

NL

PRESTATIEVERKLARING

DoP W0020 voor fischer PowerFast II schroeven DoP W0020 1. Unieke identificatiecode van het producttype: 2. Beoogd(e) gebruik(en): Zelfborende schroeven voor gebruik in houtconstructies, zie bijlage, met name de bijlagen 1, 20-25. 3. Fabrikant: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Duitsland 4. Gemachtigde: _ 5. Het systeem of de systemen voor de beoordeling en 3 verificatie van de prestatiebestendigheid: EAD 130118-01-0603 6. Europees beoordelingsdocument: Europese technische beoordeling: ETA-19/0175; 2023-09-19 ETA-Danmark A/S Technische beoordelingsinstantie: Aangemelde instantie(s): 2699 Universität Innsbruck 7. Aangegeven prestatie(s): Mechanische weerstand en stabiliteit (BWR 1), Veiligheid en toegankelijkheid in het gebruik (BWR 4) Bijlages 5-17 Afmetingen: Karakteristiek vloeimoment: Bijlage 26 Bijlage 26 Buigingshoek: Karakteristieke parameter voor ontwenning: Bijlages 35-40 Karakteristieke hoofd veeg parameter: Bijlages 42-43 Karakteristieke treksterkte: Bijlage 26 Karakteristieke vloeigrens: Bijlage 26 Bijlage 26 Karakteristieke torsiesterkte: Insertiemoment: Bijlage 26 Afstand, eind- en randafstanden van de schroeven en minimumdikte van het materiaal op Bijlages 22-25 houtbasis: Slipmodulus voor voornamelijk axiaal belaste schroeven: Bijlage 47 Duurzaamheid tegen corrosie: Bijlage 3 Veiligheid in geval van brand (BWR 2) Reactie op brand: Klasse (A1) 8. Geëigende technische documentatie en/of specifieke technische documentatie:

De prestaties van het hierboven omschreven product zijn conform de aangegeven prestaties. Deze prestatieverklaring wordt in overeenstemming met Verordening (EU) nr. 305/2011 onder de exclusieve verantwoordelijkheid van de hierboven vermelde fabrikant verstrekt.

Ondertekend voor en namens de fabrikant door:

U.F.

1-2-

Dr.-Ing. Oliver Geibig, Directeur Business Units & Engineering Tumlingen, 2023-10-10

Jürgen Grün, Directeur Chemie & Kwaliteit

Deze DoP is opgesteld in meerdere talen. In het geval van geschillen over de interpretatie zal de Engelse tekst altijd prevaleren.

Het aanhangsel bevat vrijwillige en aanvullende informatie in het Engels die de (taal-neutraal gespecificeerde) wettelijke vereisten overschrijdt.

Translation guidance Essential Characteristics and Performance Parameters for Annexes

U									
Me	Mechanical resistance and stability (BWR 1), Safety and accessibility in use (BWR 4)								
Me	chanische weerstand en stabiliteit (BWR 1), Veiligheid en toegankelijkheid in het gebruik ((BWR 4)							
1	Dimensions:								
	Afmetingen:								
2	Characteristic yield moment:	M _{v.k}							
	Karakteristiek vloeimoment:								
3	Bending angle:	α							
	Buigingshoek:								
4	Characteristic withdrawal parameter:	f _{ax,k}							
	Karakteristieke parameter voor ontwenning:								
5	Characteristic head pull-through parameter:	f _{head,k}							
	Karakteristieke hoofd veeg parameter:								
6	Characteristic tensile strength:	f _{tens,k}							
	Karakteristieke treksterkte:								
7	Characteristic yield strength:	f _{y,k}							
	Karakteristieke vloeigrens:								
8	Characteristic torsional strength:	f _{tor,k}							
	Karakteristieke torsiesterkte:								
9	Insertion Moment:	f _{tor.k} /R _{tor.mean}							
	Insertiemoment:								
10	Spacing, end and edge distances of the screws and minimum thickness of the wood based material:	a ₁ , a _{3,t} ; a _{3,c} ; a ₂ ; a _{4,t} ; a _{4,c}							
	Afstand, eind- en randafstanden van de schroeven en minimumdikte van het materiaal								
	op houtbasis:								
11	Slip modulus for mainly axially loaded screws:	K _{ser}							
	Slipmodulus voor voornamelijk axiaal belaste schroeven:								
12	Durability against corrosion:								
	Duurzaamheid tegen corrosie:								
Sa	ety in case of fire (BWR 2)								
Ve	ligheid in geval van brand (BWR 2)								
13	Reaction to fire:	Class							
	Reactie op brand:								

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of the product

»fischer PowerFast II – Chipboard screws and Wood Construction screws« are self-tapping screws to be used in timber structures. They shall be threaded over a part of the length or over the whole length. The screws are produced from a carbon steel wire. fischer »PowerFast II – Chipboard screws« have an outer thread diameter d (nominal diameter) between 3,0 mm and 6,0 mm. »fischer PowerFast II – Wood Construction screws« have a nominal diameter between 8,0 mm to 12,0 mm. Where corrosion protection is required, the material or coating shall be declared in accordance with the relevant specification given in Annex A of EN 14592.

They are zinc-plated (e.g. yellow-zinced or bluezinced), bonus-zinc-coated, burnished, nickel-plated or brass-plated. The mean thickness of the zinc-plated screws is min. $5 \,\mu$ m.

The FAFS-Clip is made of zinc die cast for »fischer PowerFast II – Chipboard screws« with countersunk head and a diameter of 5,0 mm.

Product and product description are given in Annex A.

The characteristic material values, dimensions and tolerances of the »fischer PowerFast II« screws not indicated in Annexes shall correspond to the respective values laid down in the Technical Documentation of this European Technical Assessment (ETA).

Specifications of the product itself are given in Annex C. The screws are intended to be used with a minimum embedment depth (penetration length) given in Annex D. It is possible to consider the influences of the tip of the screws on the load-carrying capacities. The intended use and exemplary applications are also detailed in the Annex E to Annex K.

2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Section 3 are only valid if the »fischer PowerFast II« screws are used in compliance with the specifications and conditions given in Annex C.

The intended use of the screws is in timber connections for which all requirements of mechanical resistance, stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the screws of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the products.

3 Performance of the product and references to the methods for its assessment

Characteristic	Assessment of characteristic
3.1 Mechanical resistance and stability (BWR1) Dimensions	See annex A
Characteristic yield moment	See annex C
Bending angle	See annex C
Characteristic withdrawal parameter	See annex D
Characteristic head-pull through parameter of screws	See annex D
Characteristic tensile strength	See annex C
Characteristic torsional strength	See annex C
Insertion moment	See annex C
Spacing, end and edge distances of the screws and minimum thickness of the timber material	See Annex B
Slip modulus for laterally and axially loaded screws	See annex D
Durability against corrosion	No performance assessed
3.2 Safety in case of fire (BWR2) Reaction to fire	The screws are considered to satisfy Euroclass A1 in accordance with EN 13501-1 and Delegated Regulation 2016/364, according to EC Decision 96/603/EC.
3.3 Safety and accessibility in use (BWR4) Same as BWR 1	See aspects covered by BWR1
The intended use and exemplary applications are also detai	led in the Annex E to Annex L

See additional information in section 3.4 and 3.5

3.4 Methods of verification

The assessment of the performance »fischer PowerFast II« screws in relation to the applicable BWR's has been made in accordance with the European Assessment Document (EAD) No. EAD 130118-01-0603 »Screws and threaded rods for use in timber constructions«.

Durability and serviceability

The screws have been assessed as having satisfactory durability and serviceability when used in timber structures using the timber species described in EN 1995-1-1 and subjected to the conditions defined by service classes 1 and 2.

4 Attestation and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

4.1 AVCP system

According to the decision 97/176/EC of the European Commission, as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 3.

