

RO

DECLARAȚIA DE PERFORMANȚĂ

1. Cod unic de identificare al produsului-tip:

DoP 0341

pentru sistem de injecție fischer FIS EM Plus (Mortar pentru conexiuni de armare postinstalate)

DoP 0341

2. <u>Utilizare (utilizări) preconizată (preconizate):</u> Sistem pentru bare de armare (armături) post-instalate cu comportament îmbunătățit

de cedare a legăturii; consultați suplimentul, în special anexele B1-B9.

3. Fabricant: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Reprezentant autorizat:

5. Sistemul (sistemele) de evaluare și de verificare a

constantei performantei:

6. Documentul de evaluare european: EAD 332402-00-0601-v02, Edition 10/2022

1

Evaluarea tehnică europeană: ETA-22/0001; 2023-07-31

Organismul de evaluare tehnică: DIBt- Deutsches Institut für Bautechnik

Organism (organisme) notificat(e): 2873 TU Darmstadt

7. Performanța (performanțe) declarată (declarate):

Rezistență mecanică și stabilitate (BWR 1)

Rezistența caracteristică la întindere (pentru încărcări statice și cvasistatice):

Rezistența combinată la smulgere și cedare con beton în beton nefisurat: Anexele C1-C3

Rezistenta la cedarea conului de beton: Anexa C1

Robustețe: Anexele C1-C3

Rezistenta la cedarea legăturii: Anexa C1

Influența betonului fisurat asupra rezistenței combinate la smulgere și cedare con beton: Anexele C2, C3

Rezistența caracteristică la sarcină de întindere (încărcare seismică):

Rezistența la ruperea legăturii în cazul unei sarcini ciclice: Anexa C4

Influența creșterii lățimii fisurii asupra rezistenței la cedare prin smulgere: Anexa C4

Rezistența la smulgere în beton nefisurat în cazul unei sarcini ciclice: Anexa C4

Siguranța în caz de incendiu (BWR 2)

Reacție la foc: Clasa (A1)

8. Documentație tehnică adecvată și/sau documentație -

tehnică specifică:

Performanța produsului identificat mai sus este în conformitate cu setul de performanțe declarate. Această declarație de performanță este eliberată în conformitate cu Regulamentul (UE) nr. 305/2011, pe răspunderea exclusivă a fabricantului identificat mai sus.

Semnată pentru și în numele fabricantului de către:

Dr.-Ing. Oliver Geibig, Director Executiv Departament Business & Inginerie

Tumlingen, 2023-08-07

Jürgen Grün, Director Executiv Departament Chimic & Calitate

Această declarație de performanță a fost întocmită în mai multe limbi. În cazul unei divergențe de interpretare, versiunea în limba engleză prevalează întotdeauna.

Suplimentul include informații voluntare și complementare în limba engleză, în afara cerințelor legale (specificate neutru din punct de vedere al limbii).

Fischer DATA DOP_ECs_V92.xlsm 1/1

Translation guidance Essential Characteristics and Performance Parameters for Annexes

Ghid de traducere a caracteristicilor esențiale și a parametrilor de performanță pentru anexe

