

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-18/0548 of 20 November 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family

to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

frame fixing URDL

Plastic anchor for redundant non-structural systems in concrete and masonry

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau **DEUTSCHLAND**

manufacturing plant 1

16 pages including 3 annexes which form an integral part of this assessment

EAD 330284-00-0604, edition 12/2020

ETA-18/0548 issued on 28 August 2018

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de 8.06.04-380/25

European Technical Assessment ETA-18/0548

English translation prepared by DIBt

Page 2 of 16 | 20 November 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z196031.25 8.06.04-380/25

Page 3 of 16 | 20 November 2025

Specific Part

1 Technical description of the product

The frame fixing URDL is a plastic anchor consisting of a plastic sleeve made of polyamide and an accompanying specific screw of galvanised steel or of stainless steel.

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 1

3.2 Mechanical resistance and stability (BWR 4)

Essential characteristic	Performance
Resistance to steel failure under tension loading	See Annex C 1
Resistance to steel failure under shear loading	See Annex C 1
Resistance to pull-out or concrete failure under tension loading (base material group a)	See Annex C 1
Resistance in any load direction without lever arm (base material group b, c, d)	See Annexes C 3 and C 5
Edge distance and spacing (base material group a)	See Annex B 2
Edge distance and spacing (base material group b, c, d)	See Annex B 3
Displacements under short-term and long-term loading	See Annex C 2
Durability	See Annex B 1

Z196031.25 8.06.04-380/25

European Technical Assessment ETA-18/0548

English translation prepared by DIBt

Page 4 of 16 | 20 November 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

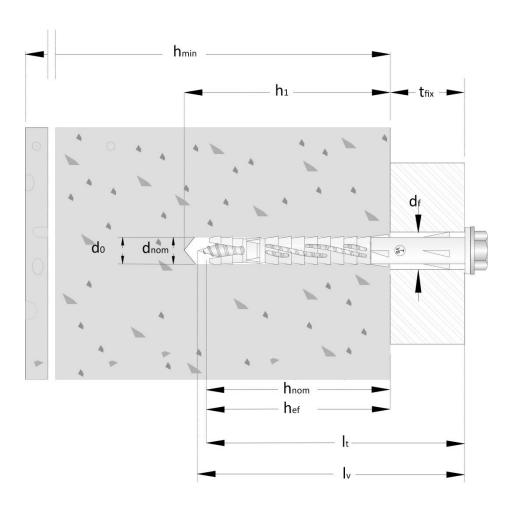
In accordance with European Assessment Document EAD 330284-00-0604 the applicable European legal act is: 97/463/EC.

The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 20 November 2025 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt:

Ziegler

Z196031.25 8.06.04-380/25

URDL

Legend

 $h_{\text{nom}} \triangleq h_{\text{ef}} \;\; \text{=} \;\;\; \text{Overall plastic anchor embedment depth in the base material}$

 h_1 = Depth of drill hole to deepest point

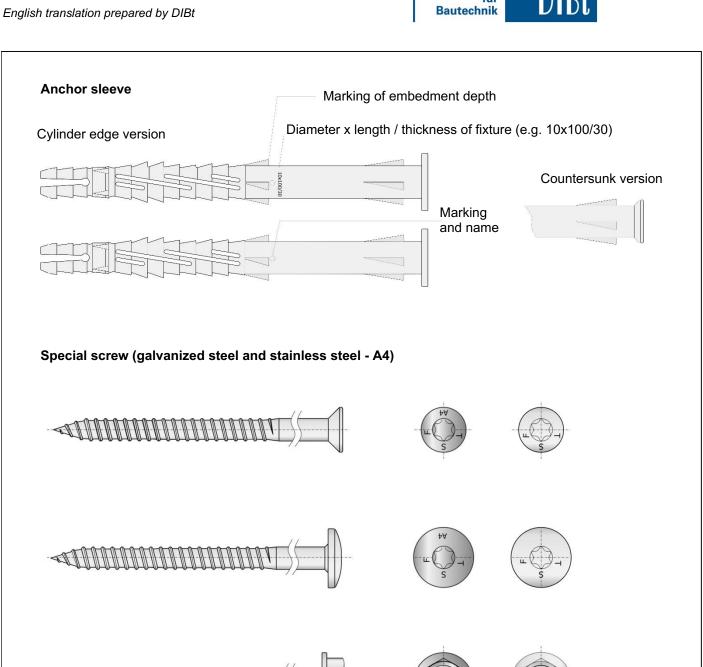
h_{min} = Minimum thickness of member (wall)