PowerFast II – Chipboard screw - Countersunk head with full- or partial thread

Table /	A1.1:	Screw	Dimensions	and	Materials
---------	-------	-------	------------	-----	-----------

lab	Table A1.1: Screw Dimensions and Materials													
Dr	Drawing													
					ls ²⁾									
		Underhead		-	lgf		-							
		milling pocket	s ¹⁾				lt		Л	Trade mar	1) k			
									A		To			
		र्त	5	11151	ETTT E	HT F	SPD -	σI	(• * •)		(O))		
			h	_/		lgp			Drive PZ		Drive T	x		
	Shank ribs ¹⁾ Coremiller ¹⁾													
	¹⁾ optional Figure not to scale													
Ma	terials	and coatings												
•	Carbon	Steel												
•	yellow z	inc-plated, blue zinc-	plated,	blue zinc	-plated 2	<u>≥12 µm,</u>	bonus-z	inc-coate	ed, burni	shed, ni	ckel plat	ed, brass	s plated	
No	minal c	liameter	3	,0	3	,5	4	,0	4	,5	5	,0	6	,0
d	Outer	thread diameter	3,	00	3,	50	4,	00	4,	50	5,	10	6,	00
<u> </u>	A	lowed deviation	±0	<u>,25</u>	<u>±0</u>	,25	<u>±0</u>	<u>,30</u>	± 0	,30	<u>±0</u>	<u>,30</u>	<u>±0</u>	,30
d 1	Inner	thread diameter	1,	95	2,	20	2,	50	2,	/5	3,	25	4,	00
<u> </u>	Α	Nilowed deviation	d diameter 1,95 2,20 2,30 2,75 5,25 d deviation $\pm 0,18$ $\pm 0,20$ $\pm 0,20$ $\pm 0,20$ $\pm 0,20$ $\pm 0,20$ d diameter 6.00 7.00 8.00 8.80 0.80		<u>,20</u>	± 0	,30							
d h	•	Head diameter	6,		1,00		8,		8,	80	9,			,80
	Α	liowed deviation	±U	1,50 05	± 0,50		±U	$\pm 0,60$ $\pm 0,60$,60	± 0,60		± 0,60	
ds	^	Shank diameter 2,25		Z,	6U	Z,	2,90 J		$\frac{20}{15}$ + 0.15		10	4,30		
h	P	Allowed deviation $\pm 0,15$			± 0	, 15 20	± 0	1,15 40	2 70		± 0	00	3.60	
	Longth	Head height	Ζ,	30	2,40		2,70		3,	00	3,	20		
It Length of the screw tip								-			20	- 25	1,	30
			I	0 1	10	20		.U 2		0	20	20		2
Non	ninal lon	DIVEFZ	64	andard	throad	<u><</u>	4	<u><</u>	411 -	<u>^</u> Dartial t	hroad l	<u>Z</u>	$ \cdot \cdot$) n3)
NUT		gin	31	anuaru	uneau			viation	u igp — r c		illeau	TUIETAI		, 0 */
	ls		laf	lan	l af				5 _{ef}	lan	laf	m	l laf	Im
	20	ls,min/max	16	igp	16	igp	igi	igp	igi	igp	igi	igp	igi	igp
<u> </u>	25	ls +1 25	21	18	21	18	20	18	20					
	30	ls ±1.25	26	18	26	18	25	18	25	18	24			
	35	ls ±1.50	31	24	31	24	30	24	30	24	29	24	28	1
	40	ls ±1.50	36	28	36	28	35	28	35	28	34	28	33	28
	45	l _s ±1,50	41	30	41	30	40	30	40	30	39	30	38	30
	50	l _s ±1,50			46	30	45	30	45	30	44	30	43	30
	55	ls ±1,75					50	36	50	36	49	36	48	36
in s	teps of '	10 mm												
	60	l₅ ±1,75					55	36	55	36	54	36	53	36
	70	ls ±1,75						42	60	42	64	42	63	42
	80 I _s ±1,75							45	75	45	74	45	73	45
	90	ls ±2,00										54		54
	100	ls ±2,00										60		60
· ·	110	l _s ±2,00					ļ					70		70
	120	l _s ±2,00										70		70
130	- 300	l _s ± 3,00											A.11	70
													All s	izes in [mm]

Screws with partial thread > 60 mm, Is with shank ribs .

²⁾ Other screw lengths with $I_s \min \le I_s \le I_s$ max and other thread lengths I_{gf} resp. $I_{gp} \ge 4 \cdot d$ up to max, standard thread lengths are allowed

³⁾ For 10 mm ≤ I_{gf} resp., I_{gp} ≤ 18 mm \rightarrow tolerance ±1,5 mm and for 18 mm < I_{gf} resp. I_{gp} ≤ 30 mm \rightarrow tolerance ±1,7 mm

Annex A1

Dimensions and Materials - Countersunk head with full- or partial thread

Appendix 5 / 72

PowerFast II – Chipboard screw – Raised countersunk head with full- or partial thread

Table A2.1: Screw Dimensions and Materia	als
--	-----

Dr	Drawing													
			-		ls ⁻ ′		-							
		Underhead		lgf										
		milling pocke	s'' It Trade mark'								, 			
			^o						A		Ta			
			h h		_	lgp			Drive PZ		Drive TX	(
	Shank ribs ¹⁾ Coremiller ¹⁾													
⁷ optional Figure not to scale														
Mat	terials a	nd coatings												
-	Carbon S	Steel												
	yellow zin	c-plated, blue zinc-	plated, blu	e zinc-	olated ≥1	<u>2 µm, b</u>	onus-zin	<u>c-coatec</u>	<u>l, burnis</u> l	hed, nic	kel plate	d, brass	plated	•
Nor		meter	3,0		3,5	<u> </u>	4,0		4,	b	5	, 0	6	<u>,0</u>
d		iread diameter	3,00	-	3,50		4,00	<u> </u>	4,5	20	5,	10	6,	00
$\left - \right $	All(weu deviation	± U,23	<u>ר</u>	± U,2	.ບ ງ	エ U,3	<u>טט</u>	± 0,-	50	±0	25	± U	00
d ₁			1,90	2		י פ	∠,50 + 0 C	<u>, v</u>	<u>∠,1</u>	20	3,	20	4, ± 0	00
\vdash	Allo	Head diameter	£ 0,10 6 00		7 0,1)	2 U,2 2 O/	<u>-</u> 0	<u> </u>	0	± 0 0	80	11 ± C	80
d h	Δ١١		+ 0.50	<u> </u>	+ 0 5	, .0	+ 0 6	5	+ 0	60	9, + 0	00	+ 0.60	
		hank diameter	2 25		2.60		2 90		$\frac{5}{2000}$		<u> </u>	$\frac{,00}{70}$ \pm 0,0		7,00 30
ds	Allowed deviation + 0.15		5	+ 0 1	5	+ 0.15		+ 0	± 0.15		± 0.15		± 0.15	
h	Head beight 1.80			2.30	$\tilde{\mathbf{b}}$	2 4	n	2.70		3	00	3.60		
<u> </u>	I length of the screw tip				- 2,00	·	<u> </u>	<u> </u>		-		-	7	30
-	Longui	Drive TX	10		10	20	20		20		20 25		30	
		Drive PZ	1		2		2		2		2			3
Non	ninal leng	th	Stan	dard t	hread le	nath	Igf = Full thread Igp =Partial			artial th	thread Tolerance: $\pm 2,0^{3}$			
						Allov	ved De	viatior	IS					
	ls	s min/max	laf	Ian	Inf		laf		laf	Ian	laf		Inf	
	20	ls ± 1.05	 16	-gp	16	- gp	- gi	-gp	-gi	-gp	·gi	-gp	-gi	-gp
	25	l _s ±1,25	21	18	21	18	20	18	20					
	30	l _s ±1,25	26	18	26	18	25	18	25	18	24			
	35	ls ±1,50	31	24	31	24	30	24	30	24	29	24	28	
	40	l₅ ±1,50	36	28	36	28	35	28	35	28	34	28	33	28
	45	ls ±1,50	41	30	41	30	40	30	40	30	39	30	38	30
	50	ls ±1,50			46	30	45	30	45	30	44	30	43	30
	55	l₅ ±1,75					50	36	50	36	49	36	48	36
in st	teps of 10) mm												
<u> </u>	60	l₅ ±1,75					55	36	55	36	54	36	53	36
<u> </u>	70	l _s ±1,75						42	60	42	64	42	63	42
	80 I _s ±1,75							45	75	45	74	45	73	45
	90	l _s ±2,00										54		54
<u> </u>	100	ls ±2,00										60		60
<u> </u>	110	ls ±2,00										70		70
	120	Is ±2,00										70		/0
13	50-300	Is ± 3,00												10

Screws with partial thread > 60 mm, I_s with shank ribs

2) Other screw lengths with $I_s \min \le I_s \le I_s$ max and other thread lengths I_{gf} resp. $I_{gp} \ge 4 \cdot d$ up to max, standard thread lengths are allowed

³⁾ For 10 mm ≤ I_{gf} resp., I_{gp} ≤ 18 mm \rightarrow tolerance ±1,5 mm and for 18 mm < I_{gf} resp. I_{gp} ≤ 30 mm \rightarrow tolerance ±1,7 mm