Me	echanical resistance and stability (BWR 1)	
Re	ezistentă mecanică si stabilitate (BWR 1)	
Ch	naracteristic resistance to tension load (static and quasi-static loading):	
Re	ezistența caracteristică la întindere (pentru încărcări statice și cvasistatice):	
1	Resistance to combined pull- out and concrete failure in uncracked concrete:	$\tau_{Rk,ucr,50}$ [N/mm ²], $\psi_{sus,50}^{0}$ [-];
	Rezistența combinată la smulgere și cedare con beton în beton nefisurat:	$\tau_{Rk,ucr,100}$ [N/mm ²]; $\psi^0_{sus,100}$ [-]
2	Resistance to concrete cone failure:	c _{cr,N} [mm], k _{ucr,N} [-], k _{cr,N} [-]
	Rezistența la cedarea conului de beton:	
3	Robustness:	Yinst [-]
	Robustețe:	
4	Resistance to bond-splitting failure:	A _k [-], sp1 [-], sp2 [-], sp3 [-], sp4 [-],
	Rezistența la cedarea legăturii:	lb1 [-]
5	Influence of cracked concrete on resistance to combined pull-out and concrete failure: Annexes	$\Omega_{cr,03}$ [-]
	Influența betonului fisurat asupra rezistenței combinate la smulgere și cedare con beton:	
Ch	naracteristic resistance to tension load (seismic loading):	
Re	zistența caracteristică la sarcină de întindere (încărcare seismică):	
6	Resistance to bond-splitting failure under cyclic loading:	α _{eq,sp} [-]
	Rezistența la ruperea legăturii în cazul unei sarcini ciclice:	
7	Influence of increased crack width on resistance to pull-out failure:	$\Omega_{\text{cr,05}}$ [-], $\Omega_{\text{cr,08}}$ [-]
	Influența creșterii lățimii fisurii asupra rezistenței la cedare prin smulgere:	
8	Resistance to pull-out failure in uncracked concrete under cyclic loading:	α _{ea.p} [-]
	Rezistența la smulgere în beton nefisurat în cazul unei sarcini ciclice:	
	I Ifety in case of fire (BWR 2)	
_	guranța în caz de incendiu (BWR 2)	
9	Reaction to fire: Class (A1)	-
	Reacție la foc:	

Specific Part

1 Technical description of the product

The subject of this European technical assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the fischer injection system FIS EM Plus in accordance with the regulations for reinforced concrete construction.

Reinforcing bars with a diameter ϕ from 8 to 40 mm according to Annex A and the injection mortar FIS EM Plus are used for the post-installed rebar connection. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded reinforcing bar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 3
Characteristic resistance to tension load (seismic loading)	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 332402-00-0601-v02, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Installation conditions and application examples reinforcing bars

Figure A1.1:

Column / wall to foundation / slab

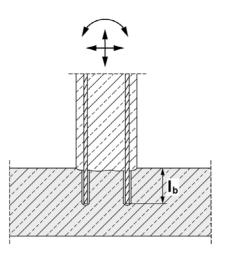
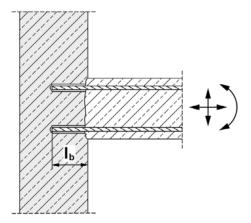



Figure A1.2:

Slab / beam to wall or beam to column

Figures not to scale

Product description

Annex A 1

Appendix 3 / 18

Overview system components Injection cartridge (shuttle cartridge) FIS EM Plus with sealing cap; Sizes: 390 ml, 585 ml, 1100 ml, 1500 ml Imprint: fischer FIS EM Plus, processing notes, shelf-life, piston travel scale (optional), curing times and processing times (depending on temperature), hazard code, size, volume Static mixer FIS MR Plus for injection cartridges 390 ml Static mixer FIS UMR for injection cartridges ≥ 585 ml Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS UMR Reinforcing bar (rebar) Sizes: \$\phi8\$, \$\phi10\$, \$\phi12\$, \$\phi14\$, \$\phi16\$, \$\phi20\$, \$\phi22\$, \$\phi24\$, \$\phi25\$, \$\phi26\$, \$\phi26\$, \$\phi26\$, \$\phi30\$, \$\phi30\$, \$\phi36\$, \$\phi40\$ marking setting depth fischer cleaning brush Compressed-air cleaning tool with fischer compressed-air nozzle Figures not to scale fischer injection system FIS EM Plus Annex A 2 **Product description** Overview system components: injection mortar, static mixer, injection adapter, Appendix 4 / 18

reinforcing bar, cleaning tools

Properties of reinforcing bars (rebar)

Figure A3.1:

- The minimum value of related rib area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- The maximum outer rebar diameter over the ribs shall be:
 - The nominal diameter of the bar with rib $\phi + 2 \cdot h_{rib}$ ($h_{rib} \le 0.07 \cdot \phi$)
 - ο (φ: Nominal diameter of the bar; h_{rib} = rib height of the bar)

Table A3.1: Installation conditions for rebars

Nominal diameter of the bar		ф	8	1)	10) ¹⁾	12	21)	14	16	20	22	24
Nominal drill hole diameter	d ₀		10	12	12	14	14	16	18	20	25	30	30
Drill hole depth	h ₀		$h_0 \ge I_b$										
Effective embedment depth	$I_b = I_v$	[mm]	acc. to static calculation										
Minimum thickness of concrete member	h _{min}				, + 30 ≥ 100					lb	+ 2d ₀		

Nominal diameter of the bar		ф	25	5 1)	26	28	30	32	34	36	40
Nominal drill hole diameter	d_0		30	35	35	35	40	40	40	45	55
Drill hole depth	h ₀		$h_0 \ge l_b$								
Effective embedment depth	$I_b = I_v$	[mm]				acc	. to statio	c calcula	tion		
Minimum thickness of concrete member	h _{min}	I _b + 2d ₀									

¹⁾ Both drill hole diameters can be used

Table A3.2: Materials of rebars

Designation	Reinforcing bar (rebar)			
Reinforcing bar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$			

fischer i	njection system FIS EM Plus	
		Π

Product description

Properties and materials of reinforcing bars (rebar)

Annex A 3

Appendix 5 / 18

Specifications of intended use part 1

 Table B1.1:
 Overview use and performance categories

Fastenings subjec	t to		FIS EM P	Plus with		
		Reinforcing bar				
Hammer drilling with standard drill bit	84444000000		all size	s		
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hill "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max")	ii	Nom	inal drill bit dia 12 mm to 35			
Use category	11 dry or wet concrete	all sizes				
ose sategory	l2 water filled hole	all sizes (not permitte	d in combination	ation with working life 100 years)		
Characteristic resistance under	in uncracked concrete	all sizes		Tables: C1.1 C1.2		
static and quasi- static loading	in cracked concrete	all sizes		C2.1 C3.1		
Seismic performar	nce	all sizes		Tables: C4.1		
Installation direction	on	D3 (downward and	l horizontal an	d upwards (e.g. overhead))		
Installation temper	rature	$T_{i,min}$ = -5 °C to $T_{i,max}$ = +40 °C for the standard variation of temperature after installation				
Service	Temperature range I	-40 °C to +60 °C	•	ort term temperature +60 °C; g term temperature +35 °C)		
temperature	Temperature range II	-40 °C to +72 °C	•	ort term temperature +72 °C; g term temperature +50 °C)		

fischer injection system FIS EM Plus	
Intended use Specifications part 1	

Specifications of intended use part 2

Anchorages subject to:

- Static and quasi-static loading: reinforcing bar (rebar) size 8 mm to 40 mm
- Seismic action: reinforcing bar (rebar) size 8 mm to 40 mm

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+A1:2016
- Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure, the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1 :2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design under static and quasi-static loading and for seismic actions in accordance with EOTA Technical Report TR 069 June 2021.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.
- The shear force must be transferred via the rough joint; the subsequent reinforcement must not be applied for shear force transfer.

Installation:

- Rebar installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).
- Rebars in overhead installation have to be fixed in their position until the injection mortar is cured.

