

DECLARAÇÃO DE DESEMPENHO

DoP 0388

para sistema de injeção fischer FIS RC II / FIS RC II Low Speed (Argamassa para conexões de armaduras pós-instaladas)

PT

1. Código de identificação único do produto-tipo:

DoP 0388

2. Utilização(ões) prevista(s):

Sistema para conexão de armaduras pós-instaladas com argamassa para uso em betão, Ver

anexoss, especialmente anexos B1-B11.

3. Fabricante:

fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Alemanha

4. Representante autorizado:

 Sistema(s) de avaliação e verificação da regularidade do desempenho (AVCP):

6. Documento de Avaliação Europeu:

EAD 330087-01-0601 Edition 06/2021

Avaliação Técnica Europeia: Organismo de Avaliação Técnica: ETA-22/0502; 2025-09-23 DIBt- Deutsches Institut für Bautechnik

Organismo(s) notificado(s): 2873 TU Darmstadt

7. Desempenho(s) declarado(s):

Resistência mecânica e estabilidade (BWR 1)

Resistência característica sob ação estática e quase estática:

Tensão de aderência de armaduras pós-instaladas: Anexos C1, C2

Fator de redução: Anexos C1, C2

Fator de amplificação para comprimento mínimo de ancoragem: Anexos C1, C2 Resistência característica à rotura do aço sob tensão de tração do varão: Anexo C5

Resistência característica sob ação sísmica:

Tensão de aderência sob ação sísmica, fator de eficiência de aderência sísmico: Anexos C3, C4 Recobrimento mínimo sob ação sísmica: Anexo B5

Segurança em caso de incêndio (BWR 2)

Reação ao fogo: Classe (A1)

Resistência ao fogo:

Tensão de aderência para temperaturas para armaduras pós-instaladas avaliadas para 50 anos: Anexo C6 Tensão de aderência para temperaturas para armaduras pós-instaladas avaliadas para 100 anos: Anexo C6 Resistência característica à rotura do aço sob tensão de tração do varão sob exposição ao fogo: Anexo C5

8. <u>Documentação Técnica Adequada e/ou</u> <u>Documentação Técnica Específica:</u>

O desempenho do produto identificado acima está em conformidade com o conjunto de desempenhos declarados. A presente declaração de desempenho é emitida, em conformidade com o Regulamento (UE) n.o 305/2011, sob a exclusiva responsabilidade do fabricante identificado acima.

Assinado por e em nome do fabricante por:

Dr. Ronald Mihala, Diretor-geral de Pesquisa e Desenvolvimento

Tumlingen, 2025-10-22

Dieter Pfaff, Chefe da Federação Internacional de Produção e Gestão da Qualidade

Este DoP foi preparado em diferentes línguas. Em caso de litígio sobre a interpretação, a versão em inglês prevalecerá sempre.

O Anexo inclui informações voluntárias e complementares em inglês que excedem os requisitos legais (linguisticamente especificados).

Fischer DATA DOP_ECs_V106 1/1

Translation guidance Essential Characteristics and Performance Parameters for Annexes

Guia de tradução das Características Essenciais e Parâmetros de Desempenho para os Anexos

Me	echanical resistance and stability (BWR 1)						
Re	sistência mecânica e estabilidade (BWR 1)						
	Characteristic resistance under static and quasi-static loading:						
	Resistência característica sob ação estática e quase estática:						
1	Bond strength of post-installed rebar:	f _{bd,PIR} [N/mm ²], f _{bd,PIR,100y} [N/mm ²]					
	Tensão de aderência de armaduras pós-instaladas:	- Ba,PiR [- 4 · · · · · ·], - Ba,PiR, 1009 [- 4 · · · · · ·]					
2	Bond efficiency factor:	k _b [-], k _{b.100v} [-]					
	Fator de redução:						
3	Amplification factor for minimum anchorage length:	α _{lb} [-], α _{lb.100v} [-]					
	Fator de amplificação para comprimento mínimo de ancoragem:						
4	Characteristic resistance to steel failure for rebar tension anchors:	N _{Rk.s.} [kN]					
	Resistência característica à rotura do aço sob tensão de tração do varão:						
	Characteristic resistance under seismic loading:						
	Resistência característica sob ação sísmica:						
5	Bond strength under seismic loading, Seismic bond efficiency factor:	f [N/mm²1 k [1] f					
J	Tensão de aderência sob ação sísmica, fator de eficiência de aderência sísmico:	f _{bd,PIR,seis} [N/mm ²], k _{b,seis} [-], f _{bd,PIR,seis,100y}					
	Tensao de aderencia sob ação sistinoa, tator de entirencia de aderencia sistinoo.	$[N/mm^2], k_{b,seis,100y}[-]$					
6	Minimum concrete cover under seismic loading:	c _{min,seis} [mm]					
	Recobrimento mínimo sob ação sísmica:						
Sa	fety in case of fire (BWR 2)						
Se	gurança em caso de incêndio (BWR 2)						
7	Reaction to fire:	Class					
	Reação ao fogo:						
	Resistance to fire:	•					
	Resistência ao fogo:						
8	Bond strength at increased temperature for post-installed rebar assessed for 50 years:	$f_{bd,fi}(\theta)$ [N/mm ²], $k_{fi}(\theta)$ [-], θ_{max} [°C]					
	Tensão de aderência para temperaturas para armaduras pós-instaladas avaliadas para 50 anos:						
9	Bond strength at increased temperature for post-installed rebar assessed for 100 years:	$f_{bd,fi,100v}(\theta) [N/mm^2], k_{fi,100v}(\theta) [-], \theta_{max}$					
	Tensão de aderência para temperaturas para armaduras pós-instaladas avaliadas para	[°C]					
	100 anos:						
10	Characteristic resistance to steel failure for rebar tension anchors under fire exposure:	N _{Rk,s,fi} [kN]					
	Resistência característica à rotura do aço sob tensão de tração do varão sob exposição ao fogo:						

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 40 mm or the fischer rebar anchor FRA or FRA HCR of sizes M12 to M24 according to Annex A and injection mortar FIS RC II or FIS RC II Low Speed are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

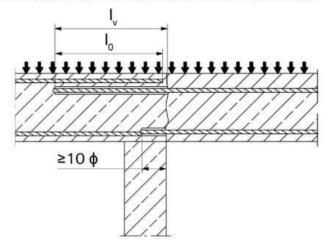
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1, C 2 and C 5
Characteristic resistance under seismic loading	See Annex B 5, C 3 and C 4