Annex A2

Dimensions and Materials - Raised countersunk head with full- or partial thread

Appendix 6 / 72

PowerFast II – Chipboard screw – Pan head with full- or partial thread

Tab	Table A3.1: Screw Dimensions and Materials													
Dr	Drawing													
	ls ²⁾													
	laf													
			sp	3					Л	- Irade mar	K			
					<u>- </u>						a			
			ō, [[]		<u>9111</u>	1111 J	t dept							
			h		-	lgp			Drive PZ		Drive TX	[
	Shank ribs ¹⁾ Coremiller ¹⁾													
	¹⁾ optional Figure not to scale													
Ma	terial	s and coatings												
-	Carb	on Steel												
•	yello	w zinc-plated, blue zinc	-plated,	blue zino	-plated	≥12 µm,	bonus-z	inc-coate	ed, burni	shed, nic	kel plate	d, brass	plated	
Nor	minal	diameter	3	,0	3	,5	4	,0	4	,5	5,	,0	6	,0
d	Out	er thread diameter	3,	00	3,	50	4,	00	4,	50	5,	10	6,	00
Ľ		Allowed deviation	± 0),25	± 0	,25	± 0),30	± 0	,30	± 0	,30	± 0),30
d,	Inn	er thread diameter	1,	95	2,	20	2,	50	2,	75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,25 4,00		
~ 1		Allowed deviation	± 0),18	± 0	,18	± 0),20	± 0	,20	± 0	,20	± 0),30
d		Head diameter	6,	00	7,	00	8,	00	9,	00	10	,00	12,00	
Un		Allowed deviation	± 0),50	± 0	,50	± 0),60	± 0	,60	± 0),60 ± 0,60),60
d		Shank diameter 2,25 2,60 2,90 3,20 3 Allowed doviation + 0.15							70	4,30				
Us		Allowed deviation	$\frac{1}{2} \frac{1}{2} \frac{1}$									± 0),15	
h		Head height 2,30 2,50 2,80 2,80 3,40									40	3,40		
l _t	Leng	gth of the screw tip		-		-		-		-		-	7,	30
		Drive TX	1	0	10	20	2	20	2	0	20	25	3	30
		Drive PZ		1		2		2		2		2		3
Nor	minal	length	Stand	ard thr	ead ler	igth lg	_{af} = Full	thread	l I _{gp} =	Partial	thread	Toler	ance: :	± 2,0 ³⁾
						Allow	ved Dev	viations						
	ls	ls,min/max	I _{af}	lap	I _{af}		I _{af}		I _{af}		I _{af}		l _{af}	Iap
2	20	I _s ± 1,05	16	JF	16	31	<u>J</u> ·	<u>_</u>		31-	<u>J</u> ·			JF
2	25	l _s ±1,25	21	18	21	18	21	18	21					
3	30	l _s ±1,25	26	18	26	18	26	18	26	18	26			
3	35	I _s ±1,50	31	24	31	24	31	24	31	24	31	24	30	
4	40	l _s ±1,50	36	28	36	28	36	28	36	28	36	28	35	28
4	45	I _s ±1,50	41	30	41	30	41	30	41	30	41	30	40	30
5	50	I _s ±1,50			46	30	46	30	46	30	46	30	45	30
5	55	I _s ±1,75					51	36	51	36	51	36	50	36
in s	teps c	of 10 mm												
e	60 I _s ±1,75						56	36	56	36	56	36	55	36
7	70 I _s ±1,75							42	66	42	66	42	65	42
8	30	l _s ±1,75					45	76	45	76	45	75	45	
9	90 _s ±2.00											54		54
1	00	I _s ±2,00		1		ĺ				l		60		60
1	10	I _s ±2,00		1		ĺ				l		70		70
1	20	I _s ±2,00		1		ĺ				l		70		70
130	-300	ls ± 3.00		1								-		70
		.3 = 0,00		1	l	1	I	1	I		I	1		<u> </u>

All sizes in [mm]

• Screws with partial thread > 60 mm, I_s with shank ribs

²⁾ Other screw lengths with $I_s \min \le I_s \le I_s$ max and other thread lengths I_{gf} resp. $I_{gp} \ge 4 \cdot d$ up to max, standard thread lengths are allowed

³⁾ For 10 mm ≤ I_{gf} resp., I_{gp} ≤ 18 mm \rightarrow tolerance ±1,5 mm and for 18 mm < I_{gf} resp. I_{gp} ≤ 30 mm \rightarrow tolerance ±1,7 mm

fischer PowerFast II - Chipboard screw

Annex A3

Dimensions and Materials - Pan head with full- or partial thread

		Pow	erFast	t II – Cł	ninhoai	rd scre	w with	clampi	na effect			
							W WICH	olumpi				
	le A4.1	: Screw Dimen	sions a	nd Mate	rials							
	awing				2)							
			1 h		la							
				- 0'	-		Coremiller ¹⁾	Drive FZ	Drive TX			
	1	¹⁾ optional							Figure not to scale			
Ma	terials	and coatings										
•	Carbon	Steel										
No	yellow z	inc-plated, blue zind	c-plated, b	lue zinc-p	lated ≥12	µm, bonu	s-zinc-coa	ted, burnish	ied, nickel plated, brass plated			
INO		throad diameter	3	, 5	4	,0	4	,5				
d		lowed deviation		1 25	4,	00	4,	30				
	Inner f	thread diameter	2	20	2	50	2	75				
d ₁	Al	lowed deviation	± 0	.18 ± 0.20		0.20	± 0).20				
	Outer t	thread diameter	4,00		4,	50	5,	00				
a ₂	AI	lowed deviation	±C),30	± 0),30	± 0),30				
d		Head diameter	7,00		8,	00	8,	80				
Uh	Al	lowed deviation	± 0,50		± 0),60	± 0),60				
d		Shank diameter	2,60		2,90		3,20					
	Al	lowed deviation	± 0,15		± 0,15		± 0,15					
h	1	Head height	2,	30	2,40		2,	70				
I _t	Length		10	-	2	-		-				
			10	20		20		20				
Nor	minal le	nath	Standa	∠ Ind throa	d length	$\frac{2}{1}$	ndorhoa	∠ d throad l	$ \mathbf{L}_{\mathbf{n}} = \mathbf{P}_{\mathbf{n}}$			
			Stanua	ind threa	u lengti	Allowed	Deviatio	ns				
	ls	s.min/max	Iu		l lu		lu					
	30	l _s ±1,25	10	16	10,5	16		51				
	35	ls ±1,50	10	16	10,5	16						
	40	ls ±1,50	10	24	10,5	24						
	45	ls ±1,50	10	24	10,5	24						
	50	ls ±1,50	10	24	10,5	24	12	24				
<u> </u>	55	l _s ±1,75	30	10,5	30	12	30					
In s	teps of 1	10 mm	10		10 5	20	10					
-	0U 70	$l_{s} \pm 1,75$	10	30	10,5	30	12	30				
	80	Is ± 1,7 3			10,5	30	12	30				
130	-300	$ _{s} \pm 1,75$										
100		is ± 0,00	l	1	1	1 1		1 1	All sizes in Imm			

Screws with partial thread > 60 mm, I_s with shank ribs Other screw lengths with I_s min $\leq I_s \leq I_s$ max and other thread lengths I_{gf} resp. $I_{gp} \geq 4 \cdot d$ up to max, standard thread lengths are 2) allowed

³⁾ For 10 mm ≤ I_{gf} resp. I_{gp} ≤ 18 mm \rightarrow tolerance ±1,5 mm and for 18 mm < I_{gf} resp. I_{gp} ≤ 30 mm \rightarrow tolerance ±1,7 mm

fischer PowerFast II - Chipboard screw

Annex A4

Dimensions and Materials - Screw with clamping effect - partial/underhead thtread

Appendix 8 / 72

PowerFast II – Chipboard screw - Flange head with full- or partial thread

Tab	le A5	.1: Screw Dimens	sions a	and Ma	aterial	s	
Dr	awing	g					
			î.		ls ²	!)	
				l	1	lgf	
							Lt Trade mark ¹⁾
				6			
			ਚ 🗍	0005	22112	ALLA	
				/			
		Shank ri	bs ¹⁾	-			
		¹⁾ optional					Figure not to scale
Mat	terial	s and coatings					
	Carbo	on Steel	plated		a plata		a honve time sected by michael mickel plated by an plated
Nor	ninal	diamotor	-piated,		10-pialeo	<u>α 212 μ</u> ι Λ	n, bonus-zinc-coaled, burnished, nickel plated, brass plated
	Oute	er thread diameter	5	, 0 10	6	, 0	
d	040	Allowed deviation	± 0	.30	± 0	.30	
	Inne	er thread diameter	3,	25	4,	00	
a 1		Allowed deviation	± 0	,20	± 0	,30	
d		Head diameter	11	,00	13,50		
Un		Allowed deviation	± 1	,00	± 1	,00	
d。	Shank diameter 3,70			4,	30		
		Allowed deviation	± 0	,15	± 0	<u>,15</u>	
h	1	Head height	3,	00	3,	10	
l _t	Leng		20			30	
		Drive PZ	20	20	3	2	
Nor	ninal	length	Stand	<u>-</u> Iard th	read l	enath	$I_{rf} = Full thread I_{rr} = Partial thread Tolerance: + 2 03$
		longth	Otant			All	by bowed Deviations
	s	s min/max	laf		laf		
3	0	ls ±1.25	26	·gp	·gi	·gp	
3	5	l _s ±1,50	31	24	30		
4	0	l _s ±1,50	36	28	35	28	
4	5	l _s ±1,50	41	30	40	30	
5	50	l _s ±1,50	46	30	45	30	
5	5	l _s ±1,75	51	36	50	36	
	in ste	eps of 10 mm	50				
6	50 10	$l_{s} \pm 1,75$	56	36	55	36	
1	0	l _s ±1,75	00	42	00	42	
0		Is ±1,75	70	40	75	45	
1	00	l _s ±2,00		60		60	
1	10	ls ±2,00		70		70	
1	20	l _s ±2.00		70		70	
130	-300	l _s ±3.00				70	
			•		1	-	All sizes in Immi

