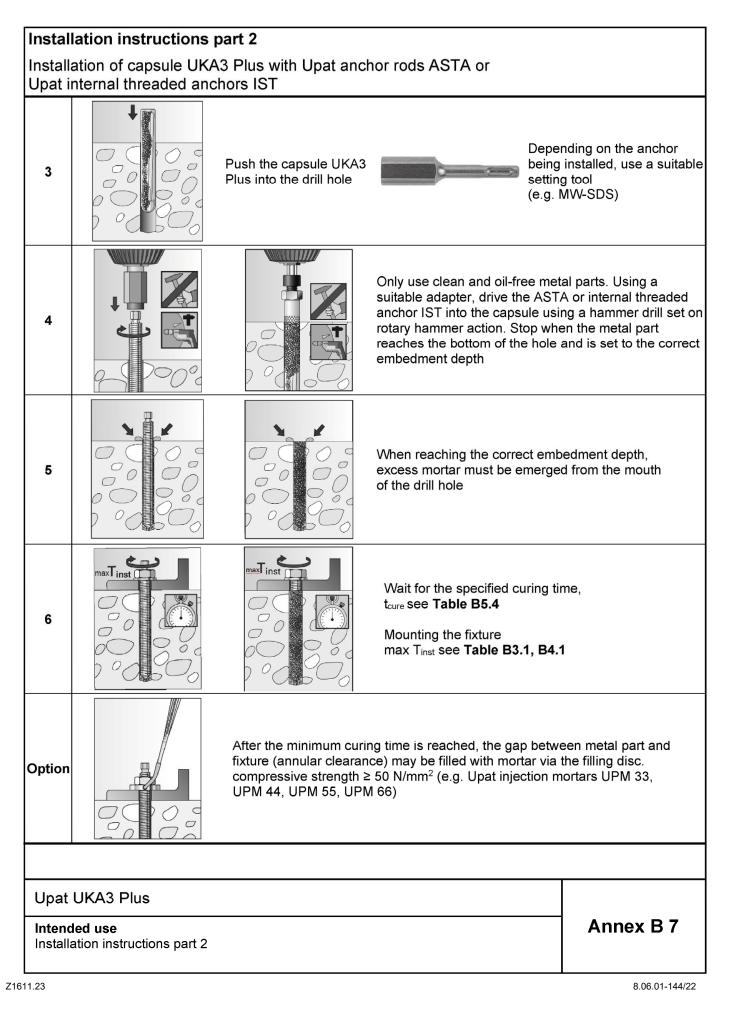
- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening depth should be marked and adhered to installation.
- · Overhead installation is allowed (necessary equipment see installation instruction).

Upat UKA3 Plus

Intended Use Specifications part 2 Annex B 2



Internal threaded anchors IS	T th	read	M8	M10	M12	M16	M20
Diameter of anchor	d = d _H		12	16	18	22	28
Nominal drill bit diameter	d ₀		14	18	20	24	32
Drill hole depth	h₀				$h_0 = h_{ef} = L_H$		
Effective embedment depth (h _{ef} = L _H)	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min} [mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	df		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	I _{E,min}		8	10	12	16	20
Maximum installation torque	max T _{inst} [Nm]	10	20	40	80	120
Retaining bolt or threaded ro strength class of Annex A 3,					x T _{inst}		
Upat UKA3 Plus							s not to sca
Intended Use Installation parameters Upat in	nternal threa	ded and	chors IST			Anno	ex B 4