3.2 Safety in case of fire (BWR 2)

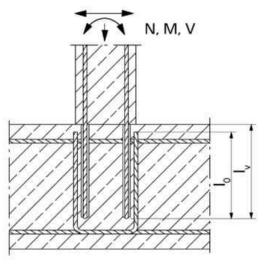
Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5 and C 6

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

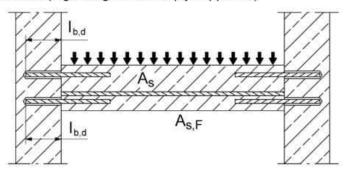

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Installation conditions and application examples reinforcing bars, part 1


Figure A1.1:

Overlap joint with existing reinforcement for rebar connections of slabs and beams


Figure A1.2:

Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed

Figure A1.3:

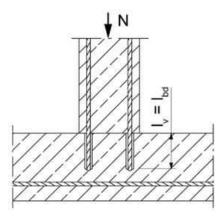
End anchoring of slabs or beams (e.g. designed as simply supported)

Figures not to scale

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

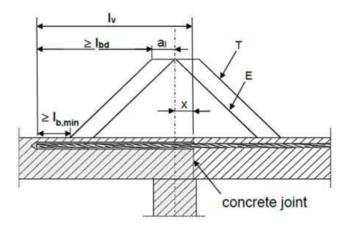
Product description

Installation conditions and application examples reinforcing bars, part 1


Annex A1

Appendix 2 / 24

Installation conditions and application examples reinforcing bars, part 2


Figure A2.1:

Rebar connection for stressed primarily in compression

Figure A2.2:

Anchoring of reinforcement to cover the enveloped line of acting tensile force in the bending member

(only post-installed rebar is plotted)

Key to Figure

- T Acting tensile force
- E Envelope of Med / z + Ned (see EN 1992-1-1:2011)
- x Distance between the theoretical point of support and concrete joint

Note to figure A1.1 to A1.3 and figure A2.1 to A2.2

In the figures no traverse reinforcement is plotted, the transverse reinforcement as required by EN 1992-1-1:2011 shall be present.

The shear transfer between old and new concrete shall be designed according to EN 1992-1-1:2011

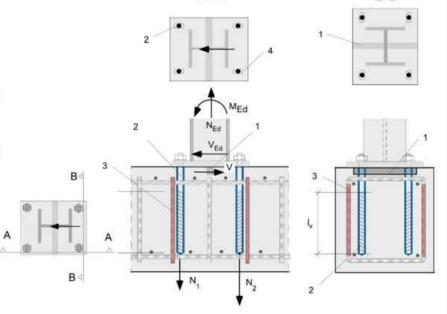
Preparation of joints according to Annex B 3 of this document.

Figures not to scale

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Product description

Installation conditions and application examples reinforcing bars, part 2


Annex A2

Appendix 3 / 24

Installation conditions and application examples fischer rebar anchor FRA

Figure A3.1: Lap to a foundation of a column under bending.

- Shear lug (or fastener loaded in shear)
- fischer rebar anchor FRA (tension only)
- Existing stirrup / reinforcement for overlap (lap splice)
- 4. Slotted hole

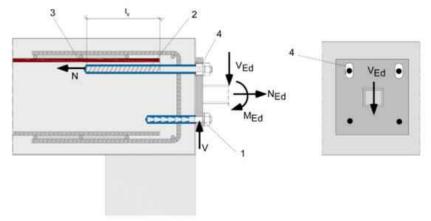

A-A

Figure A3.2:

Lap of the anchoring of guardrail posts or anchoring of cantilevered building components.

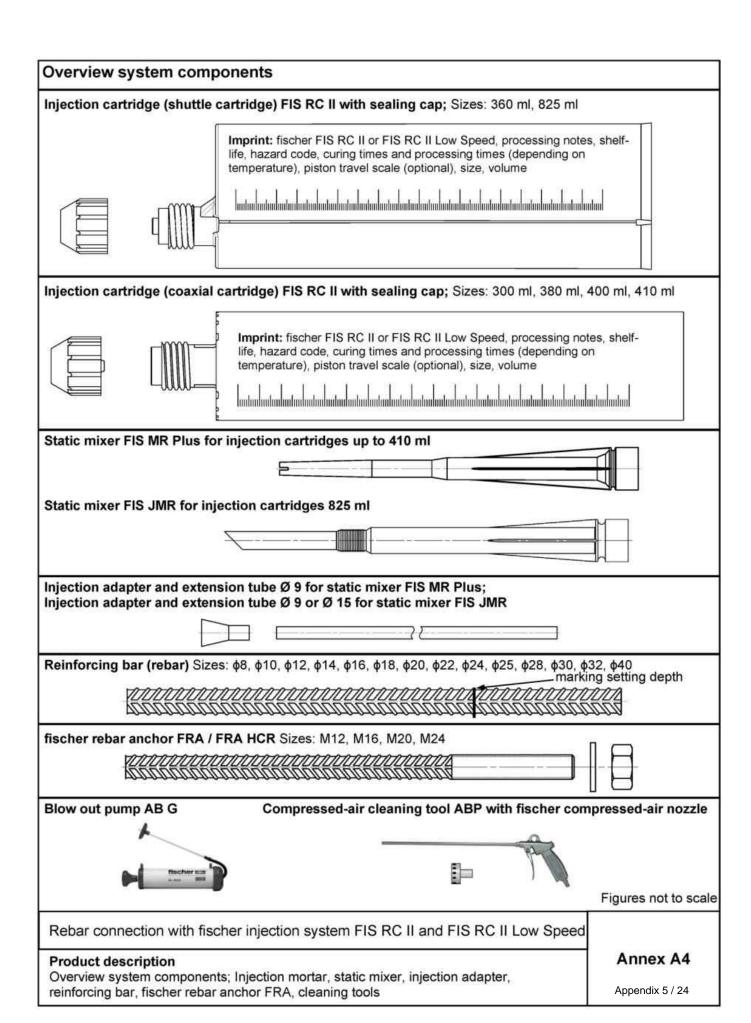
In the anchor plate, the drill holes for the fischer rebar anchors FRA have to be designed as slotted holes with axial direction to the shear force.