 t_{fix} = Thickness of fixture and / or non-load bearing layer

 I_t = Anchor length

 I_v = Screw length

 d_0 = Drill hole diameter


d_f = Diameter of clearance hole in the fixture

d_{nom} = Nominal anchor diameter

Figures not to scale

frame fixing URDL	
Product description Installed anchor	Annex A 1

Figures not to scale

frame fixing URDL	
Product description Anchor types / special screw – Marking and sizes	Annex A 2

Table A3.1: Dimensions

Anchor type			Special	screw				
	h _{nom} [mm]	Ø d _{nom} [mm]	t _{fix} [mm]	min. l _d [mm]	max. l _d [mm]	Ø d _{sf} [mm]	Ø d _s [mm]	l _s [mm]
URDL 8	70	8	≥ 10	≥ 80	360	> 14,5	6,0	≥ 85
URDL 10	70	10	≥ 10	≥ 80	360	> 17,5	7,0	≥ 85

Table A3.2: Materials

Name	Material		
Anchor sleeve Polyamide, PA6, colour: grey off-white			
Galvanized screw	Zinc plated carbon steel (property class 5.8), Zinc layer thickness minimum 5 μm according to ISO 4042:2022 (hereinafter designated as "zinc plated carbon steel")		
Stainless steel screw	Stainless steel "A4/70" according to ISO 3506-1:2020 and EN 10088-3:2023 Corrosion resistance class CRC III according to EN 1993-1-4:2006+A1:2015		

frame fixing URDL	
Product description Dimensions / Materials	Annex A 3

Specifications of intended use

Anchorages subject to:

- · Static and quasi-static loads.
- Multiple fixing of non-structural applications.

Base materials:

- Compacted, reinforced or unreinforced normal weight without fibres with strength classes ≥ C16/20 (base material group a), according to EN 206:2013+A2:2021. See Annex C1.
- Solid brick masonry (base material group b) see Annex C2.
 Note: The characteristic resistance is also valid for larger brick sizes and larger compressive strength of the masonry unit.
- Hollow or perforated brick masonry (base material group c) see Annex C3 and C4.
- Autoclaved aerated concrete (base material group d) see Annex C9.
- Mortar strength class of the masonry ≥ M2,5 according to EN 998-2:2016.
- For other base materials of the base material group a, b, c or d the characteristic resistance of the anchor may be determined by job site tests according to EOTA TR 051:2018-04.

Temperature range:

- a: 40 °C to 40 °C (max. short term temperature + 40 °C and max long term temperature + 24 °C)
- b: 40 °C to 80 °C (max. short term temperature + 80 °C and max long term temperature + 50 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated carbon steel screws / stainless steel screws)
- The specific screw made of zinc plated carbon steel may also be used in structures subject to external atmospheric exposure, if the area of the head of the screw is protected against moisture and driving rain after mounting of the fixing unit in this way, that intrusion of moisture into the anchor shaft is prevented. Therefore there shall be an external cladding or a ventilated rainscreen mounted in front of the head of the screw and the head of the screw itself shall be coated with a soft plastic, permanently elastic bitumen-oil-combination coating (e. g. undercoating or body cavity protection for cars).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist: stainless steel screws.
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone
 of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution
 (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are designed in accordance with EOTA TR 064:2022-12 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the
 nature and strength of the base materials and the dimensions of the anchorage members as well as of the
 relevant tolerances. The position of the anchor is indicated on the design drawings.

Installation:

- Hole drilling by the drill modes according to Annex C1, C3, C5.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature ≥ 0 °C.
- Exposure to UV due to solar radiation of the anchor not protected by e.g. plaster ≤ 6 weeks.
- No ingress of water in the core hole < 0 °C.