ngth ^L P	9,0 85	10,5 90	12,5			_	24
Capsule L _P	85	ALC 21175		1	6,5	2	23,0
τ. -		പിലം എറ	97	95	123	160	190
		- Ubell'	UKA3 Plus M	12			
	<		LP				
Table B5.2: Assig Anchor rod ASTA	anment of r	resin caps	ule UKA3 M10	Plus to Up	oat ancho M16	r rod AST/ M20	А M24
Effective	h ([mm]	80	90	110	125	170	210
embedment depth Related capsule UKA3 Plu	h _{ef} [mm] us [-]	8	10	12	125	20/22	210
Table B5.3: Assig			ule UKA3 I				
Internal threaded ancho	r IST	M8	M10	M	12	M16	M20
Effective embedment depth	h _{ef} [mm]	90	90	1:)E	160	000
	I				25	160	200
Related capsule UKA3 Plu		10	12		6	160 16E	200
Table B5.4: Minim	num curing	10 3 time time of the m	12 ortar the cond nimal capsule	1 crete tempe	6 rature may r e -15 °C)	16E	24
Table B5.4: Minim (During listed in Concrete temperature [°C]	num curing	10 3 time time of the m	12 ortar the cond nimal capsule	crete temper e temperatur mum curing t _{cure}	6 rature may r e -15 °C)	16E	24
Table B5.4: Minim (During listed of Concrete temperature	num curing	10 3 time time of the m	12 ortar the cond nimal capsule	1 crete temper e temperatur mum curing	6 rature may r e -15 °C)	16E	24
Table B5.4: Minim (During listed in listed in Concrete temperature [°C] -10 -15 to -10 -5 > -5 to 0 0	num curing	10 3 time time of the m	12 ortar the cond nimal capsule	crete temper e temperatur num curing t _{cure} 30 h 16 h 10 h	6 rature may r e -15 °C)	16E	24
Table B5.4:Minim (During listed rConcrete temperature [°C] -15 to -15 to -10 to> -10 to> -5 to> 0 to> 0 to	num curing	10 3 time time of the m	12 ortar the cond nimal capsule	1 crete temperatur temperatur mum curing t _{cure} 30 h 16 h 10 h 45 min	6 rature may r e -15 °C)	16E	24
Table B5.4:Minim (During listed rConcrete temperature [°C] -15 to -15 to -10 to -5 to -5 to 0 to 5 to 5 to 10	num curing	10 3 time time of the m	12 ortar the cond nimal capsule	crete temper e temperatur num curing t _{cure} 30 h 16 h 16 h 10 h 45 min 30 min	6 rature may r e -15 °C)	16E	24
Table B5.4:Minim (During listed rConcrete temperature [°C] -15 to -15 to -10 to> -10 to> -5 to> 0 to> 0 to	num curing	10 3 time time of the m	12 ortar the cond nimal capsule	1 crete temperatur temperatur mum curing t _{cure} 30 h 16 h 10 h 45 min	6 rature may r e -15 °C)	16E	24