- 1. Fastener for shear load transfer
- fischer rebar anchor FRA (tension only)
- Existing stirrup / reinforcement for overlap (lap splice)
- 4. Slotted hole

The required transverse reinforcement acc. to EN 1992-1-1:2011 is not shown in the figures. **The fischer rebar anchor FRA may be only used for axial tensile force.** The tensile force must be transferred by lap to the existing reinforcement of the building. The transfer of the shear force has to be ensured by suitable measure, e.g. by means of shear force or anchors with European Technical Assessment (ETA).

Figures not to scale

B-B


Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Product description

Installation conditions and application examples fischer rebar anchors FRA

Annex A3

Appendix 4 / 24

Properties of reinforcing bars (rebar)

Figure A5.1:

- The minimum value of related rib area f_{R,min} according to EN 1992-1-1:2011
- The maximum outer rebar diameter over the ribs shall be:
 - o The nominal diameter of the bar with rib ϕ + 2 · h (h ≤ 0,07 · ϕ)
 - φ: Nominal diameter of the bar; h_{rib} = rib height of the bar)

Table A5.1: Installation conditions for rebars

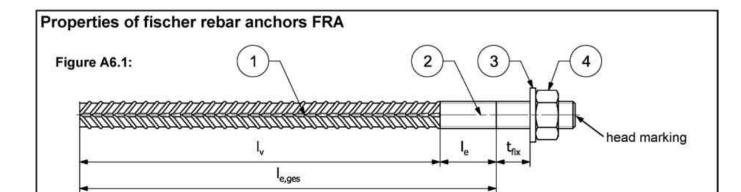
Nominal diameter of t	he bar	ф	8	1)	10) ¹⁾	1:	21)	14	16	18	20	22	24	2	5 ¹⁾	28	30	32	40
Nominal drill hole diameter	d ₀		10	12	12	14	14	16	18	20	25	25	30	30	30	35	35	40	40	55
Drill hole depth	h ₀											h ₀	= I _v							
Effective embedment depth	lv	[mm]		acc. to static calculation																
Minimum thickness of concrete member	h _{min}				+ 3									l _v + 2	d ₀					

¹⁾ Both drill hole diameters can be used.

Table A5.2: Materials of rebars

Designation	Reinforcing bar (rebar)	
Reinforcing bar EN 1992-1-1:2011, Annex C	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$	

Figures not to scale


Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Product description

Properties and materials of reinforcing bars (rebar)

Annex A5

Appendix 6 / 24

Head marking e.g.: FRA (for stainless steel)

FRA HCR (for high corrosion-resistant steel)

Table A6.1: Installation conditions for fischer rebar anchors FRA

Thread diameter			M12 ²⁾		M16	M20	M24 ²⁾	
Nominal diameter	ф	[mm]	1	2	16	20	2	25
Nominal drill bit diameter	d ₀	[mm]	14	16	20	25	30	35
Drill hole depth ($h_0 = I_{e,ges}$)	l _{e,ges}	[mm]			lv -	+ l _e		
Effective embedment depth	[mm]		а	ccording to st	tatic calculation	on		
Distance concrete surface welded join	to I _e	[mm]			1	00		
Maximum Diameter of	Pre-positioned d _f	[mm]	1	4	18	22	2	26
clearance hole in the fixture ¹⁾	Push through df	[mm]	16	18	22	26	32	40
Minimum thickness of concrete member	h _{min}	[mm]	h ₀ + 30 h ₀ + 2d ₀					
Maximum torque moment f attachment of the fixture	or max T _{inst}	[Nm]	5	0	100	150	1	50

¹⁾ For bigger clearance holes in the fixture see EN 1992-4:2018.

Table A6.2: Materials of fischer rebar anchors FRA

Part	Description	Mat	terials
	•	FRA Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015	FRA HCR Corrosion resistance class CRC V acc. to EN 1993-1-4: 2006+A1:2015
1	Reinforcing bar	Bars and de-coiled rods class B or C with f_{yk} EN 1992-1-1:NA; $f_{uk} = f_{tk} = k \cdot f_{yk}$; $(f_{yk} = 500 \text{ N})$	
2	Round bar with partial or full thread	Stainless steel, strength class 80, according to EN 10088-1:2023	High corrosion-resistant steel, strength class 80, according to EN 10088-1:2023
3	Washer ISO 7089:2000	Stainless steel, according to EN 10088-1: 2023	High corrosion-resistant steel, according to EN 10088-1: 2023
4	Hexagon nut	Stainless steel, strength class 80, acc. to EN ISO 3506-2:2020, according to EN 10088-1: 2023	High corrosion-resistant steel, strength class 80, acc. to EN ISO 3506-2:2020, according to EN 10088-1: 2023

Figures not to scale

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Product description

Properties and materials of fischer rebar anchors FRA

Annex A6

Appendix 7 / 24

²⁾ Both drill bit diameters can be used.

Specifications of intended use part 1

Table B1.1: Overview use and performance categories

Anchorages subject to		FIS	RC II with					
		cing bar	fischer rebai	anchor FRA				
Hammer drilling or compressed air drilling with standard drill bit	all sizes							
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert", Bosch "Speed Clean", Hilti "TE-CD, TE-YD")	Nominal drill bit diameter (d ₀) 12 mm to 35 mm							
Use category I1 dry or wet concrete		all sizes						
uncracked Characteristic concrete resistance under	20 25222	Tables: C1.1 C1.2 C1.3		Tables: C1.1 C1.2 C1.3				
static and quasi static loading, in cracked concrete	all sizes	C2.1 C2.2 C2.3	all sizes	C2.1 C2.2 C2.3 C5.1 C5.2				
Characteristic resistance under seismic loading	all sizes	Tables: C3.1 C3.2 C3.3 C4.1 C4.2 C4.3	No performance assessed					
Installation direction	D3 (down	ward and horizonta	al and upwards (e.g. o	overhead))				
Installation temperature		T _{i,min} = -10 °C	to T _{i,max} = +40 °C					
Service Temperature temperature range	-40 °C t	o +80 °C		emperature +80 °C; mperature +50 °C)				
Resistance to fire	all sizes	Annex C6	all sizes	Table C5.3				

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Intended use Specifications part 1 Annex B1

Appendix 8 / 24

Specifications of intended use part 2

Anchorages subject to:

- Static and quasi-static loading: reinforcing bar (rebar) size 8 mm to 40 mm; FRA M12 to M24.
- Characteristic resistance under seismic loading: reinforcing bar (rebar) size 8 mm to 40 mm.
- 50 and 100 years working life: reinforcing bar (rebar) size 8 mm to 40 mm.
- Resistance to fire: reinforcing bar (rebar) size 8 mm to 40 mm; FRA M12 to M24.