■ Screws with partial thread > 60 mm, I_s with shank ribs

2) Other screw lengths with I_s min ≤ I_s ≤ I_s max and other thread lengths I_{gf} resp. I_{gp} ≥ 4 d up to max, standard thread lengths are allowed

³⁾ For 10 mm ≤ I_{gf} resp., I_{gp} ≤ 18 mm \rightarrow tolerance ±1,5 mm and for 18 mm < I_{gf} resp. I_{gp} ≤ 30 mm \rightarrow tolerance ±1,7 mm

fischer PowerFast II - Chipboard screw

Annex A5

Dimensions and Materials - Flange head with full thread

PowerFast II – Chipboard screw – Step countersunk head with full- or partial thread

Table A6	.1: Screw	Dimensions	and	Materials
1 4010 / 10		Dimonolonio	ana	matorialo

	Drawing							
DI	Drawing							
	ls ²⁾							
	lgf							
	t							
	e e e e e e e e e e e e e e e e e e e							
			31	10000	1111	1111		
		J	° <u>ı</u>		200	<u>~~~~</u>	Alar old here here	
	h lgp Drive PZ Drive TX							
	Shank ribs '' Coremiller''							
	optionial Figure not to scale							
Ma	Materials and coatings							
	Carbon Steel							
	yellov	v zinc-plated, blue zinc	-plated,	blue zir	c-plate	d ≥12 µr	n, bonus-zinc-coated, burnished, nickel plated, t I	brass plated
NO	mina	l diameter	5	, U	6	, U		
d	Out	er thread diameter	5,	10	6,	00		
		Allowed deviation	± 0	,30	±(),30		
d₁	Inn	er thread diameter	3,	25	4,	00		
		Allowed deviation	<u>±0</u>	9,20	<u>±(</u>	0,30		
d _h		Head diameter	11	,00	13	,50		
		Allowed deviation	± 1	,00	<u>±1</u>	,00		
du	Ur	derhead diameter	6,	40	7,	50		
ds		Shank diameter	3,	70	4,	30		
		Allowed deviation	± 0),15	± (),15		
h		Head height	3,	30	4,	20		
l _t	Leng	th of the screw tip		-	7,	30		
	Drive TX			20 25		30		
	Drive PZ 2 3							
No	minal	length	Stand	dard th	read I	ength	I _{gf} = Full thread I _{gp} =Partial thread T	olerance: $\pm 2,0^{3)}$
	1					Alle	owed Deviations	
	IS	ls,min/max	l _{gf}	I _{gp}	I _{gf}	I _{gp}		
3	30	l₅ ±1,25	22					
3	35	ls ±1,50	27	24	25			
4	40	ls ±1,50	32	28	30	28		
4	45	ls ±1,50	37	30	35	30		
5	50	ls ±1,50	42	30	40	30		
Ę	55	ls ±1,75	47	36	45	36		
in s	teps c	of 10 mm						
e	50	ls ±1.75	52	36	50	36		
	70	l _s ±1.75	62	42	60	42		
8	30	l _s ±1.75	72	45	70	45		
Ģ	90	ls ±2.00		54		54		
1	00	l _s ±2.00		60		60		
1	10	l _s ±2.00		70		70		
1	20	l _s ±2.00		70		70		
1:	30-							
3	00	$I_{s} \pm 3,00$				70		
			•		•	•		All sizes in [mm
• S	crews	with partial thread > 6	0 mm,	l₅ with s	hank ri	bs		
²⁾ O	ther so	rew lengths with Is mi	n ≤ l₅ ≤	l₅ max a	and oth	er threa	d lengths I_{gf} resp. $I_{gp} \ge 4 \cdot d$ up to max, standard	d thread lengths are
3) –	lowed	m < l r c n = 10		alora:= -	<u>т</u> и с.	nm and	for 10 mm < 1 (room 1 < 20 mm) toleroom	+1 7 mm
~ FC	or iu m	$IIII \geq Igfresp.,Igp \leq 18 fr$	ım → to	Dierance	±1,5 ľ	nm and	IOI TO ITITI < I_{gf} resp. $I_{gp} \leq 30 \text{ mm} \rightarrow \text{tolerance}$	±1,7 mm
		fisch	ner Po	werFa	ast II -	Chip	board screw	
						·		Annov AC
								Annex Ao
				-				

Dimensions and Materials – Step countersunk head with full- or partial thread

PowerFast II - Wood Construction screw - Countersunk head with full- or partial thread

Tab	Table A7.1: Screw Dimensions and Materials								
Dr	awin	g							
	$ls^{2)}$								
			-			of	-		
	milling pockets Trade mark								
			h	-/	-	lgp	\		Drive PZ Drive TX
		Shank ri	bs ¹⁾					Coremiller ¹)
	¹⁾ optional Figure not to scale							Figure not to scale	
Ma	terial	s and coatings							
-	Carbo	on Steel							
•	yellov	v zinc-plated, blue zinc	-plated,	blue zin	c-plated	d ≥12 µn	n, bonus	-zinc-cc	pated
No	minal	diameter	8	,0	10),0	12	,0	
d	Oute	er thread diameter	8	,0	10),0	12	,0	
ŭ		Allowed deviation	± 0	,40	± 0	,50	± 0	,60	
a.	Inne	er thread diameter	5,4	40	6,	40	7,4	40	
U 1		Allowed deviation	± 0	,30	± 0	,30	± 0	,35	
a		Head diameter	14	,40	18	,40	22,	40	
u h		Allowed deviation	± 0	,70	± 0	,90	± 1,10		
4		Shank diameter	5,90		6,90		8,20		
us		Allowed deviation	± 0	,30	± 0,35		± 0,35		
h		Head height	4,	60	5,40		6,70		
l _t	Leng	th of the screw tip	11	,00	12	,00	13,	00	
		Drive TX	4	0	40		50		
Nor	ninal	length	Stan	dard th	hread length		$ I_{qf} = F$	ⁱ ull thr	read I _{gp} =Partial thread Tolerance: ± 2,0
			•			Allo	wed D	eviatio	ns
	s	ls.min/max	laf	lan	laf	Ian	laf	lan	
8	30	ls ±2.30	68	60	·gi	60	-gi	-gp	
9	0	ls ±2.70	78	60		60			
in s	teps o	f 20 mm							
1	00	l _s ±2.70	88	60		60		60	
1	20	ls ±2.70	108	80		80		80	
1	40	ls ±3.20		80		80		80	
1	60	s ±3.20		80		80		80	
1	80	s ±3.20		100		100		100	
2	00	s ±3.60		100		100		100	
2	20	ls ±3.60		100		100		100	
2	40	s ±3.60		100		100		120	
2	60	l _s ±4.10		100		100		120	
2	80	ls ±4.10		100		115		120	
3	00	ls ±4.10		100		115		120	
320	-400	s ±4.50		100		115		120	
420	-500	ls ± 4.90		100		115		120	
520	-600	$l_{s} \pm 5.50$		100		115		120	
			1					•	All sizes in [mm]

Screws with partial thread > 60 mm, I_s with shank ribs

²⁾ Other screw lengths with $I_s \min \le I_s \le I_s$ max and other thread lengths I_{gf} resp. $I_{gp} \ge 4 \cdot d$ up to max, standard thread lengths are allowed

fischer PowerFast II - Wood Construction screw

Annex A7

Dimensions and Materials - Countersunk head with full- or partial thread

Appendix 11 / 72

PowerFast II - Wood Construction screw – Flange head with full- or partial thread

Table A8.1:	Screw	Dimensions	and Materials
-------------	-------	------------	---------------