Table B3.1: Minimum concrete cover c_{min} depending on the drilling method and the drilling tolerance ²⁾

	nominal		Minimum concrete cover c _{min}						
Drilling method	diameter of reinforcing bar φ [mm]	Without drilling aid [mm]		drilling aid [mm]					
Hammer drilling with	< 25	30 mm + 0,06 l _b ≥ 2 ф	30 mm + 0,02 l _b ≥ 2 ф						
standard drill bit	≥ 25	40 mm + 0,06 l _b ≥ 2 φ	40 mm + 0,02 l _b ≥ 2 φ						
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch	< 25	30 mm + 0,06 l _b ≥ 2 φ	30 mm + 0,02 l _b ≥ 2 φ	Drilling aid					
"Speed Clean"; Hilti "TE-CD, TE-YD")	≥ 25	40 mm + 0,06 l _b ≥ 2 φ	40 mm + 0,02 l _b ≥ 2 φ						

¹⁾ Note: The minimum concrete cover as specified in EN 1992-1-1:2004+AC:2010 must be observed.

Table B3.2: Dispensers and cartridge sizes corresponding to maximum embedment depth $I_{b,max}$

reinforcing bars (rebar)	Manual dispenser	Pneumatic or cordless dispenser (small)	Pneumatic or cordless dispenser (large)				
	Cartridge size	Cartridge size	Cartridge size				
	390 ml, 585 ml	390 ml, 585 ml	1500 ml				
φ [mm]	l _{b,max} [mm]	l _{b,max} [mm]	l _{b,max} [mm]				
8		1000					
10		1000					
12	1000	1200	1800				
14		1200	1800				
16		1500					
20	700	1300					
22 / 24 / 25	700	1000					
26 / 28	500	700					
30 / 32 / 34			2000				
36 / 40	no performance assessed	500					

Figures not to scale

fischer injection system FIS EM Plus	
Intended use	Annex B 3
Minimum concrete cover; dispenser and cartridge sizes corresponding to maximum embedment depth	Appendix 8 / 18

²⁾ Minimum clear spacing is a = max (40 mm; $4 \cdot \phi$)

Table B4.1: C	onditions for	use s 1	tatic	mixe	r with	out a	n ext	ensi	on tu	be				
Nominal drill hole diameter	d_0		10	12	14	16	18	20	24	25	28	30	35	40
Drill hole depth h₀ by	FIS MR Plus	[mm]	≤9	90	≤120	≤140	≤150	≤160	≤190			≤210		
using	FIS UMR		_	_	≤90	≤160	≤180	≤190	≤2	20		≤2	50	

Table B4.2: Working times twork and curing times tcure

Temperature at anchoring base [°C]	Maximum processing time $^{1)}$ t_{work}	Minimum curing time ²⁾ t _{cure}
-5 to 0	240 min ³⁾	200 h
>0 to 5	150 min ³⁾	90 h
>5 to 10	120 min ³⁾	40 h
>10 to 20	30 min	18 h
>20 to 30	14 min	10 h
>30 to 40	7 min ⁴⁾	5 h

¹⁾ Maximum time from the beginning of the injection to the setting and the final positioning of the rebar

Table B4.3: Installation tools for drilling and cleaning the bore hole and injection of the mortar

reinforcing bars (rebar)		Drilling and	cleaning		Inje	ction
	Nominal drill bit diameter	Diameter of cutting edge	Steel brush diameter	Diameter of cleaning nozzle ³⁾	Diameter of extension tube	Injection adapter
φ [mm]	d₀ [mm]	d _{cut} [mm]	d₀ [mm]	[mm]	[mm]	[colour]
8 ¹⁾	10 ²⁾	≤ 10,50	11			
8,	12	≤ 12,50	14			nature
10 ¹⁾	12	≤ 12,50	14	11	9	Hature
10 7	14	≤ 14,50	16		9	blue
12 ¹⁾	14	≤ 14,50	16			blue
12 /	16	≤ 16,50	20	15		red
14	18	≤ 18,50	20			yellow
16	20	≤ 20,55	25	19		green
20	25	≤ 25,55	27	19		black
22 / 24	30	≤ 30,55	32			grey
25 ¹⁾	30	≤ 30,55	32	28	9 or 15	grey
25 /	35	≤ 35,70	37	20	90115	brown
26 / 28	35	≤ 35,70	37			brown
30 / 32 / 34	40 ²⁾	≤ 40,70	42			red
36	45 ²⁾	≤ 45,70	47	38		yellow
40	55 ²⁾	≤ 55,70	58			nature

¹⁾ Both drill bit diameters can be used

fischer injection system FIS EM Plus

Intended use

Conditions for use static mixer without an extension tube; Working times and curing times; Installation tools for drilling and cleaning the bore hole and injection of the mortar

Annex B 4

Appendix 9 / 18

²⁾ For wet concrete the curing time must be doubled

³⁾ If the temperature in the concrete falls below 10 °C the cartridge must be warmed up to +15 °C.