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A2:2021.
- Concrete strength classes C12/15 to C50/60 according to EN 206:2013+ A2:2021 for static and quasistatic loading
- Concrete strength classes C16/20 to C50/60 according to EN 206:2013+ A2:2021 for seismic loading.
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+ A2:2021.
- · Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN1993-1-1:2011. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Use conditions (Environmental conditions) for fischer rebar anchors FRA

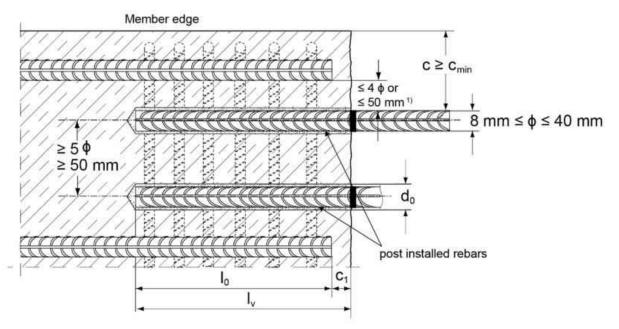
 For all conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A6 Table A6.2.

Design:

- The structural design according to EN 1992-1-1:2011; EN 1992-1-2:2011 and Annex B3 and B4 are conducted under the responsibility of a designer experienced in the field of anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- The installation of post-installed rebar respectively fischer rebar anchor FRA shall be done only by suitable trained installer and under Supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for Supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be
 determined using a rebar detector suitable for this purpose as well as on the basis of the construction
 documentation and then marked on the building component for the overlap joint).


Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Intended use Specifications part 2 Annex B2

General construction rules for post-installed rebars

Figure B3.1:

- · Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2011.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

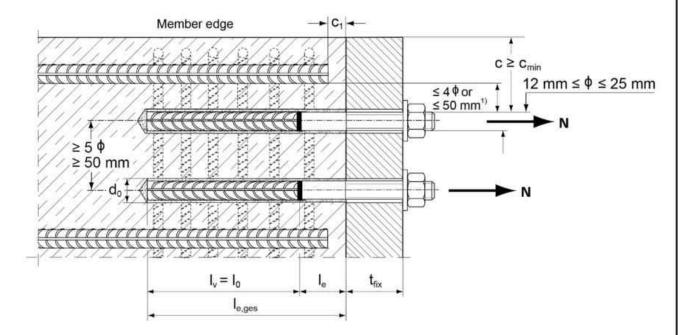
- $^{1)}$ If the clear distance between lapped bars exceeds 4 ϕ or 50 mm then the lap length shall be increased by the difference between the clear bar distance and the smaller 4 ϕ or 50 mm.
 - c concrete cover of post-installed rebar
 - c₁ concrete cover at end-face of existing rebar
 - c_{min} minimum concrete cover according to **Table B5.1** and to EN 1992-1-1:2011, Section 4.4.1.2
 - nominal diameter of reinforcing bar
 - lap length, according to EN 1992-1-1:2011 for static loading and according to EN 1998-1:2004+AC:2009, section 5.6.3 for seismic action
 - I_v effective embedment depth, ≥ I₀ + c₁
 - do nominal drill bit diameter, see Annex B6

Figures not to scale

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Intended use

General construction rules for post-installed rebars


Annex B3

Appendix 10 / 24

General construction rules for post-installed fischer rebar anchors FRA

Figure B4.1:

- · Only tension forces in the axis of the fischer rebar anchor FRA may be transmitted.
- · The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transmission of the shear load shall be ensured by appropriate additional measures, e.g. by shear lugs or by anchors with a European Technical Assessment (ETA).
- In the anchor plate, the holes for the tension anchor shall be executed as slotted holes with the axis in the direction of the shear force.

 $^{1)}$ If the clear distance between lapped bars exceeds 4 ϕ or 50 mm then the lap length shall be increased by the difference between the clear bar distance and the smaller 4 ϕ or 50 mm.

c concrete cover of post-installed fischer rebar anchor FRA

c₁ concrete cover at end-face of existing rebar

c_{min} minimum concrete cover according to **Table B5.1** and to EN 1992-1-1:2011, Section 4.4.1.2

nominal diameter of reinforcing bar

lo lap length, according to EN 1992-1-1:2011, Section 8.7.3

le,ges overall embedment depth, ≥ l₀ + l_e

d₀ nominal drill bit diameter, see Annex B6

le length of the bonded in threaded part

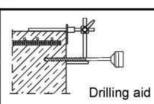
trix thickness of the fixture

I_v effective embedment depth

Figures not to scale

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Intended use


General construction rules for post-installed fischer rebar anchors FRA

Annex B4

Appendix 11 / 24

Minimum concrete cover cmin¹⁾ depending of the drilling method and the Table B5.1: drilling tolerance

	nominal diameter	Minimum concrete cover cmin							
Drilling method	of reinforcing bar φ [mm]	Without drilling aid 2) [mm]	With drill	ing aid ²⁾ [mm]					
Hammer drilling	< 25	30 mm + 0,06 l _v ≥ 2 ф	30 mm + 0,02 l _v ≥ 2 ф	1777777					
with standard drill bit or hollow drill bit	≥ 25	40 mm + 0,06 l _v ≥ 2 φ	40 mm + 0,02 l _v ≥ 2 φ						
Compressed air	< 25	50 mm + 0,08 l _v	50 mm + 0,02 l _v	1////					
drilling	≥ 25	60 mm + 0,08 l _v ≥ 2 φ	60 mm + 0,02 l _v ≥ 2 ф	14 / 21 / 14 / 14 ·					

¹⁾ See Annex B3, figure B3.1 and Annex B4, figure B4.1 Note: The minimum concrete cover as specified in EN 1992-1-1:2011 must be observed. The same minimum concrete covers apply to rebar elements in case of seismic loading. c_{min,seis} = 2 φ.

2) For FRA (HCR) Ie,ges instead of Iv.