Mate	wing ¹⁾ or	÷			Ls ²⁾ Lgf									
Mate	1) <mark>o</mark> l	र्त	sp sp		Ls ²⁾ Lgf									
Mate	¹⁾ oj	ŧ		<u>.</u>	lgf									
Nate	¹⁾ or	र्न		22995			1+							
Mate	¹⁾ oj	र्त		112		1120								
Mate	¹⁾ oj	ť		1199	IIII	1111			æ		6			
Mate	¹⁾ or				-000		NOD -	010			.0	•		
Mate	¹⁾ or			/								/		
Mate	¹⁾ oj	Ob and a dis	n	/	-	t gp			Drive PZ		Drive TX	(
Mate		Snank rib otional	s					emilier			Fi	qure not to	scale	
	vriale a	nd coatings										0		
	Carbon S	the coalings												
- C	vellow zin	c-plated, blue zinc-	olated, b	lue zinc-	plated ≩	≥12 um. I	bonus-zi	inc-coa	ed					
Nom	inal di	ameter	8	.0	10).0	12	.0						
	Outer	thread diameter	8	0	10) 0	12	0						
d –		lowed deviation	+ 0	40	+ 0	0.50	+ 0	, <u>e</u> 60						
	Inner	thread diameter	5	40	<u>0 ±</u> 6	40	<u> </u>	10						
d ₁	Δ	lowed deviation	+ 0	30	+ 0	1.30	<u>, , ,</u> + 0	35						
	7	Head diameter	21	00	25	50	<u> </u>	50						
d _h	Δ	lowed deviation	+1	00	+1	50	+2	50						
		Shank diameter	5	90	6	90	<u></u> , 8.2	20						
d _s –	Δ	lowed deviation	+ 0	30	+ 0	35	+ 0.25							
h	7.4	Head height	3	,00 50	<u> </u>	70	<u> </u>	70						
<u> </u>	lenath	of the screw tin	11	00	, ہ 12	00	13	00						
<i>-</i> t	Longin			0	40		50	<u>)</u>						
Nomi	inal len	nth	Stand	ard the	n hea	Drive IX 40 40 50 Nominal length Standard thread length Englishing Desticities of thread length							aranco.	
		g	Nominal length Standard thread length Igf = Full thread Igp = Partial thread Tolerance: ± 2						+ 2					
I	ls					ength Alle	wed D	eviatio	ns				statice.	± 2
Q		la min/may			<u> </u>	ength Allo	wed D	eviatio	ns	i ui tiu			erance.	± 2
80		Is,min/max	I _{gf}	I _{gp}	l _{gf}	Allc	wed D	eviatic I _{gp}	ns					± 2
<u>0</u>	30	l _{s,min/max} l _s ±2,30	I _{gf} 75	I _{gp} 60	l _{gf}	Allc	owed D	eviatic I _{gp}	ins					± 2
0 9 in ster	30 90	l _{s,min/max} I _s ±2,30 I _s ±2,70	l _{gf} 75 82	I _{gp} 60 60	l _{gf}	Allc Allc I _{gp} 60 60	bwed D I _{gf}	eviatic I _{gp}	ns					± 2
9 in ster	30 90 95 of 20	Is,min/max Is ±2,30 Is ±2,70 mm	_{gf} 75 82	I _{gp} 60 60	l _{gf}	Allo Allo Igp 60 60 60	bwed D	eviatio	ns					± 2
9 in ster 10	30 90 95 of 20 00 20	$\frac{ _{s,min/max}}{ _{s} \pm 2,30}$ $\frac{ _{s} \pm 2,70}{ _{mm}}$ $\frac{ _{s} \pm 2,70}{ _{s} \pm 2,70}$ $\frac{ _{s} \pm 2,70}{ _{s} \pm 2,70}$	_{gf} 75 82 92 112	I _{gp} 60 60 60 60	l _{gf}	Allc I _{gp} 60 60 60 60 80	bwed D	eviation I _{gp} 60	ns					± 2
9 in ster 10 12	30 90 95 of 20 00 20 40	$\frac{l_{s,min/max}}{l_s \pm 2,30}$ $l_s \pm 2,70$ $l_m m$ $l_s \pm 2,70$	_{gf} 75 82 92 112	l _{gp} 60 60 60 60 80 80	l _{gf}	Allc I _{gp} 60 60 60 60 80 80	bwed D	eviatio	ns					± 2
0 9 in ste 1(12 14	30 90 ps of 20 00 20 40 60	$\frac{l_{s,min/max}}{l_s \pm 2,30}$ $\frac{l_s \pm 2,70}{l_s \pm 2,70}$ $\frac{l_s \pm 2,70}{l_s \pm 2,70}$ $\frac{l_s \pm 3,20}{l_s \pm 3,20}$	l _{gf} 75 82 92 112	I _{gp} 60 60 60 80 80 80 80	l _{gf}	angth Allo Igp 60 60 60 60 80 80 80	J _{gf} J _{gf}	60 80 80	ns					± 2
0 9 in ste 1(12 14 16	30 20 20 20 40 60 80	$\frac{l_{s,min/max}}{l_s \pm 2,30}$ $l_s \pm 2,70$ $l_m m$ $l_s \pm 2,70$ $l_s \pm 2,70$ $l_s \pm 2,70$ $l_s \pm 3,20$ $l_s \pm 3,20$ $l_s \pm 3,20$ $l_s \pm 3,20$	l _{gf} 75 82 92 112	I _{gp} 60 60 60 80 80 80 80 80	l _{gf}	Allc Igp 60 60 60 60 80 80 80 80 80	I _{gf}	60 80 80 100	ns					± 2
6 9 10 11 12 14 14 16 18 20	30 30 30 30 30 30 40 60 80 00	$\frac{l_{s,min/max}}{l_s \pm 2,30}$ $l_s \pm 2,70$ $\frac{l_s \pm 2,70}{l_s \pm 2,70}$ $l_s \pm 2,70$ $l_s \pm 3,20$	l _{gf} 75 82 92 112	l _{gp} 60 60 80 80 80 80 100	l _{gf}	Allo Igp 60 60 60 80 80 80 100 100	l _{gf}	60 80 80 100	ns					± 2
0 9 n stej 10 12 14 16 16 20 22	30 30 30 30 50 50 50 50 50 50 50 50 50 5	$\frac{l_{s,min/max}}{l_s \pm 2,30}$ $l_s \pm 2,70$ $\frac{l_s \pm 2,70}{l_s \pm 2,70}$ $l_s \pm 2,70$ $l_s \pm 3,20$ $l_s \pm 3,20$ $l_s \pm 3,20$ $l_s \pm 3,20$ $l_s \pm 3,60$ $l_s \pm 3,60$	_{gf} 75 82 92 112	I _{gp} 60 60 60 80 80 80 80 100 100	l _{gf}	Allo Igp 60 60 60 80 80 100 100	l _{gf}	60 80 80 100 100	ns					± 2
9 in ste 10 12 14 16 16 20 22 22	30 30 30 30 50 20 20 40 60 80 00 20 40 40	$\frac{l_{s,min/max}}{l_s \pm 2,30}$ $l_s \pm 2,70$ $\frac{l_s \pm 2,70}{l_s \pm 2,70}$ $l_s \pm 2,70$ $l_s \pm 3,20$ $l_s \pm 3,20$ $l_s \pm 3,20$ $l_s \pm 3,60$ $l_s \pm 3,60$ $l_s \pm 3,60$ $l_s \pm 3,60$	_{gf} 75 82 92 112	I _{gp} 60 60 80 80 80 100 100 100	l _{gf}	Allc Igp 60 60 60 80 80 100 100 100	l _{gf}	eviatic l _{gp} 60 80 80 100 100 120	ns					± 2
9 10 11 12 14 16 16 20 22 24 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27	30 30 30 30 30 30 40 60 80 00 20 40 60 60 60	Is,min/max Is ±2,30 Is ±2,70 Imm Is ±2,70 Is ±2,70 Is ±2,70 Is ±3,20 Is ±3,20 Is ±3,20 Is ±3,60	_{gf} 75 82 92 112	l _{gp} 60 60 80 80 100 100 100 100 100		Allc Igp 60 60 60 60 80 80 100 100 100 100 100	l _{gf}	60 60 80 80 100 100 100 120 120	ns					± 2
9 9 10 stej 11 12 14 14 16 20 22 24 24 26 26 26	30 30 30 30 30 20 40 60 80 20 40 60 80 80 80 80 80 80 80 80 80 8	$\frac{l_{s,min/max}}{l_s \pm 2,30}$ $l_s \pm 2,70$ $\frac{l_s \pm 2,70}{l_s \pm 2,70}$ $l_s \pm 2,70$ $l_s \pm 3,20$ $l_s \pm 3,20$ $l_s \pm 3,20$ $l_s \pm 3,60$ $l_s \pm 3,60$ $l_s \pm 3,60$ $l_s \pm 4,10$ $l_s \pm 4,10$	_{gf} 75 82 92 112	l _{gp} 60 60 80 80 80 100 100 100 100 100 100		Allc Igp 60 60 60 60 80 80 100 100 100 100 100 100 100 100	l _{gf}	60 80 80 100 100 120 120	ns					± 2
9 9 10 ste 11 11 11 11 11 11 11 11 11 11 11 11 11	30 30 30 30 30 30 40 60 80 40 60 80 60 80 00 80 00 80 00 80 00 80 8	$\begin{array}{r} l_{s,min/max} \\ l_{s} \pm 2,30 \\ l_{s} \pm 2,70 \\ \hline mm \\ l_{s} \pm 2,70 \\ l_{s} \pm 2,70 \\ l_{s} \pm 2,70 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,60 \\ l_{s} \pm 3,60 \\ l_{s} \pm 3,60 \\ l_{s} \pm 4,10 \\ l_{s} $	_{gf} 75 82 92 112	Igp 60 60 60 80 80 100 100 100 100 100 100 100 100 100		Allc Igp 60 60 60 60 80 80 100 100 100 100 100 115 115	l _{gf}	eviatic l _{gp} 60 80 80 80 100 100 100 120	ns					± 2
0 9 9 1(1) 1(1) 1(1) 2(2) 2(2) 2(2) 2(2) 2(2) 2(3) 320	30 30 30 30 30 30 40 60 80 00 20 40 60 80 00 90 90 90 90 90 90 90 90 9	$\begin{array}{r l} l_{s,min/max} \\ l_{s} \pm 2,30 \\ l_{s} \pm 2,70 \\ \hline mm \\ l_{s} \pm 2,70 \\ l_{s} \pm 2,70 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,60 \\ l_{s} \pm 3,60 \\ l_{s} \pm 3,60 \\ l_{s} \pm 4,10 \\ l_{s} \pm 4,10 \\ l_{s} \pm 4,10 \\ l_{s} \pm 4,10 \\ l_{s} \pm 4,50 \\ \hline \end{array}$	lgf 75 82 92 112 	I _{gp} 60 60 80 80 80 100 100 100 100 100 100 100 1		Allo Igp 60 60 60 60 80 80 100 100 100 100 100 115 115 115	l _{gf}	eviatic l _{gp} 60 80 80 80 100 100 100 120	ns					± 2
6 9 9 11 12 14 14 16 20 22 24 26 26 28 26 28 320 320 320 420	30 30 30 30 30 30 40 60 80 00 20 40 60 80 00 -400 -500	$\begin{array}{r l} l_{s,min/max} \\ l_{s} \pm 2,30 \\ l_{s} \pm 2,70 \\ \hline mm \\ l_{s} \pm 2,70 \\ l_{s} \pm 2,70 \\ l_{s} \pm 2,70 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,60 \\ l_{s} \pm 3,60 \\ l_{s} \pm 3,60 \\ l_{s} \pm 4,10 \\ l_{s} \pm 4,10 \\ l_{s} \pm 4,10 \\ l_{s} \pm 4,50 \\ l_{s} \pm 4,90 \\ \hline \end{array}$	lgf 75 82 92 112 	I _{gp} 60 60 80 80 80 100 100 100 100 100 100 100 1		Allc Igp 60 60 60 60 80 80 100 100 100 100 115 115 115 115 115	l _{gf}	eviatic l _{gp} 60 80 80 80 80 100 100 100 120	ns					± 2
0 9 9 10 11 14 10 14 10 14 10 12 20 22 24 25 320 420 520	30 30 30 30 30 30 40 40 60 80 00 20 40 60 80 00 -400 -500 -600	$\begin{array}{r l} l_{s,min/max} \\ l_{s} \pm 2,30 \\ l_{s} \pm 2,70 \\ \hline mm \\ l_{s} \pm 2,70 \\ l_{s} \pm 2,70 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,20 \\ l_{s} \pm 3,60 \\ l_{s} \pm 3,60 \\ l_{s} \pm 3,60 \\ l_{s} \pm 4,10 \\ l_{s} \pm 4,10 \\ l_{s} \pm 4,10 \\ l_{s} \pm 4,50 \\ l_{s} \pm 4,90 \\ l_{s} \pm 5,50 \\ \hline \end{array}$	lgf 75 82 92 112 	I _{gp} 60 60 80 80 80 100 100 100 100 100 100 100 1		Allc Igp 60 60 60 60 80 80 100 100 100 100 115 115 115 115 115 115 115	Jigf	eviatic I _{gp} 60 80 80 80 100 100 100 120 120 120 120 120 120 12	ns					± 2