frame fixing URDL	
Intended use Specifications	Annex B 1

Table B2.1: Installation parameter

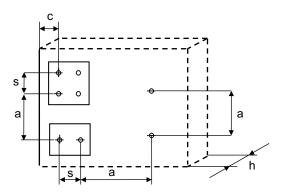

Anchor type				URDL 8	URDL 10
Nominal drill hole diameter	d_0	=	[mm]	8	10
Cutting diameter of drill bit	$\mathbf{d}_{\mathrm{cut}}$	\leq	[mm]	8,45	10,45
Overall plastic anchor embedment depth in the base material	h _{ef} =	≥	[mm]	70	70
Depth of drill hole to deepest point	h ₁	≥	[mm]	90	90
Diameter of clearance hole in the fixture	d _f	≤	[mm]	9	11
Hexagon socket (ISO 10664:2014)	Т		[-]	30	40
Wrench size (hexagon screw)	SW	=	[mm]	10	13

Table B2.2: Minimum thickness of member, edge distance and spacing in concrete

Anchor type	h _{nom}	Concrete Strength class	Min. thickness of member	Characteristic edge distance			Minimum spacing ¹⁾
	≥ [mm]	Class	h_{min} [mm]	c_{cr,N} [mm]	s _{cr,N} [mm]	s _{min} [mm]	C _{min} [mm]
URDL 8	70	≥ C16/20	140	105	75	90	90
URDL 10	70	≥ C16/20	140	105	90	100	100

¹⁾ Intermediate values by linear interpolation.

Scheme of distance and spacing in concrete

Fixing points with a spacing $a \le s_{cr,N}$ are considered as a group with a max. characteristic resistance $N_{Rk,p}$ according to Table C1.3. For a spacing $a > s_{cr,N}$ the anchors are considered as single anchors, each with a characteristic resistance $N_{Rk,p}$ according to Table C1.3.

Figure not to scale

frame fixing URDL	
Intended use Installation parameters, member thickness, edge distances and spacing in concrete Scheme of anchors in concrete	Annex B 2

Table B3.1: Minimum thickness of member, edge distance and spacing in masonry

URDL 8 / URDL 10	Minimum member thickness	Minimum edge distances ¹⁾	Spacing perpendicular to free edge	Spacing parallel to free edge	Minimum edge distance	Minimum distance between anchor groups and / or single anchors
Base material ¹⁾ according to	h _{min} [mm]	c _{min} [mm]	s _{1,min} [mm]	s ₂ , _{min} [mm]	c _{min} [mm]	a _{min} [mm]
Annex C3 – C4		Single anchor	And	chor group		
Masonry TYPE A	110	120	240	480	120	
Masonry TYPE B	120	125	250	500	125	
Masonry TYPE C	120	125	250	500	125	
Masonry TYPE D	120	125	250	500	75	
Masonry TYPE E	370	185	370	740	185	250
Masonry TYPE F	240	120	240	480	120	
Masonry TYPE G	240	120	240	480	120	
Masonry TYPE H	115	120	240	480	120	
Masonry TYPE I	175	120	240	480	120	

¹⁾ TYPE see Table C3.1 and C4.1.

Table B3.2: Minimum thickness of member, edge distance and spacing in autoclaved aerated concrete

URDL 8 / URDL 10	Minimum member thickness	Minimum edge distances ¹⁾	Spacing perpendicular to free edge	Spacing parallel to free edge	Minimum edge distance
Base material	h _{min} [mm]	c _{min} [mm]	s _{1,min} [mm]	s ₂ , _{min} [mm]	c _{min} [mm]
		Single anchor		Anchor group	
Autoclaved aerated concrete	240	120	240	480	120