Page 15 of European Technical Assessment ETA-17/0197 of 30 January 2023

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50 50 86 7 / 1,87 60 38 47 63 39 55 63	98 123 196 123 172 196 	141 177 282 177 247 282 177 282 106 141 89 124 141				
$\frac{99}{29} = \frac{2}{9}$ Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Steel zinc plated $\frac{19}{29} = \frac{19}{29}$ Steel zinc plated $\frac{19}{29} = \frac{19}{29}$ $\frac{19}{29} = \frac{13}{26}$ $\frac{19}{29} = \frac{29}{27}$ $\frac{19}{47} = \frac{29}{26}$ $\frac{19}{26} = \frac{11}{26}$ $\frac{19}{29} = \frac{29}{21}$ $\frac{19}{30} = \frac{29}{26}$ $\frac{11}{30} = \frac{11}{20}$ $\frac{11}{100} = \frac{11}{100}$ $\frac{11}$	79 126 79 110 126 50 50 50 50 50 50 50 50 50 50 50 50 50 38 47 63 39 55 63 ,0	123 196 123 172 196 59 74 98 61 86 98	177 282 177 247 282 282 85 106 141 89 124				
$\frac{1}{29} \underbrace{30}{9} \underbrace{30}{9} \underbrace{30}{9} \underbrace{30}{1} \underbrace$	126 79 110 126 50 50 50 86 7/1,87 60 38 47 63 39 55 63 ,0	196 123 172 196 59 74 98 61 86 98	282 177 247 282 				
$\frac{1}{29} \underbrace{30}{9} \underbrace{30}{9} \underbrace{30}{9} \underbrace{30}{1} \underbrace$	79 110 126 50 50 50 86 7 1,87 60 38 47 63 39 55 63 ,0	123 172 196 59 74 98 61 86 98	177 247 282 85 106 141 89 124				
2° resistant steel HCR 80 30 47 68 Partial factors ¹) $\frac{4.8}{5.8}$ $1,5$ Steel zinc plated $\frac{4.8}{5.8}$ $1,5$ Stainless steel R and high corrosion resistant steel HCR $\frac{5.8}{70}$ $\frac{50}{70}$ $1,50^{30}$ Characteristic resistance to steel failure under shear loading ² $1,60^{30}$ $1,60^{30}$ $1,60^{30}$ Vithout lever arm $\frac{4.8}{5.8}$ 50 $11(10)$ $17(16)$ 25 $\frac{9}{20}$ Steel zinc plated $\frac{4.8}{5.8}$ 50 $11(10)$ $17(16)$ 25 $\frac{9}{20}$ Steel zinc plated $\frac{4.8}{5.8}$ 50 $15(13)$ $23(21)$ 34 $\frac{9}{20}$ Stainless steel R and high corrosion resistant steel HCR 80 8.8 $15(13)$ $23(21)$ 34 $\frac{9}{20}$ $\frac{9}{15}$ 21 13 20 30 34 $\frac{9}{20}$ $\frac{13}{20}$ 30 34 $30(27)$ 52	110 126 50 50 50 86 7/1,87 60 38 47 63 39 55 63 ,0	172 196 59 74 98 61 86 98	247 282 85 106 141 89 124				
2 resistant steel HCR 80 30 47 68 Partial factors ¹⁾ Steel zinc plated $\frac{4.8}{5.8}$ 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.6 5.6 5.6 5.8 5.6 5.8 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 <td>126 50 50 50 86 7 / 1,87 60 38 47 63 39 55 63 ,0</td> <td>196 59 74 98 61 86 98</td> <td>282 282 85 106 141 89 124</td>	126 50 50 50 86 7 / 1,87 60 38 47 63 39 55 63 ,0	196 59 74 98 61 86 98	282 282 85 106 141 89 124				
2 resistant steel HCR 80 30 47 68 Partial factors 1) Steel zinc plated $\frac{4.8}{5.8}$ 5.8 5.2 1.5 2.3 3.4	50 50 50 86 7 1,87 60 38 47 63 39 55 63 ,0 133	59 74 98 61 86 98	85 106 141 89 124				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50 50 86 7 / 1,87 60 38 47 63 39 55 63 ,0 133	74 98 61 86 98	106 141 89 124				
Steel zinc plated Term $\frac{5.8}{8}$ Stainless steel R and high corrosion resistant steel HCR $\frac{5.8}{8.8}$ So $\frac{50}{70}$ [-] 1.5 2.8 Characteristic resistance to steel failure under shear loading 2) 1.50^{3} 1.60^{3} 1.60^{3} 1.60^{3} Characteristic resistance to steel failure under shear loading 2) 1.60^{3} 1.60^{3} Vithout lever arm $\frac{4.8}{5.8}$ $\frac{50}{70}$ $9(8)$ $11(10)$ $14(13)$ $20(21)$ Steel zinc plated Stainless steel R and high corrosion resistant steel HCR $\frac{4.8}{50}$ $\frac{70}{80}$ $9(8)$ $15(13)$ $14(13)$ $23(21)$ 20 13 Outcility factor k_7 15 $(-]$ $15(13)$ $23(21)$ 34 34 Outcility factor k_7 15 $(-]$ $1,00^{3}$ 15 23 34 Outcility factor k_7 15 $(-]$ $15(13)$ $30(27)$ 52	50 50 86 7 / 1,87 60 38 47 63 39 55 63 ,0 133	74 98 61 86 98	106 141 89 124				
resistant steel HCR $\overline{80}$ 1,6Characteristic resistance to steel failure under shear loading 2)vithout lever arm $\overline{0}$ <td>50 86 7 1,87 60 38 47 63 39 55 63 ,0 133</td> <td>74 98 61 86 98</td> <td>106 141 89 124</td>	50 86 7 1,87 60 38 47 63 39 55 63 ,0 133	74 98 61 86 98	106 141 89 124				
resistant steel HCR $\overline{80}$ $1,6$ Characteristic resistance to steel failure under shear loading 2)vithout lever arm 21×10^{10} 51×10^{10} 21×10^{10} <	86 7 / 1,87 60 38 47 63 39 55 63 ,0 133	74 98 61 86 98	106 141 89 124				
resistant steel HCR $\overline{80}$ 1,6Characteristic resistance to steel failure under shear loading 2)vithout lever arm $\overline{0}$ <td>2 / 1,87 60 38 47 63 39 55 63 ,0 133</td> <td>74 98 61 86 98</td> <td>106 141 89 124</td>	2 / 1,87 60 38 47 63 39 55 63 ,0 133	74 98 61 86 98	106 141 89 124				
resistant steel HCR $\overline{80}$ 1,6Characteristic resistance to steel failure under shear loading 2)without lever arm $\overrightarrow{0}_{0}^{\infty}$ Steel zinc plated $\overrightarrow{0}_{0}^{\infty}$ $\overbrace{0}_{0}^{\infty}$ $\overbrace{0}$	60 38 47 63 39 55 63 ,0 133	74 98 61 86 98	106 141 89 124				
Interview of the second secon	38 47 63 39 55 63 ,0	74 98 61 86 98	106 141 89 124				
without lever arm yithout lever arm $yithout$ Steel zinc plated $\frac{4.8}{5.8}$ $9(8)$ $14(13)$ 20 $yithout$ Steel zinc plated $\frac{4.8}{5.8}$ 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.13 $23(21)$ 34 9 15 21 34 9 15 21 13 20 30 30 15 23 34 9 15 23 34 15 15 23 34 15	47 63 39 55 63 ,0 133	74 98 61 86 98	106 141 89 124				
$\begin{array}{c c} \underbrace{\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	47 63 39 55 63 ,0 133	74 98 61 86 98	106 141 89 124				
$\begin{array}{c c} 32 \\ 32 \\ 33 \\ 34 \\ 34 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35$	47 63 39 55 63 ,0 133	74 98 61 86 98	106 141 89 124				
$\frac{1}{5} \underbrace{3}_{2} \underbrace{3}_{2} \underbrace{3}_{1} \underbrace{3}_{2} $	63 39 55 63 ,0 133	98 61 86 98	141 89 124				
• • • resistant steel HCR 80 15 23 34 Ductility factor k7 [-] 1,0 with lever arm 4.8 15(13) 30(27) 52	39 55 63 ,0 133	61 86 98	89 124				
• • • resistant steel HCR 80 15 23 34 Ductility factor k7 [-] 1,0 with lever arm 4.8 15(13) 30(27) 52	55 63 ,0 133	86 98	124				
••••••••••••••••••••••••••••••••••••	63 ,0 133	98	_				
operation of the sector of the sect	,0 133		141				
with lever arm 4.8 15(13) 30(27) 52	133	259					
<u>م</u> 4.8 15(13) 30(27) 52		259					
$\begin{array}{c} \underbrace{30(26)}{2} \\ \underbrace{50}{2} \\ $			448				
$\begin{array}{c} s \\ s $		324	560				
$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	266	519	896				
	166	324	560				
$\overset{\sim}{\leftarrow}$ $\overset{\sim}{\otimes}$ high corrosion 70 26 52 92	232	454	784				
C 2 resistant steel HCR 80 30 60 105	266	519	896				
Partial factors ¹⁾	1		_1				
4.8 1,2	25						
	25						
$\frac{1}{2}$ $\frac{1}{2}$ Stainless steel R and 0 $\frac{1}{2}$	25						
$ \begin{array}{c c} $	2,38						
	/ 1,56						
resistant steel HCR 80 1,3	1,33						
 ¹⁾ In absence of other national regulations ²⁾ Values in brackets are valid for hot dip galvanised anchor rods ³⁾ Only for ASTA made of high corrosion-resistant steel HCR 							
Upat UKA3 Plus							