Annex A8

Dimensions and Materials - Flange head with full- or partial thread

PowerFast II - Wood Construction screw - Step Countersunk head with full- or partial thread

Table A9.1: Screw Dimensions and Materials

PowerFast II - Wood Construction screw – Hexagon head with full- or partial thread

Table A10.1: Screw Dimensio	ns and Materials
-----------------------------	------------------

Table	Table A10.1: Screw Dimensions and Materials							
Dra	Drawing							
	ls ²⁾							
				lgf				
		E lt						Trade mark
	_							
	2							
	Shank rike	1)		-	•gp		in an iller	Drive TX
	¹⁾ optional					CO	erniner	Figure not to scale
Mate	Materials and coatings							
-	Carbon Steel							
•	yellow zinc-plated, blue zinc-p	lated, bl	ue zinc-	plated ≥	:12 µm, l	bonus-zi	inc-coat	ed
Nom	ninal diameter	8	,0	10),0	12,0		_
d	Outer thread diameter	8	,0	10	0,0	12	2,0	
ŭ	Allowed deviation	± 0	,40	± 0),50	± 0	,60	
d	Inner thread diameter	5,4	40	6,	40	7,4	40	
•	Allowed deviation	± 0	,30	± 0	,30	± 0	,35	
du	Underhead diameter	8,	00	10	,00	12,	,00	
SW	Wrench size	12	,90	14,90		16,90		
	Allowed deviation	± 0	,50	± 0,50		± 0,50		
E	Height	2,	10	2,30		3,30		_
	Allowed deviation	± 0	,60	± 0,60		± 0,60		_
de	Shank diameter	5,	90	6,90		8,20		-
	Allowed deviation	±0	,30	± 0,35		± 0,35		-
h	Head height	5,	50	6,00		6,80		-
/ t	Length of the screw tip	11	00	12,00		13,00		-
	Drive IX	4	0	40		50		
Nom	Inal length	Stand	ard thr	ead le	ngth	l _{gf} = Fu	II thre	ad I _{gp} =Partial thread Tolerance: ± 2,0
	s .					wed De	eviation	1S
	ls,min/max	l _{gf}	I _{gp}	l _{gf}	I _{gp}	I _{gf}	I _{gp}	
8	30 I _s ±2,30	/5	75		75			-
9	$I_{s} \pm 2,70$	82	75		75			-
In ste	eps of 20 mm	00	75		75			-
10	$1_{s} \pm 2,70$	92	/5		15		80	-
12	$\frac{20}{1_{s}\pm 2,70}$	112	100		115		100	-
14	40 $I_s \pm 3,20$		100		115		120	-
	60 $I_s \pm 3,20$		100		115		120	-
200	00 Is ±3,20		100		115		140	-
200	-240 Is ±3,00		100		115		140	-
200	-300 Is ±4, 10		100		115		140	-
320	-+00 Is ±4,30		100		115		1/5	-
420 520			100		115		145	1
520	Is ± 0,00	I	100				140	All aimea in franci

Screws with partial thread > 60 mm I_s with shank ribs •

²⁾ Other screw lengths with $I_s \min \le I_s \le I_s \max$ and other thread lengths I_{gf} resp. $I_{gp} \ge 4 \cdot d$ up to max, standard thread lengths are allowed

fischer PowerFast II – Wood Construction screw

Annex A10

Dimensions and Materials – Hexagon head with washer and full- or partial thread

Appendix 14 / 72

PowerFast II - Wood Construction screw – Hexagon head with washer and full- or partial thread

. <u>.</u>.

Dra	wing		C F		ls ²⁾	f	lt		Trade mark
5 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
Figure not to scale									
wate	Carbon S	teel							
	vellow zin	ic-plated, blue zinc-	plated, l	olue zino	c-plated	≥12 µm	, bonus-	zinc-coa	ated
Nom	inal di	ameter	8	0	10	.0	12	0	
	Outer t	hread diameter	8	0	10	<u>,0</u>	12	2,0	
a	All	owed deviation	± 0	,40	± 0	,50	± 0	,60	
4	Inner t	hread diameter	5,	40	6,4	40	7,	40	
a 1	All	owed deviation	± 0	,30	± 0	,30	± 0	,35	
4		Head diameter	18	00	21,	30	23	,40	
a h	All	owed deviation	± 1	,00	± 1	,10	±1	,20	
du	Unde	rhead diameter	8,	00	10,	00	12	,00	
014/		Wrench size	12	90	14,	,90	16	,90	
211	All	owed deviation	± 0	,50	± 0	,50	± 0	,50	
С		Washer height	2,	00	2,2	20	2,	50	
F		Height	2,	10	2,30		3,30		
E	All	owed deviation	± 0,60		± 0,60		± 0,60		
4	S	Shank diameter	5,	90	6,90		8,	20	
us	All	owed deviation	± 0	± 0,30		± 0,35		,35	
h		Head height	5,	50	6,00		6,80		
/ _t	Length	of the screw tip	11	00	12,00		13,00		
		Drive TX	4	0	40		50		
Nom	inal len	gth	Standard thread length Igf =Full th			∣I _{gf} =Fu	ull thre	ad Igp=Partial thread Tolerance: ± 2,0	
						Alle	owed D	eviatio	ons
I	ls	ls,min/max	l _{gf}	l _{gp}	l _{gf}	l _{gp}	l _{gf}	l _{gp}	
8	0	l _s ±2,30	75	75		75			
9	0	l _s ±2,70	82	75		75			
in ste	eps of 20) mm							
1	00	l _s ±2,70	92	75		75		80	
12	20	l _s ±2,70	112	100		115		100	
14	40	l _s ±3,20		100		115		120	
1	60	l _s ±3,20		100		115		120	
18	80	l _s ±3,20		100		115		145	
200	-240	l _s ±3,60		100		115		145	
260	-300	I _s ±4,10		100		115		145	
320	-400	I _s ±4,50		100		115		145	
420	-500	l _s ±4,90		100		115		145	
520	-600	Is ± 5,50		100		115		145	All aizaa in Im
 Scr ²⁾ Oth 	ews with er screw	partial thread > 60 lengths with l₅ mir) mm l₅ ı ≤ l₅ ≤ l₅	with sha ₅ max a	ank ribs nd othei	r thread	lengths	s l _{gf} resp	$ _{gp} ≥ 4 \cdot d$ up to max. standard thread lengths are

fischer PowerFast II – Wood Construction screw

Annex A11

Dimensions and Materials – Hexagon head with full- or partial thread

Appendix 15 / 72

FAFS-Clip of adjustable frame screw

Annex A12

Dimensions and Materials – FAFS-Clip

Appendix 16 / 72

PowerFast II - Washers

Washer height

Allowed deviation

Allowed deviation

Washer edge height

4,70

-0,4

1,50

± 0,15

b

h

5,20

-0,4

1,80

± 0,15

6,20

-0,4

2,00

± 0,15

fischer PowerFast II

Dimensions and Materials – Washers

Annex A13

8,50

± 0,3

2,50

± 0,30

All sizes in [mm]