⁴⁾ If the temperature in the concrete exceeds 30 °C the cartridge must be cooled down to +15 °C up to 20 °C

²⁾ Only hammer drilling with standard drill bit

³⁾ Cleaning nozzle and extension is only necessary if bore hole depth is greater than the length of compressed-air cleaning tool

Safety regulations

Review the Safety Data Sheet (SDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with mortar FIS EM Plus.

Minimum concrete cover c_{min} see table B3.1.

Important: Observe the instructions for use provided with each cartridge.

Installation instruction part 1

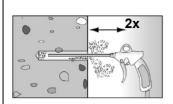
Hole drilling

Note: Before drilling, remove carbonated concrete; clean contact areas (see Annex B 2) In case of aborted drill holes the drill hole shall be filled with mortar.

Hammer drilling with standard drill bit Drill the hole to the required embedment depth using a hammer drill with carbide drill bit set in rotation hammer. 1a mode. Nominal drill hole diameter do (see table B4.3) and drill hole depth ho (see table A3.1). Hammer drilling with hollow drill bit Check a suitable hollow drill (see table B1.1) for correct operation of the dust extraction. 1b Drill the hole to the required embedment depth using a hammer drill with hollow drill bit in rotation hammer mode. Dust extraction conditions see drill hole cleaning Annex B 6. Nominal drill hole diameter do (see table B4.3) and drill hole depth ho (see table A3.1). Measure and control concrete cover c $\mathbf{C}_{\text{drill}}$ $(c_{drill} = c + \emptyset / 2)$ Drill parallel to surface edge and to existing rebar. Where applicable use fischer drilling aid. 2 For holes $l_b > 20$ cm use drilling aid. Three different options can be considered: A) fischer drilling aid B) Slat or spirit level C) Visual check

fischer injection system FIS EM Plus

Intended use


Safety regulations; Installation instruction part 1, hole drilling

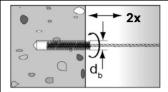
Annex B 5

Appendix 10 / 18

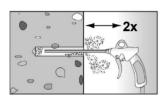
Installation instruction part 2

Drill hole cleaning (hammer drilling with standard drill bit)

Cleaning the drill hole.


Blow out the drill hole twice, with oil free compressed air ($p \ge 6$ bar).

If the drill hole depth is greater than the length of the compressed-air cleaning tool, an extension and appropriate fischer cleaning nozzle must be used.


Corresponding diameters see table B4.3.

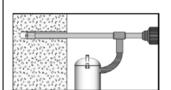
За

Brush the drill hole twice. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **table B4.3**.

Cleaning the drill hole:

Blow out the drill hole twice, with oil free compressed air ($p \ge 6$ bar).

If the drill hole depth is greater than the length of the compressed-air cleaning tool, an extension and appropriate fischer cleaning nozzle must be used.


Corresponding diameters see table B4.3.

Go to step 4

Drill hole cleaning (hammer drilling with hollow drill bit)

3b

Use a suitable dust extraction system, e. g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Check the hollow drill for correct operation of the dust extraction. No further cleaning steps necessary.