Scheme of distance and spacing in masonry and autoclaved aerated concrete

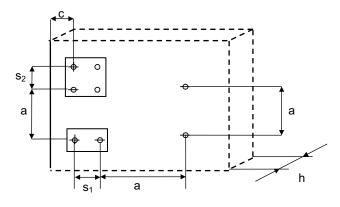
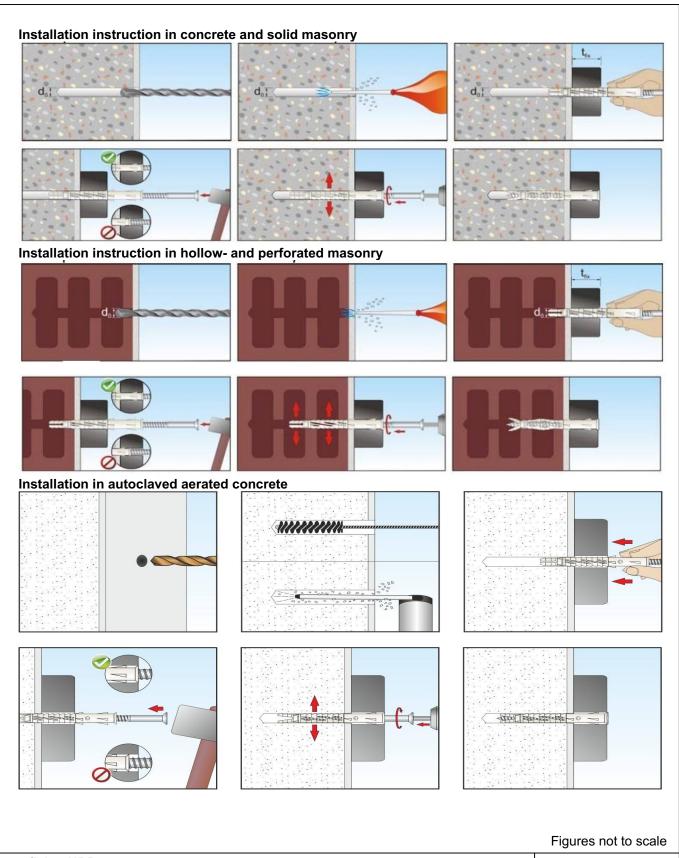



Figure not to scale

frame fixing URDL	A B.0
Intended use Member thickness, edge distances and spacing in concrete Scheme of anchors in masonry and autoclaved aerated concrete	Annex B 3

frame fixing URDL	
Intended use Installation instruction	Annex B 4

Table C1.1: Characteristic bending resistance of the screw

Anchor type			URDL 8 URDL 10			L 10
Material			Galvanized steel	Stainless steel	Galvanized steel	Stainless steel
Characteristic bending resistance	$M_{Rk,s}$	[Nm]	12,1	16,9	19,3	27,1
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,25			

¹⁾ In absence of other national regulations.

Table C1.2: Characteristic resistance of the screw

Versagen des Spreizelementes			URE	DL 8	URDL 10		
(Spezialschraube)			Galvanized steel	Stainless steel	Galvanized steel	Stainless steel	
Characteristic tension resistance	$N_{Rk,s}$	[kN]	11,3	15,8	15,4	21,6	
Partial safety factor	γ _{Ms} 1)	[-]	1,5				
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,6	7,9	7,7	10,8	
Partial safety factor	γ _{Ms} 1)	[-]	1,25				

¹⁾ In absence of other national regulations.

Table C1.3: Characteristic resistance for use in concrete (base material group "a")

Pull-out failure (plastic sleeve)			Drilling method	URDL 8	URDL 10
Anchorage depth h _{nom} [mm]				70	70
Concrete strength f _{ck} ≥ 16 N/mm² (streng			th class C16/20 a	ccording to EN 206:2013-	+A2:2021)
Characteristic tension resistance 24/40 °C	$N_{Rk,p}$	[kN]	Н	3,5	4,5
Characteristic tension resistance 50/80 °C	$N_{Rk,p}$	[kN]	Н	3,0	4,0
Partial safety factor	γ _{Mc} ²⁾	[-]	1,8		

¹⁾ Drilling mode: Hammer drilling.

Table C1.4: Values under fire exposure in concrete C20/25 to C50/60 in any load direction, no permanent centric tension load, shear load without lever arm, fastening of façade systems

Anchor type	Fire resistance class	F _{Rk,fi90} 1) [kN]	γ _{M,fi} ²⁾ [-]
URDL 10	R 90	≤ 0,8	1,0

¹⁾ $F_{Rk} / (\gamma_{MX} \gamma_{F})$.

frame fixing URDL	
Performances Characteristic bending resistance of the screw, characteristic resistance of the screw Characteristic resistance for use in concrete, values under fire exposure	Annex C 1

²⁾ In absence of other national regulations.

²⁾ In absence of other national regulations.