Base Materials:

The screws are used for connections in load bearing timber structures between members of softwood and hardwood shown in the Table B1.1 and in combination with steel plates.

»fischer PowerFast II« screws can also be used for fixing of thermal insulation on rafters and on vertical facades and ceilings (Annex E, F and Annex G).

"fischer PowerFast II" screws with a thread over the full length can also be used as tensile or compressive reinforcement perpendicular to the grain or as shear reinforcement. Furthermore "fischer PowerFast II" screws with a diameter ≥ 6 mm may also be used for fixing of thermal insulation on rafters and on vertical facades, see also Annex E and Annex G. Steel plates and wood-based panels which are not covered with explicit characteristic values (e.g. Table D12.2) in that ETA, shall only be fixed on the side of the screw head.

The minimum thickness of wood-bases panels should be at least $1,2 \cdot d$ - except of approved wood-based panels acc. to Annex D5 and D6.

Groups and Subgroups		Product	Abbreviation	hEN, or ETA
	Jer	Strength graded structural softwood timber	ST-c	EN 14081-1, EN 1912
) timt	Strength graded structural hardwood	ST-d	EN 14081-1,
	tural (ST	timber		EN 1912
	struc	Structural finger jointed timber	FST	EN 15497
	0)	Glued structural timber	GST	EN 14080
(SWB)	mber	Glued laminated timber made of softwoods	GLT-c	EN 14080
based	llel laminated ti (PL)	Block glued glulam	BGLT	EN 14080
id wood		Glued laminated timber made of hardwoods	GLT-d	various ETAs
Sol	Para	Single layered solid wood panel	SWP-P	EN 13353
	aminated er (CL)	Cross laminated timber	CLT	various ETAs, EN 16351
	Cross I timbe	Multi-layered solid wood panel	SWP-C	EN 13353

Table B1.1: Materials for the intended use

fischer PowerFast II

Materials of the intended use

Groups and Subgroups		Subgroups	Product	Abbreviation	hEN or ETA	
			Softwood LVL with parallel veneers	LVL-P-c	EN 14374	
			Hardwood LVL with parallel veneers	LVL-P-d	various ETAs	
	(LVL)	LVL-P	Hardwood Glued LVL with parallel veneers	GLVL-P-c	various ETAs	
3)	(I) Imper		Hardwood Glued LVL with parallel veneers	GLVL-P-d	various ETAs	
ised (VE	'eneer L		Softwood LVL with crossband veneers	LVL-C-c	EN 14374	
eneer-ba	inated V	ပု	Hardwood LVL with crossband veneers	LVL-C-d	various ETAs	
Ve	Lamir	Lamir	LVL	Softwood Glued LVL with crossband veneers	GLVL-C-c	various ETAs
			Softwood Glued LVL with crossband veneers	GLVL-C-d	various ETAs	
		≻.	Softwood Plywood	PLY-c	EN 13986 and EN 63	
		Ъ	Hardwood Plywood	PLY-d	EN 13986 and EN 63	
	Strand	based (SB)	Oriented strand board	OSB	EN 13986 and EN 30	
	рс	ed B)	Fibreboard, hard	HB EN 622-2		
	Mo	-fibr bas (WF	Fibreboard, medium	MB	EN 622-3	
	-booW	particle- based (WPB)	Resinoid-bonded particle board	RPB	EN 13986 and EN 31	
		sed (B)	Gypsum plasterboards	GPB	EN 520	
	ч С	-pa; (G)	Gypsum fibreboards	GFB	EN 15283-2	

fischer PowerFast II

Materials of the intended use

Annex B2

Appendix 19 / 72

Design:

The design of the connections shall be based on the characteristic load-carrying capacities of the screws given in Annex C and Annex D.

The design capacities shall be derived from the characteristic capacities in accordance with the EN 1995-1-1 or an appropriate National Code. The screws are intended for the use of connections subjected to static or quasi-static loadings.

The zinc-coated screws are for the use in timber structures subjected to moisture defined by the service classes 1 and 2 according to EN 1995-1-1.

- o Instructions from *fischerwerke GmbH* & Co. KG should be considered for installation.
- A minimum of two screws should be used for connections in load bearing timber structures.
- \circ The overall length l_s of the screws, shall not be less than 20 mm and shall not be greater than 600 mm. Dimensions see Annex A.
- The ratio of inner thread diameter to outer thread diameter d_1/d ranges from 0,50 to 0,80.
- The thread pitch *p* (distance between two adjacent thread flanks) ranges from $0,50 \cdot d$ to $0,85 \cdot d$.
- Earthquake design: No breaking is observed at a bending angle of $\alpha \le (45/d^{0.7} + 20)^\circ$.

Installation:The screws shall be driven into softwood and hardwood with a maximum characteristic density of 730 kg/m³ without pre-drilling or after pre-drilling (see Table B3.1 and Table B4.1) with a diameter not larger than the inner threaded diameter d_1 (Annex A).

 Table B3.1: Recommended pre-drilling diameter

for soft- and hardwood

Outer thread diameter	Bore-hole diameter [mm]
<i>d</i> [mm]	Softwood and Hardwood
3,0	2,0
3,5	2,0
4,0	2,5
4,5	2,5
5,0	3,0
6,0	4,0
8,0	5,0
10,0	6,0
12,0	7,0

fischer PowerFast II

Annex B3

Installation:

Recommended values without pre-drilling for the maximum penetration length of the threaded part of »fischer PowerFast II« made of carbon steel in wood-based members like ash, beech and oak or LVL according to ETA-14/0354 (e.g. Baubuche) are shown in Table B4.1 below. There is no limitation in softwood or wood-based members made of softwood.

Table B4.1: Reco	mmended	penetration	length
without pre-drilling	n in hardwo	bod	

Outer thread	Maximum				
diameter	penetration length				
<i>d</i> [mm]	[mm]				
3,0	40				
3,5	45				
4,0	50				
4,5	60				
5,0	70				
6,0	70				
8,0	70				
10,0	Pre-drilled application is				
12,0	recommended				

When using screws with a countersunk or step countersunk the upper surface of the screw head must be flush with the surface of the timber part. Especially for timber parts with gross densities higher than 550 kg/m³ it is recommended to use adequate counter-sinker to avoid breaking of the screw heads. For non-predrilled applications countersinking deeper is not permitted and should be avoided, because of damaging the surface and reduce the durability of the construction. Countersunk head screws made of carbon steel according to Annex A1, A2, A4 and A7 can be used together with washers according to Annex A13. Washers according to EN ISO 7094 can be used together with washers according to Annex A13.

»fischer PowerFast II – Chipboard screws« with a diameter between 4,5 mm and 6,0 mm and all diameters of »fischer PowerFast II – Wood Construction screws« can be driven in with standard screw drillers and with torque impact screw drivers too (e.g. fischer FSS 18V 400 BL or fischer FSS 18V 600). In combination with steel plates, torque controlled tools e.g. torque wrenches have to be used. For the use of screws in wood-based panels, like particle- and fibreboards, the screws have to be tightened carefully to ensure the characteristic load bearing capacity.

If on the head side metal plates are mounted, it has to be ensured that the diameter of the borehole of the steel plate has to be $\leq d + 1$ [mm]. Effects of the borehole tolerances must be considered in the structural design (load-independent slippage).

In addition, care must be taken about the accuracy of fit between the screw head and the metal to avoid stress peaks, and thus also requires a maximum allowed deviation of the screw-in-direction of $\pm 5^{\circ}$ (e. g. screw-in direction $\varepsilon = 90^{\circ}$ to the surface means $85^{\circ} \le \varepsilon \le 95^{\circ}$). For the definition of the angle ε referred to the screw axis and the structural element see Figure D2.1.

	fischer	PowerFast I	l
--	---------	-------------	---

Specifications of the indented use – Installation

Annex B4

Minimum timber cross section, end- and edge distances - Notations

For structural timber members, minimum spacings and distances for screws $d \le 8$ mm in predrilled holes are given as for nails in predrilled holes in EN 1995-1-1 clause 8.3.1.2 and table 8.2 and for screws $d \ge 8$ mm in clause 8.5. Here, the outer thread diameter d must be considered. The requirements of the minimum thickness of the timber elements must be considered, see EN 1995-1-1 clause 8.3.1.2.