or IST ce to steel fa Property class Property class 70 Property	5.8 5.8 8.8 R HCR	under	M8 tension loa	M10	M12	M16	M20
Property class Property class 70	5.8 8.8 R	under	tension loa	ماليم			
class Property class 70	8.8 R	-		aing			
Property class 70	R	Г	19	29	43	79	123
class 70		[kN]	29	47	68	108	179
	HCR		26	41	59	110	172
Property			26	41	59	110	172
Property							
	5.8				1,50		
class	8.8	[-]			1,50		
Property	R	-			1,87		
class 70	HCR				1,87		
ce to steel fa	allure	under	shear loadi	ng			
Droport	5.8		9,2	14,5	21,1	39,2	62,0
Property class	8.8	ŀ	9,∠ 14,6	23,2	33,7	59,2 54,0	90,0
Property	8.0 R	[kN]	14,8	20,3	29,5	54,0	86,0
class 70	HCR	ŀ	12,8	20,3	29,5	54,8	86,0
	k7	[-]	, J	_0,0	1,0	5.,5	
					- , -		
Property	5.8		20	39	68	173	337
class	8.8	[NIm]	30	60	105	266	519
Property	R	[Nm]	26	52	92	232	454
class 70	HCR		26	52	92	232	454
Property	5.8	ļ			1,25		
class	8.8	[-]	1,25				
Property class 70	R		1,56				
national regul	HCR				1,56		
						Anne	ex C 2
	to steel fai	to steel failure ur	to steel failure under te	to steel failure under tension / shea	to steel failure under tension / shear loading of U	to steel failure under tension / shear loading of Upat internal	