Go to step 4

fischer injection system FIS EM Plus

Intended use

Installation instruction part 2, drill hole cleaning

Annex B 6

Appendix 11 / 18

Installation instruction part 3 Reinforcing bars (rebar) and cartridge preparation

Go to step 8

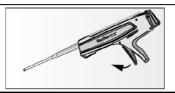
tischer injec	tion system	FIS EI	VI Plus
---------------	-------------	--------	---------

Intended use

Installation instruction part 3, reinforcing bars (rebar) and cartridge preparation

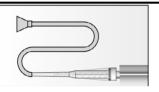
Annex B 7

Appendix 12 / 18

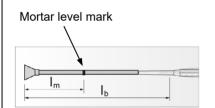

Installation instruction part 4; Installation with FIS EM Plus Injection of the mortar without extension tube

Inject the mortar from the back of the hole towards the front and slowly withdraw the static mixer step by step with each trigger pull.

Avoid bubbles.


Fill holes approximately 2/3 (for $h_0 = l_b$) full, to ensure that the annular gap between the rebar and the concrete will be completely filled with adhesive over the entire embedment length. For $h_0 > l_b$ more mortar is needed.

The conditions for mortar injection without extension tube can be found in table B4.1



After injecting, release the dispenser. This will prevent further mortar discharge from the static mixer.

Injection of the mortar with extension tube

Assemble mixing nozzle FIS MR Plus or FIS UMR, extension tube and appropriate injection adapter (see **table B4.3**).

Mark the required mortar level I_m and embedment depth I_b with tape or marker on the injection extension tube.

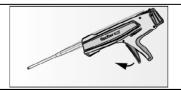
a) Estimation:

$$l_m = \frac{1}{3} \cdot l_b$$
 [mm]

b) Precise equation for optimum mortar volume:

$$l_m = l_b \cdot \left((1.2 \cdot \frac{d_s^2}{d_0^2} - 0.2) \right) \text{ [mm]}$$

8b


8a

Insert injection adapter to back of the hole. Begin injection allowing the pressure of the injected adhesive mortar to push the injection adapter towards the front of the hole. Do not actively pull out!

Fill holes approximately 2/3 (for $h_0 = l_b$) full, to ensure that the annular gap between the rebar and the concrete will be completely filled with adhesive over the embedment length. For $h_0 > l_b$ more mortar is needed. When using an injection adapter continue injection until the mortar level mark l_m becomes visible.

Maximum embedment depth, see table B3.2.

After injecting, release the dispenser. This will prevent further mortar discharge from the static mixer.

Go to step 9

fischer injection system FIS EM Plus

Intended use

Installation instruction part 4, mortar injection

Annex B 8

Appendix 13 / 18

Installation instruction part 5; Installation with FIS EM Plus Insert rebar Insert the rebar slowly twisted into the borehole until the embedment mark is reached 9 Recommendation: Rotation back and forth of the reinforcement bar makes pushing easy After installing the rebar the annular gap must be completely filled with mortar. Proper installation 10 • Desired embedment depth is reached lb: embedment mark at concrete surface • Excess mortar flows out of the borehole after the rebar have been fully inserted up to the embedment mark. For overhead installation, support the rebar and secure it from falling till mortar 11 started to harden, e.g. using wedges. Observe the working time "twork" (see table B4.2), which varies according to temperature of base material. Minor adjustments to the rebar position may be performed during the working time 12 Full load may be applied only after the curing time "tcure" has elapsed (see table B4.2)