Table B5.2: Dispensers and cartridge sizes corresponding to maximum embedment depth ly,max

reinforcing	fischer	Manual dispenser	Accu and pneumatic	Accu and pneumatic					
bars (rebar)	rebar		dispenser (small)	dispenser (large)					
	anchor FRA		Cartridge size						
		< 5	> 500 ml						
φ [mm]	thread [-]	l _{v,max} / l _e ,	I _{v,max} / I _{e,ges,max} [mm]						
8	200		1000						
10	344		1000						
12	FRA M12								
12	FRA HCR M12	1000	1200	20 - Andrews (1977)					
14				1800					
16	FRA M16		1500						
	FRA HCR M16		1300						
18, 20, 22,	FRA M20		1300						
24	FRA HCR M20	700	1300						
25	FRA M24	700	1000	terations.					
20	FRA HCR M24		1000	2000					
28		700	700						
30, 32		700	700	T _{i,} > 0 °C: 1500					
30, 32		700	700	T _{i.} ≤ 0 °C: 2000					
40		700	700	1300					

Conditions for use static mixer without an extension tube Table B5.3:

Nominal drill hole diameter	d ₀	EC 755	10	12	14	16	18	20	24	25	30	35	40	55
Drill hole depth ho by using	FIS MR Plus	[mm]	≤ :	90	≤ 120	≤ 140	≤ 150	≤ 160	≤ 190			≤ 210		
	FIS JMR					≤ 160	≤ 180	≤ 190	≤ 2	20 ≤ 250				

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Intended use

Minimum concrete cover;

dispenser and cartridge sizes corresponding to maximum embedment depth

Annex B5

Appendix 12 / 24

Table B6.1: Working	times t	work and	curing	times to	cure
---------------------	---------	----------	--------	----------	------

Temper		e in the base	Maximun	n working time ¹⁾ twork	Minimu	m curing time ²⁾ t _{cure}	
	[°C]	A 04.11.45/A 04.	FIS RC II	FIS RC II Low Speed	FIS RC II	FIS RC II Low Speed	
-10	to	-5	20 min 3)	-	12 h	189	
>-5	to	0	20 min 3)	40 min	12 h	5 d	
> 0	to	5	13 min ³⁾	30 min	3 h	48 h	
> 5	to	10	9 min 3)	20 min	90 min	24 h	
> 10	to	20	5 min	13 min	60 min	120 min	
> 20	to	30	4 min	9 min	45 min	60 min	
> 30	to	40	2 min 4)	7 min	35 min	45 min	

Maximum time from the beginning of the injection to rebar / fischer rebar anchor FRA setting and positioning.

Table B6.2: Installation tools for drilling and cleaning the bore hole and injection of the mortar

reinforcing			Drilling and	cleaning		Inje	ction
bars (rebar)	fischer rebar anchor FRA	Nominal drill bit diameter	Diameter of cutting edge	Steel brush diameter	Diameter of fischer compressed- air nozzle	Diameter of extension tube	Injection adapter
φ [mm]	Designation	d₀ [mm]	d _{cut} [mm]	d _b [mm]	[mm]	[mm]	[colour]
81)		10	≤ 10,50	11			-
8"		12	≤ 12,50	12,5			CONTRACTOR OF
10 ¹⁾	-010	12	≤ 12,50	12,5	11	9	nature
10.7		14	≤ 14,50	15	1990	9	fal
3(01)	FRA M12	14	≤ 14,50	15		1	blue
12 ¹⁾	FRA HCR M12	16	≤ 16,50	17	15		red
14	K -11	18	≤ 18,50	19			yellow
16	FRA M16 FRA HCR M16	20	≤ 20,55	21,5	40		green
18	FRA M20	25	< OF FF	20.5	19	1	blast.
20	FRA HCR M20	25	≤ 25,55	26,5			black
22		30	< 20 FF	20		0 15	
24	S ****	30	≤ 30,55	32		9 or 15	grey
25 ¹⁾	FRA M24	30	≤ 30,55	32	28		327238
25 "	FRA HCR M24	35	≤ 35,70	37		1 3	brown
28		35	≤ 35,70	37			brown
30		40	≤ 40,70	42	38		rod
32		40	2 40,70	42	36		red
40	2 466	55	≤ 55,70	58	38	15	nature

¹⁾ Both drill bit diameters can be used

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Intended use

Working times and curing times;

Installation tools for drilling and cleaning the bore hole and injection of the mortar

Annex B6

Appendix 13 / 24

²⁾ For wet concrete the curing time must be doubled.

³⁾ If the temperature in the concrete falls below 10 °C the cartridge must be warmed up to +15 °C.

⁴⁾ If the temperature in the concrete exceeds 30 °C the cartridge must be cooled down to +15 °C up to 20 °C.

Safety regulations

Review the Safety Data Sheet (SDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with mortar FIS RC II / FIS RC II Low Speed.

Important: Observe the instructions for use provided with each cartridge.

Installation instruction part 1; Installation with FIS RC II / FIS RC II Low Speed

Hole drilling

Note: Before drilling, remove carbonized concrete; clean contact areas (see **Annex B 2**) In case of aborted drill holes the drill hole shall be filled with mortar.

Hammer drilling or compressed air drilling

1a

Drill the hole to the required embedment depth using a hammer drill with carbide drill bit set in rotation hammer mode or a pneumatic drill.

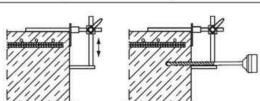
Drill bit sizes see Table B6.2.

Hammer drilling with hollow drill bit

1b

Drill the hole to the required embedment depth using a hammer drill with hollow drill bit in rotation hammer mode. Dust extraction conditions see drill hole cleaning **Annex B8**.

Drill bit sizes see Table B6.2.


C_{drill}

Measure and control concrete cover c $(c_{drill} = c + \emptyset / 2)$

Drill parallel to surface edge and to existing rebar.

Where applicable use drilling aid.

2

For holes I_v > 20 cm use drilling aid. Three different options can be considered:

- A) drilling aid
- B) Slat or spirit level
- C) Visual check

Minimum concrete cover cmin see Table B5.1.

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

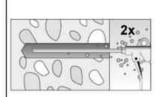
Intended use

Safety regulations; Installation instruction part 1, hole drilling

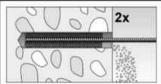
Annex B7

Appendix 14 / 24

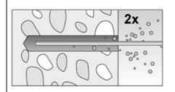
Installation instruction part 2; Installation with FIS RC II / FIS RC II Low Speed


Drill hole cleaning

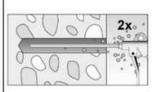
Hammer or compressed air drilling



Clean the drill hole: For $d_0 < 18$ mm and depths I_v resp. $I_{e,ges} \le 12 \cdot \phi$ blow out the hole two times by hand.