Table C3.1: Character	eristic resis	tance	to conc	rete failu	re under	tension	/ shear lo	ading		
Size					Alls	sizes				
Characteristic resistance to	concrete fa	ilure u	nder tensi	on loading	l					
Installation factor	γinst	[-]			See annex	C 4 to C	5			
Factors for the compressive	strength of	conci	rete > C20/	/25						
	C25/30				1,	02				
Increasing factor ψ_c for	C30/37		1,04							
cracked or uncracked	C35/45				1,	07				
concrete	C40/50	[-]			1,	08				
τ _{Rk} = ψ _c ·τ _{Rk} (C20/25)	C45/55				1,	09				
	C50/60				1,	10				
Splitting failure										
h / h _{ef}	≥ 2,0				1,0	h _{ef}				
Edge distance 2,0 > h / h _{e f}	> 1,3 C _{cr,sp}	[4,6 h _{ef}	- 1,8 h				
h / h _{ef}	≤ 1,3	[mm]		2,26 h _{ef}						
Spacing	S cr,sp			2 c _{cr,sp}						
Concrete cone failure										
Uncracked concrete	k ucr,N	F 1			11	1,0				
Cracked concrete	k cr,N	[-]		7,7						
Edge distance	C cr,N	[]								
Spacing	S cr,N	[mm]			2 0	cr,N				
Factors for sustained tensio	on loading									
Factor	$\psi^{\rm 0}{}_{\rm sus}$	[-]			-	2)				
Characteristic resistance to	concrete fa	ilure u	nder shea	r loading						
All installation conditions	γinst	[-]			1	,0				
Concrete pry-out failure										
Factor for pry-out failure	k ₈	[-]			2	,0				
Concrete edge failure										
Effective length of fastener in shear loading	lf	[mm]	for o	d _{nom} ≤ 24 mi	m: min (h _{ef} ;	12 d _{nom})				
Calculation diameters										
Size			M8	M10	M12	M16	M20	M24		
Upat anchor rods	d		8	10	12	16	20	24		
Upat internal threaded anchors IST	d _{nom}	[mm]	12	16	18	22	28	_1)		
¹⁾ Anchor type not part of th ²⁾ No performance assessed		nt								
Upat UKA3 Plus Performances							Annex	x C 3		
Characteristic resistance to c	concrete failu	ire und	er tension	/ shear load	ding					