Table C2.1: Displacements 2) under tension and shear loading in concrete and masonry

URDL 8	Tension load	Displacement under tension load ³⁾		Shear load	•	ement under ar load ³⁾
Base material ¹⁾ according to Annex C3 – C4	N [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	V [kN]	δ _{vo} [mm]	δ _{v∞} [mm]
Beton C16/20	1,20	0,24	0,48	3,20	2,00	3,00
Masonry TYPE A	0,90	0,04	0,08	3,20	2,67	4,00
Masonry TYPE B	1,10	0,25	0,50	3,20	2,67	4,00
Masonry TYPE C	•	-	-	3,20	6,40	9,60
Masonry TYPE D	0,09	0,03	0,06	3,20	6,40	9,60
Masonry TYPE E	0,09	0,01	0,02	3,20	2,67	4,00
Masonry TYPE F	1,57	0,14	0,29	1,57	1,31	1,96
Masonry TYPE G	0,26	0,01	0,02	0,26	0,21	0,32
Masonry TYPE H	0,26	0,01	0,02	0,26	0,21	0,32
Masonry TYPE I	1,43	0,11	0,21	1,43	1,19	1,79

¹⁾ TYPE see Table C3.1 and C4.1. 2) Valid for all ranges of temperature. 3) Intermediate values by linear interpolation.

Table C2.2: Displacements 2) under tension and shear loading in concrete and masonry

URDL 10	Tension load	Displacement under tension load ³⁾		Shear load	•	ement under ar load ³⁾
Base material ¹⁾ according to Annex C3 – C4	N [kN]	δ _{Ν0} [mm]	δ _{Ν∞} [mm]	V [kN]	δ _{vo} [mm]	δ _{v∞} [mm]
Beton C16/20	1,60	0,29	0,58	4,40	1,67	2,50
Masonry TYPE A	0,60	0,06	0,12	4,40	3,67	5,50
Masonry TYPE B	1,40	0,67	1,34	4,40	3,67	5,50
Masonry TYPE C	0,09	0,12	0,24	4,40	8,80	13,20
Masonry TYPE D	-	ı	-	4,40	8,80	13,20
Masonry TYPE E	-	-	-	4,40	3,67	5,50
Masonry TYPE F	1,71	0,07	0,15	1,71	1,43	2,14
Masonry TYPE G	0,26	0,01	0,02	0,26	0,21	0,32
Masonry TYPE H	0,26	0,01	0,02	0,26	0,21	0,32
Masonry TYPE I	1,57	0,08	0,17	1,57	1,31	1,96

¹⁾ TYPE see Table C3.1 and C4.1. 2) Valid for all ranges of temperature. 3) Intermediate values by linear interpolation.

Table C2.3: Displacements 1) under tension and shear loading in concrete and masonry

Dübeltyp	Mean compressive strength	Load	Displacement under tension load ²⁾		Displacement under shear load ²⁾	
	f _{cm,decl} [N/mm²]	F [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	δ _{vo} [mm]	δ _{ν∞} [mm]
URDL 8	> 2.5	0,18	0.01	0.03	0,36	0,54
URDL 10	≥ 3,5	0,21	0,01	0,01 0,02	0,43	0,64

¹⁾ Valid for all ranges of temperatures. 2) Intermediate values by linear interpolation.

frame fixing URDL	
Performances	Annex C 2
Displacements in concrete, masonry and autoclaved aerated concrete	

Table C3.1: Characteristic resistance – solid brick TYPE A (base material group "b")

Base material	Drilling method	Bulk Density ρ	Mean compressive strength according to EN 771	URDL Ø 8 F _{Rk}	URDL Ø 10 F _{Rk}
Description	-	[kg/dm³]	[N/mm²]	[kN]	[kN]
Solid clay brick according to	Rotary and				
EN 771-1:2011+A1:2015	hammer	1,7	20,0	3,01)	2,0 ¹⁾
Mattone pieno 110x60x240 "Danesi"	drilling				

Table C3.2: Characteristic – solid brick TYPE B (base material group "b")

Base material	Drilling method	Bulk Density ρ	Mean compressive strength according to EN 771	URDL Ø 8 F _{Rk}	URDL Ø 10 F _{Rk}
Description	-	[kg/dm³]	[N/mm ²]	[kN]	[kN]
Solid clay brick according to	Rotary and				
EN 771-1:2011+A1:2015	hammer	1,7	20,0	4,01)	5,0 ¹⁾
Mattone pieno 250x120x55 "Terreal Italia"	drilling				

Table C3.3: Characteristic resistance – solid brick TYPE E (base material group "b")