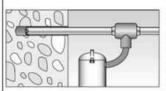


For $d_0 \ge 18$ mm and depths I_v resp. $I_{e,ges} > 12 \cdot \phi$ blow out the hole two times with oil-free compressed air $(p \ge 6 \text{ bar})$. Use suitable compressed-air nozzle (see Table B6.2).


3a

Brush drill hole two times; for drill hole diameters $d_0 \ge 30$ mm attach brush to a power tool and brush hole with a speed of max. 550 revolutions per minute. For deep holes a brush extension is mandatory. Use suitable brushes (see **Table B6.2**).

Clean the drill hole: For $d_0 < 18$ mm and depths I_v resp. $I_{e,ges} \le 12 \cdot \phi$ blow out the hole two times by hand.



For d₀ ≥ 18 mm and depths l_v resp. l_{e,ges} > 12 · ϕ blow out the hole two times with oil-free compressed air (p ≥ 6 bar) Use suitable compressed-air nozzle (see **Table B6.2**).

Hammer drilling with hollow drill bit

3b

Use a suitable dust extraction system, e. g.

fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power.

No further drill hole cleaning necessary.

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Intended use

Installation instruction part 2, drill hole cleaning

Annex B8

Appendix 15 / 24

Installation instruction part 3; Installation with FIS RC II / FIS RC II Low Speed reinforcing bars (rebar) / fischer rebar anchor FRA and cartridge preparation

clearly visible).

SECTION OF THE PERSON OF THE P

Before use, ensure that the rebar or the fischer rebar anchor FRA is dry and free of oil or other residue. Mark the embedment depth l_v (e.g. with tape) Insert rebar in borehole, to verify drill hole depth and setting depth ly resp. le.ges.

5

4

7

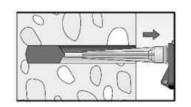
Twist off the sealing cap Twist on the static mixer (the spiral in the static mixer must be

6

Place the cartridge into a suitable dispenser.

Press out approximately 10 cm of mortar until the resin is permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed.

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed


reinforcing bars (rebar) / fischer rebar anchor FRA and cartridge preparation

Annex B9

Appendix 16 / 24

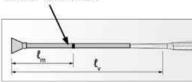
Installation instruction part 4; Installation with FIS RC II / FIS RC II Low Speed

Injection of the mortar without extension tube

Inject the mortar from the back of the hole towards the front and slowly withdraw the static mixer step by step with each trigger pull. Avoid bubbles.

Fill holes approximately 2/3 full, to ensure that the annular gap between the rebar and the concrete will be completely filled with adhesive over the entire embedment length.

The conditions for mortar injection without extension tube can be found in **Table B5.3**.

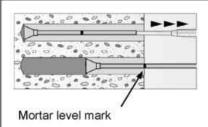

After injecting, release the dispenser. This will prevent further mortar discharge from the static mixer.

Injection of the mortar with extension tube

Assemble mixing nozzle FIS MR Plus or FIS JMR, extension tube and appropriate injection adapter (see **Table B6.2**).

Mortar level mark

Mark the required mortar level I_m and embedment depth I_v resp. $I_{e,ges}$ with tape or marker on the injection extension tube.


a) Estimation:

$$l_m = \frac{1}{3} \cdot l_v \, resp. \, l_m = \frac{1}{3} \cdot l_{e,ges} \, [mm]$$

b) Precise equation for optimum mortar volume:

$$l_m = l_v \, resp. \, l_{e,ges} \, \left((1,2 \, \cdot \, \frac{d_s^2}{d_0^2} - 0,2) \right) [\text{mm}]$$

8b

Insert injection adapter to back of the hole. Begin injection allowing the pressure of the injected adhesive mortar to push the injection adapter towards the front of the hole. Do not actively pull out!

Fill holes approximately 2/3 full, to ensure that the annular gap between the rebar and the concrete will be completely filled with adhesive over the embedment length.

When using an injection adapter continue injection until the mortar level mark l_{m} becomes visible.

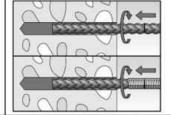
Maximum embedment depth see Table B5.2.

After injecting, release the dispenser. This will prevent further mortar discharge from static mixer.

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Intended use

Installation instruction part 4, mortar injection


Annex B10

Appendix 17 / 24

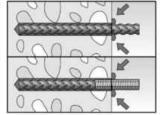
Installation instruction part 5; Installation with FIS RC II / FIS RC II Low Speed

Insert rebar / fischer rebar anchor FRA

9

Insert the rebar / fischer rebar anchor FRA slowly twisted into the borehole until the embedment mark is reached.

Recommendation:


Rotation back and forth of the reinforcement bar or the fischer rebar anchor FRA makes pushing easy.

10

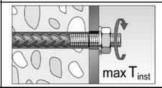
For overhead installation, support the rebar / fischer rebar anchor FRA and secure it from falling till mortar started to harden, e.g. using wedges.

11

After installing the rebar or fischer rebar anchor FRA the annular gap must be completely filled with mortar.

Proper installation

- Desired embedment depth is reached l_v, resp. l_{e,ges}: embedment mark at concrete surface
- Excess mortar flows out of the borehole after the rebar has been fully inserted up to the embedment mark.


12

Observe the working time "twork" (see Table B6.1), which varies according to temperature of base material. Minor adjustments to the rebar / fischer rebar anchor FRA position may be performed during the working time "twork".

Full load may be applied only after the curing time "tcure" has elapsed (see Table B 6.1).

13

Mounting the fixture for fischer rebar anchor FRA, max T_{inst} see Table A6.1.

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Intended use

Installation instruction part 5, insert rebar / fischer rebar anchor FRA

Annex B11

Appendix 18 / 24

Minimum anchorage length and minimum lap length for 50 years working life

The minimum anchorage length $l_{b,min}$ and the minimum lap length $l_{0,min}$ according to EN 1992-1-1:2011 shall be multiplied by the relevant amplification factor α_{lb} according to **Table C1.1**.