8.06.01-144/22

Table (24.1	: Characte anchor re concrete	ods AS			•				r Upat		
Anchor I	rod A	STA			M8	M10	M12	M16	M20	M24		
Combine	ed pu	Illout and concr	ete cone	e failure			L					
Calculatio	on dia	ameter	d	[mm]	8	10	12	16	20	24		
Uncrack	ed co	oncrete										
		c bond resistan										
Hammer-		ng with standard	<u>drill bit o</u>	<u>r hollow dr</u>				Γ	τ	1		
Tem-	!:	40 °C / 24 °C	-		12,5	12,5	12,5	12,5	12,5	12,5		
perature	II:	80 °C / 50 °C	τRk,ucr	[N/mm ²]	12,0	12,0	12,0	12,0	12,0	12,0		
range	III:	120 °C / 72 °C			10,5	10,5	10,5	10,5	10,5	10,5		
Hammer-	-drillir	ng with standard	drill bit o	r hollow dr	<u>ill bit (wate</u>	r-filled hole	<u>*)</u>					
Tem-	l:	40 °C / 24 °C			_1)	_1)	12,5	12,5	12,5	12,5		
perature	II:	80 °C / 50 °C	τ _{Rk,ucr}	[N/mm ²]	_1)	_1)	12,0	12,0	12,0	12,0		
range	III:	120 °C / 72 °C			_1)	_1)	10,5	10,5	10,5	10,5		
Installati	ion fa	actors					·					
Dry and v			- γinst	[-]		1,2						
Water-fill			Inst	[-]	_1)	_1)		1	,4			
Cracked			- !	Les de seu		· • •						
		c bond resistand										
		40 °C / 24 °C				4,5	4,5	4,5	4,5	4,5		
Tem-		40 °C / 24 °C		[N/mm ²]	1)	4,5	4,5	4,5	4,5	4,5		
perature range		120 °C / 72 °C	τRk,cr -					,		,		
			-1			3,5	3,5	3,5	3,5	3,5		
Hammer-		ng with standard		r hollow ur			T	4.5	4.5	4.5		
Tem-		40 °C / 24 °C	-				4,5	4,5	4,5	4,5		
perature range		80 °C / 50 °C	τRk,cr -	[N/mm ²]	_1)	_1)	4,0	4,0	4,0	4,0		
		120 °C / 72 °C		J	_1)	_1)	3,5	3,5	3,5	3,5		
Installati				,	_1)	1		4.0				
Dry and v Water-fill			- γinst	[-]		_1)	<u></u>	1,2	,4			
		mance assessed		I					,4			
Upat U Perform	nanc					o failure for	linat anch		Annex	« C 4		
ASTA	lensu		JIIDIIIEU	puil-out ai			opat anon					

Internal threaded a			te					
	anchors IS	Т		M8	M10	M12	M16	M20
Combined pullout	and concr	ete cone	failure					
Calculation diameter	er	d	[mm]	12	16	18	22	28
Uncracked concre	te		• •					
Characteristic bor	nd resistan	ce in un	cracked c	oncrete C20)/25			
<u>Hammer-drilling wit</u>	h standard	drill bit o	<u>r hollow dr</u>	ill bit (dry an	d wet concrete	<u>e)</u>		
Tem l: 40 °0	C / 24 °C			11	11	11	11	11
	C / 50 °C	- τRk,ucr	[N/mm ²]	10,5	10,5	10,5	10,5	10,5
range III: 120	°C / 72 °C	-		9,5	9,5	9,5	9,5	9,5
Hammer-drilling wit	h standard	drill bit o	r hollow dr	ill bit (water-	illed hole)			
l: 40 °	C / 24 °C			11	11	_1)	11	_1)
Tem perature II: 80 °0	C / 50 °C	- τRk,ucr	[N/mm ²]	10,5	10,5	_1)	10,5	_1)
range III: 120	°C / 72 °C	-	-	9,5	9,5	_1)	9,5	_1)
Installation factors	3		· ·					
Dry and wet concre	te		[-]			1,2		
Water-filled hole		- γinst		1	,4	_1)	1,4	_1)
Cracked concrete								
Characteristic bor								
Hammer-drilling wit	h standard	drill bit o	<u>r hollow dr</u>	ill bit (dry an	d wet concrete	<u>e)</u>		
Tem l: 40 °0	C / 24 °C	_		4,5	4,5	4,5	4,5	4,5
perature II: 80 °	C / 50 °C	τRk,cr	[N/mm ²]	4,0	4,0	4,0	4,0	4,0
range III: 120	°C / 72 °C			3,5	3,5	3,5	3,5	3,5
Hammer-drilling wit	h standard	drill bit o	r hollow dr	ill bit (water-	illed hole)			
ا: 40 °C Tem-	C / 24 °C	_		4,5	4,5	_1)	4,5	_1)
perature II: 80 °(C / 50 °C	τRk,cr	[N/mm ²]	4,0	4,0	_1)	4,0	_1)
range III: 120	°C / 72 °C	-		3,5	3,5	_1)	3,5	_1)
Installation factors	3		· · · · · ·					
Dry and wet concre	te	- γinst	[-]			1,2	Γ	
Water-filled hole		Tillar		1	,4	_1)	1,4	_1)