fischer injection system FIS EM Plus

Intended use

Installation instruction part 5, insert rebar

Annex B 9

Appendix 14 / 18

						All	sizes								
Characteristic resistance under	tension	loadin	9												
Installation factor	γinst	[-]			See	anne	x C 2	to C 3							
Factors for the compressive str	ength of	concre	ete > C20/25												
	C25/30					,	,02								
Increasing factor ψ _c for	C30/37	1				•	,04								
cracked or uncracked	C35/45		1,06												
concrete	C40/50	[-]	1,07												
$\tau_{\text{Rk,C(X/Y)}} = \psi_{\text{c}} \cdot \tau_{\text{Rk (C20/25)}}$	C45/55					•	,08								
	C50/60					,	,09								
Concrete cone failure															
Uncracked concrete	k _{ucr,N}	r 1				•	1,0								
Cracked concrete	k _{cr,N}	[-]	7,7												
Edge distance	C _{cr,N}		1,5 · I _b												
Spacing	S _{cr,N}	[mm]	3 · I _b												
Factors for sustained tension lo	ading														
Factor	$\psi^0_{\sf sus}$	[-]					_1)								
Nominal diameter of the bar		ф	8 10 12 1	4 16	18 20	22	24 25	26 2	28 30	32	34	36 4			
Bond-splitting failure for workir	ng life of	50 and	100 years												
Calculation diameter	d	[mm]	8 10 12 1	4 16	18 20	22	24 25	26 2	28 30	32	34	36 4			
Hammer-drilling with standard dril	l bit or hol		ll bit for 50 an			~~				52					
Duaduat hadia faatan				d 100	<u>years</u>	22	20	1201.	-0 00	52					
Product basic factor	A_k			<u>d 100 </u>	<u>years</u>		1,4			7 32					
Exponent for influence of concrete compressive strength		-		<u>d 100 </u>	<u>years</u>				-0 00	, JZ					
Exponent for influence of concrete	2			<u>d 100 </u>	<u>years</u>	, C	1,4	1201		32					
Exponent for influence of concrete compressive strength Exponent for influence of rebar	sp1	[-]		<u>d 100 </u>	<u>years</u>	0	,33			32					
Exponent for influence of concrete compressive strength Exponent for influence of rebar diameter φ Exponent for influence of concrete	sp1			<u>d 100 </u>	<u>years</u>	0	,33 ,34			32					
Exponent for influence of concrete compressive strength Exponent for influence of rebar diameter φ Exponent for influence of concrete cover cd	sp1 sp2 sp3			<u>d 100 </u>	<u>years</u>	C C C	,33 ,34 ,62								

Nominal	diam	eter of the bar		ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Combine	d pu	llout and conc	rete cone	failure																	
Calculation	n dia	meter	d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Uncracke	ed co	ncrete				<u> </u>															
Characte	ristic	bond resistar	nce in und	racked c	oncr	ete	C20)/25													
Hammer-	drillin	g with standard	drill bit or	hollow dr	ill bit	(dry	or '	wet	con	crete	<u>e)</u>										
Tem-	l:	35 °C / 60 °C		_	16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11
perature range	II:	50 °C / 72 °C	$ au_{ ext{Rk,ucr,50}}$	[N/mm ²]	15	14	14	13	13	12	12	12	12	11	11	11	11	11	11	10	10
	drillin	g with standard	drill bit or	hollow dr	ill bit	(wa	iter f	filled	l hol	e)											
Tem-		35 °C / 60 °C	27. 31				14		12	<u>5,</u> 12	11	11	10	10	10	10	9	9	9	8	8
perature		50 °C / 72 °C	$^ au_{ m Rk,ucr,50}$	[N/mm ²]			13	12	12	11	11	10	10	9	9	9	9	8	8	8	8
range					13	14	ıs	ıZ	ıΖ	11	11	10	ıυ	9	9	9	ฮ	0	0	O	0
Installation				<u> </u>									4.0								
Dry or we Water fille			– γ _{inst}	[-]									1,0								
			to on oom	bined nu	1,4 I pullout and concrete cone failure for working life of 50 years																
		g with standard		-			u co	onci	ete	CON	ie ia	llur	9 101	rwo	rkin	ıg III	ie o	1 50	year	S	
		-		Hollow di	III DIL																
Factor for concrete	influ	ence of cracked	$\Omega_{ ext{cr,03}}$	[-]	0,91	0,91	0,91	0,91	0,91	0,91	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,93	0,93	0,93	0.93
fischer	inje	ction system	FIS EM F	Plus																	

Characteristic resistance under tension loading for reinforcing bars; uncracked or cracked concrete; working life 50 years