Base material	Drilling method	Bulk Density ρ	Mean compressive strength according to EN 771	URDL Ø 8 F _{Rk}	URDL Ø 10 F _{Rk}
Description	-	[kg/dm³]	[N/mm²]	[kN]	[kN]
Volcanic Tuff according to EN 771-3:2011+A1:2015 Fior di tufo 370x370x110 "Cave reunite"	Rotary and hammer drilling	2,4	7,5	-	0,3

Table C3.4: Characteristic resistance – solid brick TYPE F (base material group "b")

Base material	Drilling method	Bulk Density ρ	Mean compressive strength according to EN 771	URDL Ø 8 F _{Rk}	URDL Ø 10 F _{Rk}
Description	-	[kg/dm³]	[N/mm ²]	[kN]	[kN]
Calcium silicate solid brick according to EN 771-2:2011+A1:2015 KS-"Plansteine" KS-R(P)-20-2,0-8DF (240) "Heidelberger-Kalksandstein"	Rotary and hammer drilling	1,9	20,0	5,5 ¹⁾	6,01)

 $^{^{1)}}$ For brick with mean compressive strength in the range 10 - 20 N/mm²: $F_{Rk,low}$ = 0,7 x F_{Rk} (with F_{Rk} for 20 N/mm²).

frame fixing URDL	
Performances Characteristic resistance for use in solid brick masonry	Annex C 3

Table C4.1: Hollow and perforated brick masonry (base material group "c") brick details

Stein	Base material / description	Dimensions [mm]	Brick drawings and dimensions
TYPE C	Perforated clay brick Doppio doppio UNI "Danesi"	120x245x250	23 28 28 120
TYPE D	Perforated clay brick according to EN 771-1:2011+A1:2015 Forati "Wienerberger"	120x250x250	28 250
TYPE G	Perforated clay brick, according to EN 771-1:2011+A1:2015 Poroton-Perforated clay brick- Block-T-24,0-0,9 L "Wienerberger"	240x500x238	15 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TYPE H	Perforated clay brick, according to EN 771-1:2011+A1:2015 Poroton-Kleinformat HIzB- 2DF - 0,9 "Wienerberger"	115x240x113	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
TYPE I	Calcium silicate hollow brick according to EN 771-2:2011+A1:2015 "Heidelberger-Kalksandstein" KS-L	175x240x113	21

frame fixing URDL

Performances
Hollow and perforated brick masonry dimensional details

Figures not to scale

Annex C 4

Table C5.1: Characteristic resistance – Hollow or perforated masonry (base material group "c")

Base material	Drilling method	Bulk Density ρ	Mean compressive strength according to EN 771	URDL Ø 8 F _{Rk}	URDL Ø 10 F _{Rk}
Description	-	[kg/dm³]	[N/mm²]	[kN]	[kN]
TYPE C					
Perforated clay brick according to EN 771-1:2011+A1:2015 Doppio doppio UNI 120x245x250 "Danesi"	rotary drilling	0,9	13,0	-	0,3
TYPE D				I	
Perforated clay brick according to EN 771-1:2011+A1:2015 Forati 120x250x250 "Wienerberger"	rotary drilling	0,6	2,0	0,3	-
TYPE G				<u> </u>	
Perforated clay brick according to EN 771-1:2011+A1:2015 Poroton-Perforated clay brick-Block-T-24,0- 0,9 L "Wienerberger"	rotary drilling	0,9	7,0	0,9	0,9
ТҮРЕ Н					
Perforated clay brick according to EN 771-1:2011+A1:2015 Poroton-Kleinformat HIzB- 2DF -0,9 "Wienerberger"	rotary drilling	0,9	15,0	0,9	0,9
TYPE I					
Calcium silicate hollow brick according to EN 771-2:2011+A1:2015 "Heidelberger-Kalksandstein" KS-L	rotary drilling	1,5	15,0	5,0	5,5

Table C5.2: Characteristic resistance in autoclaved aerated concrete (base material group "d")

Base material	Drilling method	Bulk Density ρ	Mean compressive strength according to EN 771 f _{cm,decl}	URDL Ø 8 F _{Rk}	URDL Ø 10 F _{Rk}
Description	•	[kg/dm³]	[N/mm²]	[kN]	[kN]
Non-cracked aerated autoclaved concrete (blocks), according to EN 771-4: 2011+A1:2015	rotary drilling	0,5	3,5	0,5	0,6

frame fixing URDL	
Performances Characteristic resistance for use in hollow or perforated masonry and autoclaved aerated concrete	Annex C 5