Z1611.23

Anchor rod ASTA	M8	M10	M12	M16	M20	M24
Displacement-Fact	ors for tension lo	ading ¹⁾				1
Uncracked or crac	ked concrete; Ten	nperature range	ə I, II, III			
δN0-Factor	0,07	0,08	0,09	0,10	0,11	0,12
δN∞-Factor [mm/(N/m	0,13	0,14	0,15	0,17	0,17	0,18
Displacement-Fact	ors for shear load	ling ²⁾			•	-
Uncracked or crac	ked concrete; Ten	nperature range	e I, II, III			
δvo-Factor [mm/kN	0,18	0,15	0,12	0,09	0,07	0,06
δv∞-Factor	0,27	0,22	0,18	0,14	0,11	0,09
¹⁾ Calculation of ef	fective displacemer	nt:	²⁾ Calculatio	on of effective	displacement:	
$\delta_{N0} = \delta_{N0-Factor} \cdot \tau$			$\delta_{V0} = \delta_{V0-F}$	- _{actor} ⋅ V		
$\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \gamma$	τ		$\delta_{V\infty} = \delta_{V\infty}$	$_{\sf Factor}\cdot{\sf V}$		
$\tau = \arctan bor$	d strength under te	ension loading	V = acting	g shear loadir	Ig	
Internal threaded	Displacements M8	for Upat inte	rnal threade		IST M16	M20
Internal threaded anchor IST	M8	M10				M20
Internal threaded anchor IST Displacement-Fact	M8 ors for tension lo	M10 ading ¹⁾	M1			M20
Internal threaded anchor IST Displacement-Fact Uncracked or crac	M8 ors for tension loa ked concrete; Ten	M10 ading ¹⁾ nperature range	M1	12	M16	
Internal threaded anchor IST Displacement-Fact Uncracked or crac $\delta_{N0-Factor}$	M8 cors for tension loa ked concrete; Ten m ²)] 0,09	M10 ading ¹⁾ nperature range 0,10	M1 • I, II, III 0,1	12	M16 0,11	0,19
Internal threaded anchor IST Displacement-Fact Uncracked or crac δN0-Factor δN∞-Factor	M8 fors for tension los ked concrete; Ten m ²)] 0,09 0,13	M10 ading ¹⁾ nperature range 0,10 0,15	M1	12	M16	
Internal threaded anchor IST Displacement-Fact Uncracked or crac δ _{N0-Factor} δ _{N∞-Factor} Displacement-Fact	M8 cors for tension loa ked concrete; Ten m ²)] 0,09 0,13 cors for shear load	M10 ading ¹⁾ nperature range 0,10 0,15 ling ²⁾	M1 i I, II, III 0,1 0,1	12	M16 0,11	0,19
Internal threaded anchor IST Displacement-Fact Uncracked or crac δN0-Factor δN∞-Factor	M8 cors for tension loa ked concrete; Ten m ²)] 0,09 0,13 cors for shear load	M10 ading ¹⁾ nperature range 0,10 0,15 ling ²⁾	M1 i I, II, III 0,1 0,1	1 2	M16 0,11	0,19

0,14

¹⁾ Calculation of effective displacement:

[mm/kN]

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{V\infty}$ -Factor

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-Factor}} \cdot \tau$

 τ = acting bond strength under tension loading

0,18

```
<sup>2)</sup> Calculation of effective displacement:
```

0,10

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

0,12

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$

V = acting shear loading

Upat UKA3 Plus

Performances

Displacements for anchor rods ASTA and Upat internal threaded anchors IST

Annex C 6

0,08