Appendix 16 / 18

Table C	2 1.	Character	rictic ro	oiotana	•	ndo	r to	noi	on I	000	lina	for	· ro	nfe	roi	n a	hor	o in			
		Characte ed holes; und									_					ng	Dai	5 II	I		
Nominal o	diam	eter of the bar		ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Combine	d pul	lout and concr	ete cone	failure																	
Calculatio	n diaı	meter	d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Uncracke	d co	ncrete																			
Characte	ristic	bond resistan	ce in und	racked c	onc	rete	C20)/25	1)												
Hammer-c	drilling	g with standard	drill bit or	hollow dri	ill bit	t (dr	y or	wet	con	crete	<u>e)</u>										
Tem-	l:	35 °C / 60 °C	_		16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11
perature range	II:	50 °C / 72 °C	τ _{Rk,ucr,50}	[N/mm ²]	15	14	14	13	13	12	12	12	12	11	11	11	11	11	11	10	10
Installatio	n fac	ctors																			
Dry or wet	cond	crete	γ_{inst}	[-]									1,0								
Tem- perature	l:	35 °C / 60 °C	. (1400 ····	[-]	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
range	II:	50 °C / 72 °C	α ₁₀₀ years	[-]	0,55	0,60	09'0	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
Influence	of cr	acked concret	e on con	nbined pu	llou	ıt ar	d co	onci	rete	con	e fa	ilur	e fo	r wo	rkir	ng li	fe o	f 100) ye	ars	
Hammer-c	drilling	g with standard	drill bit or	hollow dri	III bi	t (dr	y or	wet	con	crete	<u>e)</u>										
Factor for concrete	influe	ence of cracked	$\Omega_{\text{cr,03}}$	[-]	16'0	0,91	0,91	0,91	0,91	0,91	0,92	0,92	0,92	0,92	0,92	0,92	0,92	6,0	0,93	6,0	0,93

¹⁾ Calculation of characteristic bond resistance in uncracked concrete $\tau_{Rk,100,\,ucr}$:

 $au_{\text{Rk,100, ucr}} = lpha_{100 \, \text{years}} \cdot au_{\text{Rk,ucr,50}}$

$\ \, \hbox{fischer injection system FIS EM Plus}$

Performances

Characteristic resistance under tension loading for reinforcing bars; uncracked or cracked concrete; working life 100 years

Annex C 3

Appendix 17 / 18

Nominal diameter of the bar	concre						<u> </u>											
Nominal diameter of the bar		ф	8 1	0 12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Resistance to pull-out failure	in uncra	acked cor	ocrete	unde	er cy	clic	load	gnib	for	woı	rkin	g lif	e of	50 a	and	100	yea	rs
Hammer-drilling with standard	drill bit or	hollow dr	ill bit (dry or	wet	con	crete	<u>e)</u>										
Reduction factor for pull-out Resistance under seismic action	$lpha_{eq,p}$	[N/mm²]				0,76	5							1	,0			
Influence of increased crack	width or	resistan	ce to	pull-c	out f	ailuı	e fo	r wo	orkir	ng li	fe o	f 50	and	d 10	0 ye	ars		
Hammer-drilling with standard	drill bit or	hollow dri	ill bit (dry or	wet	con	crete	<u>e)</u>										
Factor for influence of cracked.	$\Omega_{\text{cr,05}}$ 1)		0,86	0,00	0,86	98'0	98'0	0,86	0,86	0,86	0,86	0,86	98'0	78'0	0,87	0,87	0,87	28 0
concrete	$\Omega_{\text{cr,08}}{}^{1)}$	[-]	0,76	0,76	92'0	92'0	92,0	92,0	92,0	92,0	92,0	0,76	0,76	0,76	92'0	0,73	0,70	0.63
Resistance to bond-splitting	failure u	nder cvcl	ic loa	dina	for v	vork	ina	life	of 5	0 an	nd 10	00 v	ears	3				