Table C1.1: Amplification factor α_{Ib} related to concrete strength class and drilling method

Rebar / fischer				Amplif	ication fac	ctor a _{lb}			
rebar anchor FRA				Concre	ete strengt	h class			
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 - 25			1,	00			1,	10	1,20
28 - 32					1,00				
40		1,00		1,07	1,22	1,23	1,24	1,26	1,27

Table C1.2: Bond efficiency factor k_b related to concrete strength class and drilling method

Rebar / fischer				Bond e	fficiency f	actor k _b					
ebar anchor FRA		Concrete strength class									
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 - 25					1,00						
28 - 32			1,	00			0,91	0,84	0,84		
40		1,00 0,90 0,82							0,71		

Table C1.3: Design values of the bond strength $f_{bd,PIR}$ in N/mm² related to concrete strength class and drilling method for good bond conditions $f_{bd,PIR} = k_b \cdot f_{bd}$

f_{bd}: Design value of the bond strength in N/mm² considering the concrete strength classes and the rebar diameter for good bond condition (for all other bond conditions multiply the values by $\eta_1 = 0.7$)

and recommended partial factor γ_c = 1,5 according to EN 1992-1-1:2011

k_b: Bond efficiency factor according to **Table C1.2**

Hammer drilling, hollow drilling and compressed air drilling

Rebar / fischer				Bond stre	ength f _{bd,Pl}	R [N/mm²]			
rebar anchor FRA			200	Concre	ete strengt	h class	100	1.	777
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 - 25	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
28 - 32	1,6	2,0	2,3	2,7	3,0	3,4	3,4	3,4	3,7
40	1,5	1,8	2,1	2,5			2,8		

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Performance

Amplification factor α_{lb} , bond efficiency factor k_b , design values of the bond strength $f_{bd,PIR}$

Annex C1

Appendix 19 / 24

Minimum anchorage length and minimum lap length for 100 years working life

The minimum anchorage length I_{b,min} and the minimum lap length I_{0,min} according to EN 1992-1-1:2011 shall be multiplied by the relevant amplification factor α_{Ib,100y} according to **Table C2.1**.

Table C2.1: Amplification factor α_{Ib,100y} related to concrete strength class and drilling method

Rebar / fischer				Amplific	ation fact	or α _{lb,100y}					
rebar anchor FRA		Concrete strength class									
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 - 12	12		1,00			1,10	1,20	1,20	1,30		
14 - 25			1,00			1,10	1,20	1,20	1,20		
28 - 32		1,00							1,10		
40	1,	1,00 1,02 1,19 1					1,22	1,23	1,25		

Table C2.2: Bond efficiency factor k_{b,100y} related to concrete strength class and drilling method

Rebar / fischer				Bond effi	ciency fac	ctor kb,100y					
ebar anchor FRA		Concrete strength class									
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 - 12					1,00						
14 - 25				1,00	A0 1	8	10	0,92	0,86		
28 - 32		1,	00		0,90	0,90	0,82	0,76	0,76		
40		1,00 0,89 0,80 0,73 0,67							0,63		

Table C2.3: Design values of the bond strength $f_{bd,PIR,100y}$ in N/mm² related to concrete strength class and drilling method for good bond conditions $f_{bd,PIR,100y} = k_{b,100y} \cdot f_{bd}$

f_{bd}: Design value of the bond strength in N/mm² considering the concrete strength classes and the rebar diameter for good bond condition (for all other bond conditions multiply the values by $\eta_1 = 0,7$)

and recommended partial factor γ_c = 1,5 according to EN 1992-1-1:2011

k_{b,100y}: Bond efficiency factor according to **Table C2.2**

Rebar / fischer			Е	ond stren	gth fbd,PIR,	100y [N/mm	²]			
rebar anchor FRA				Concre	ete strengt	h class	10.	1.	777	
11 1	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
8 - 12	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3	
14 - 25	1,6	2,0	2,3	2,7	3,0	3,4	3,7	3,7	3,7	
28 - 32	1,6	2,0	2,3	2,7	2,7	3,0	3,0	3,0	3,4	
40	1,5	1,8 2,1 2,5								

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Performance

Amplification factor $\alpha_{\text{lb,seis}}$, bond efficiency factor $k_{\text{b,seis}}$, Design values of the bond strength $f_{\text{bd,PIR,seis}}$

Annex C2

Appendix 20 / 24

Minimum anchorage length and minimum lap length under seismic conditions for 50 years working life

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1:2011 shall be multiplied by the relevant amplification factor $\alpha_{lb,seis}$ according to Table C3.1.

Table C3.1: Amplification factor α_{Ib,seis} related to concrete strength class and drilling method

Hammer drilling, hollow drilling and compressed air drilling

Rebar φ [mm]		Amplification factor α _{lb,seis}											
		Concrete strength class											
	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60					
8 - 25			1,00			1,	10	1,20					
28 - 32		1,00											
40	_1)	1,00	1,07	1,22	1,23	1,24	1,26	1,27					

¹⁾ No performance assessed

Table C3.2: Bond efficiency factor k_{b,seis} for hammer drilling, hollow drilling and compressed air drilling with a service life of 50 years

Rebar			Во	nd efficien	cy factor kb	,seis							
φ [mm]		Concrete strength class											
4 []	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60					
8 - 25			35	1,	00	700							
28 - 32			1,00	10		0,91	0,84	0,84					
40	_1)	1,00	0,86	0,76	0,69	0,63	0,58	0,54					

No performance assessed

Table C3.3: Design values of the bond strength fbd,PIR,seis in N/mm² for hammer drilling, hollow drilling and compressed air drilling under seismic action and for good bond conditions with a service life of 50 years

fbd,PIR,seis = kb,seis • fbd

Rebar					bd,PIR,seis [N/I rength class					
φ [mm]	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 - 25	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		
28 -32	2,0	2,3	2,7	3,0	3,4	3,4	3,4	3,7		
40	_1)									

¹⁾ No performance assessed

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Performance

Amplification factor $\alpha_{\text{lb,seis}}$, bond efficiency factor $k_{\text{b,seis}}$, Design values of the bond strength $f_{\text{bd,PIR,seis}}$

Annex C3

Appendix 21 / 24

Minimum anchorage length and minimum lap length under seismic conditions for 100 years working life

The minimum anchorage length $l_{b,min}$ and the minimum lap length $l_{0,min}$ according to EN 1992-1-1:2011 shall be multiplied by the relevant amplification factor $\alpha_{lb,seis,\ 100y}$ according to Table C4.1.

Table C4.1: Amplification factor α_{lb,seis100y} related to concrete strength class and drilling method

Rebar		Amplification factor α _{lb,seis,100y} Concrete strength class									
φ [mm]											
Ψ[ιιιιι]	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
8 -12		1,	00	11	1,10	1,20	1,20	1,30			
14 - 25		1,	00		1,10	1,20	1,20	1,20			
28 - 32		1,00						1,10			
40	_1)	1,02	1,19	1,20	1,21	1,22	1,23	1,25			

¹⁾ No performance assessed

Table C4.2: Bond efficiency factor k_{b,seis,100y} for hammer drilling, hollow drilling and compressed air drilling with a service life of 100 years

Rebar		Bond efficiency factor k _{b,sels,100y}										
φ [mm]	Concrete strength class											
	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60				
8 - 12		1,00										
14 - 25		1,00 0,92										
28 - 32		1,00		0,90	0,90	0,82	0,76	0,76				
40	_1)	0,86	0,74	0,66	0,59	0,54	0,50	0,47				

Table C4.3: Design values of the bond strength fbd,PIR,seis,100y in N/mm² for hammer drilling, hollow drilling and compressed air drilling under seismic action and for good bond conditions with a service life of 100 years fbd,PIR,seis,100y = kb,seis,100y • fbd

Rebar		bond strength fbd,PIR,seis,100y [N/mm²] Concrete strength class										
φ [mm]	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60				
8 - 12	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3				
14 - 25	2,0	2,3	2,7	3,0	3,4	3,7	3,7	3,7				
28 - 32	2,0	2,3	2,7	2,7	3,0	3,0	3,0	3,4				
40	_1)	,		,	1,8		51. 31					

No performance assessed

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Performance

Amplification factor $\alpha_{lb,seis,100y}$, bond efficiency factor $k_{b,seis,100y}$, Design values of the bond strength $f_{bd,PIR,seis,100y}$

Annex C4

Appendix 22 / 24

Table C5.1:	Characteristic to fischer rebar a			for rebar part	of	
fischer rebar an	chor FRA / FRA HCI	R	M12	M16	M20	M24
Characteristic to	ensile yield strength	for rebar p	art			
Data diameter	79	f7	40	40	- 00	0.5

Characteristic tensile yield	haracteristic tensile yield strength for rebar part								
Rebar diameter	ф	[mm]	12	16	20	25			
Characteristic tensile yield strength for rebar	fyk	[N/mm ²]	500	500	500	500			
Partial factor for rebar part	γMs,N ¹⁾	[-]		1,	15	1)			

¹⁾ In absence of national regulations

Table C5.2: Characteristic resistance to steel failure under tension loading of fischer rebar anchors FRA

fischer rebar anchor FRA /		M12	M24						
Characteristic resistance to steel failure under tension loading									
Characteristic resistance	N _{Rk,s}	[kN]	62,0	111,0	173,0	236,5			
Partial factor			***	-		-			
Partial factor	YMs,N1)	[-]		1	,4				

¹⁾ In absence of national regulations

Table C5.3: Characteristics resistance to steel failure for fischer rebar anchors FRA under tension loading and fire exposure R30 to R120

fischer rebar anchor FRA / FRA HCR			M12	M16	M20	M24	
Characteristic resistance to steel failure under tension loading and fire exposure	R30			2,5	4,7	7,4	10,6
	R60		71.NI	2,1	3,9	6,1	8,8
	R90	N _{Rk,s,fi}	[kN]	1,7	3,1	4,9	7,1
	R120			1,3	2,5	3,9	5,6

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Annex C5

Design value of the ultimate bond strength fbd,fi resp. fbd,fi,100y at increased temperature for concrete strength classes C12/15 to C50/60 (all drilling methods)

The design value of the bond strength $f_{bd,fi}$ resp. $f_{bd,fi,100y}$ at increased temperature has to be calculated by the following equation:

$$f_{bd,fi,(100y)} = k_{fi,(100y)}(\theta) \cdot f_{bd,PIR,(100y)} \cdot \frac{\gamma_c}{\gamma_{m,fi}}$$

If:
$$\theta > 74$$
 °C $k_{fi,(100y)}(\theta) = \frac{24,308 \cdot e^{-0.012 \cdot \theta}}{f_{bd,PIR,(100y)} \cdot 4,3} \le 1,0$

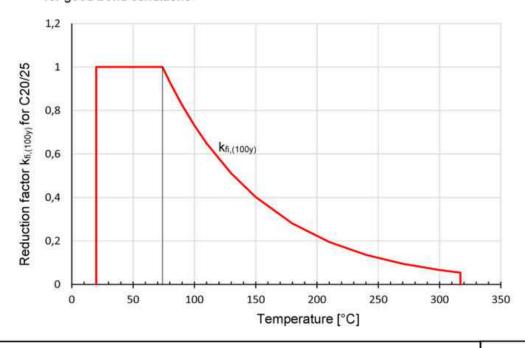
If: $\theta > \theta_{\text{max}}$ (317 °C) k_{fi} (θ) = 0

f_{bd,fi} = Design value of the ultimate bond strength at increased temperature in N/mm² for working life 50 years f_{bd,fi,100y} = Design value of the ultimate bond strength at increased temperature in N/mm² for working life 100 years

θ = Temperature in °C in the mortar layer

 $k_{fi}(\theta)$ = Reduction factor at increased temperature for working life 50 years $k_{fi,100y}(\theta)$ = Reduction factor at increased temperature for working life 100 years

fbd,PIR = Design value of the bond strength in N/mm² in cold condition according to **Table C1.3** considering the concrete strength classes, the rebar diameter, the drilling method and the bond conditions according to EN 1992-1-1:2011


fbd,PIR,100y = Design value of the bond strength in N/mm² in cold condition according to **Table C2.3** considering the concrete strength classes, the rebar diameter, the drilling method and the bond conditions according to EN 1992-1-1:2011

γc = 1,5 recommended partial factor according to EN 1992-1-1:2011

 $\gamma_{m,fi}$ = 1,0 recommended partial factor

For evidence at increased temperature the anchorage length shall be calculated according to EN 1992-1-1:2011 Equation 8.3 using the temperature-dependent ultimate design value of bond strength f_{bd,fi} resp. f_{bd,fi,100y}.

Figure C6.1: Example graph of reduction factor k_{fi,(100y)} (θ) for concrete class C20/25 for good bond conditions

Rebar connection with fischer injection system FIS RC II and FIS RC II Low Speed

Performance

Design value of bond strength fbd,fi resp. fbd,fi,100y at increased temperature

Annex C6

Appendix 24 / 24