Spacing a_2 may be reduced from 5·*d* to 2,5·*d*, if the condition $a_1 \cdot a_2 \ge 25 \cdot d^2$ is fulfilled. For Douglas-fir members minimum spacings and distances parallel to the grain shall be increased by at least 50 %.

Minimum distances from the unloaded edge perpendicular to the grain may be reduced to $3 \cdot d$ also for timber thickness $t < 5 \cdot d$, if the spacing parallel to the grain and the end distance is at least $25 \cdot d$.

 Table B5.1: Shapes of screw heads and applications with steel plates

Head shapes	Description
90	Screws with countersunk, raised countersunk according to Annex A1, A2, A4, A7
	Screws with step countersunk according to Annex A6 and A9
	Screws with pan head and flange head and hexagon head according to Annex A3, A5, A8, A10 and A11
METAL V METAL	Screws to fix steel plates on the head side according to Annex A1, A2, A3, A5, A6, A7, A8, A9, A10, A11

Table B5.2: Minimum distances and spacings

Notations for Structural Timber (ST-c) and Glued Laminated Timber (GLT-c) made in softwoods Notations

Notations			
a 1	Spacing <i>a</i> ¹ parallel to the grain of Solid Timber		
a 2	Spacing <i>a</i> ² perpendicular to the grain of Solid Timber	$\begin{array}{c} \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	
a _{3,c}	Distance $a_{3,c}$ from the centre of the screw-part in timber to the unloaded end grain of Solid Timber, $90^{\circ} \le \alpha \le 270^{\circ}$		
a _{3,t}	Distance $a_{3,t}$ from the centre of the screw-part in timber to the loaded edge of Solid Timber $-90^{\circ} \le \alpha \le 90^{\circ}$		
a 4,c	Distance $a_{4,c}$ from the centre of the screw-part in timber to the unloaded edge of Solid Timber $180^{\circ} \le \alpha \le 360^{\circ}$		
a 4,t	Distance $a_{4,t}$ from the centre of the screw-part in timber to the loaded end grain of Solid Timber $0^{\circ} < \alpha < 180^{\circ}$		
		·	Figures not to scale
	fischer PowerFas	t II	
	Specifications of the indep		Annex B

Minimum timber cross sections, end- and edge distances – notations for ST and PL

Appendix 22 / 72

Figures not to scale

Minimum timber cross section, end- and edge distances Materials: Solid Timber (ST-c, FST-c, and GST-c) and Glued Laminated Timber (GLT-c, BGLT-c)

Laterally loaded Screws

Minimum distances and spacings for laterally loaded »fischer PowerFast II« screws in non-predrilled holes in members of Solid Timber (ST-c, FST-c, GST-c), Glued Laminated Timber (GLT-c, BGLT-c) or similar glued products with a minimum thickness $t = 12 \cdot d$ and a minimum width of $8 \cdot d$ or 60 mm, whichever is greater up to a gross density of 480 kg/m³, are recommended to choose with the help of Table B6.1. For all other applications (predrilled applications, dimensions of the timber elements and gross densities higher than 480 kg/m³) the regulations of chapter 8.3.1 for screws with $d \le 8$ mm and chapter 8.5.1 for screws with 8 mm < $d \le 12$ mm in EN 1995-1-1 have to be considered.

Table B6.1: Laterally loaded screws: Minimum end- and edge distances for Solid Timber and Glued Laminated Timber products with a maximum gross density of 480 kg/m³ for non-predrilled applications

Head shapes	Solid Timber and Glued Laminated Timber								
and applications		Minimum spacings and distances							
(see Table B5.1)	a 1	a 2	а з,с	a 3,t	a 4,c	a 4,t			
	5·(1+ cos <i>α</i>)· <i>d</i>	5∙d	7∙d	(7+5·cos <i>α</i>)∙d	5∙d	(5+2·sin <i>α</i>)∙ d			
	5·(1+ cos <i>α</i>)· <i>d</i>	5∙d	7∙d	(5+5·cos <i>α</i>)∙ d	5∙d	(5+2·sin <i>α</i>)∙ d			
METAL METAL	3,5·(1+ cosα)·d	3,5∙ <i>d</i>	7∙d	(5+5·cosα)·d	5∙d	(5+2·sin <i>α</i>)∙ d			

Axially loaded screws

Minimum distances and spacings for exclusively axially loaded »fischer PowerFast II« screws, in nonpredrilled holes in members of Solid Timber (ST-c, FST-c and GST-c), Glued Laminated Timber (GLT-c) or similar glued products with a minimum thickness $t = 10 \cdot d$ and a minimum width of $8 \cdot d$ or 60 mm, whichever is the greater, may be taken as given in Table B6.2.

Table B6.2: Axially loaded screws: Minimum end- and edge distances for Solid Timber and Glued Laminated Timber products, with a maximum gross density of 480 kg/m³ for non-predrilled applications.

Head shapes and applications	Solid Timber and Glued Laminated Timber (ST-c, FST-c, GST-c, GLT-c, BGLT-c)							
(see Table B5.1)	-							
	a 1	a ₂	a 1,CG''	a _{2,CG} ''				
	5 4			4 -1				
METAL Q METAL	5.0	5.0	9.0	4· <i>a</i>				
¹⁾ CG Distance to the centre of gravity according to EN 1995-1-1, Table 8.6	of the penetratio	n length of the threade	ed part of the screw in	the timber element				
				Figures not to scale				
fischer PowerFast II								
Specifica Minimum distances	and spacings	laterally loaded so	crews	Appendix 23 / 72				

Minimum distances and spacings Material: Cross Laminated Timber (CLT)

Laterally and axially loaded screws:

Unless specified otherwise in the technical specification (ETA or hEN) of Cross Laminated Timber, minimum distances and spacings for screws in the plane surface of Cross Laminated Timber members with a minimum thickness $t = 10 \cdot d$ may be taken as shown in Table B8.1 and Table B8.2.

 Table B8.1: Minimum end- and edge distances for Cross Laminated Timber in the plane surface

 Cross Laminated Timber, Screws in the plane surface (CLT)

Head shapes		Minimu	m spacin	gs and dis	stances		
and applications (see Table B5.1)	a 1	a 2	a _{3,c}	a _{3,t}	a 4,c	a 4,t	
	4∙d	2,5∙d	6∙d	6∙d	3,5∙d	6· <i>d</i>	
	3·d	2,0∙ <i>d</i>	6∙d	5∙d	3,5∙d	6∙d	

Figures not to scale

Unless specified otherwise in the technical specification (ETA or hEN) of Cross Laminated Timber, minimum distances and spacing for screws in the edge surface of Cross Laminated Timber members with a minimum thickness $t = 10 \cdot d$ and a minimum penetration depth perpendicular to the edge surface of $10 \cdot d$ may be considered.

Table B8.2: Minimum end- and edge distances for Cross Laminated Timber in the edge surface

 Cross Laminated Timber, Screws in the edge surface

Head shapes	Minimum spacings and distances						
and applications (see Table B5.1)	a 1	a 2	a _{3,c}	a _{3,t}	a _{4,c}	a _{4,t}	
	10· <i>d</i>	3·d	7·d	12∙d	5∙d	5∙d	
METAL METAL	7·d	3·d	7·d	12∙ <i>d</i>	5∙d	5∙d	

Figures not to scale

fischer PowerFast II

Specifications of the indented use – Minimum distances for axially and laterally loaded screws Annex B8

Appendix 25 / 72

Performance of the product and references to the methods used for its assessment

Performance of the PowerFast II screws itself (single product)

Table C1.1: Characteristic values of the load-carrying capacities of fischer PowerFast II - Chipboard screws

Outer thread diameter	d	[mm]	3,0	3,5	4,0	4,5	5,0	6,0	
Characteristic strength pa	arameters								
Tensile strength	f tens,k	[kN]	3,2	4,1	5,2	6,3	8,9	13,1	
Torsional strength	f tor,k	[Nm]	1,5	2,0	3,0	4,2	6,0	10,0	
Yield moment	M y,Rk	[Nmm]	1654	2489	3546	4844	6405	10384	
Yield strength	f y,k	[N/mm ²]	1050						
Characteristic stiffness p	arameters								
Modulus of elasticity	Es	[N/mm ²]			210	.000			
Assessed performances									
Bendi	ing angle	[°]	No breaki	ng has bee	n observed	at a bendir	ng angle of		
			<i>α</i> ≤ 45°/d	^{0,7} +20°					
Safety factor insertion	Safety factor insertion moment [-] Ratio of the characteristic torsional strength to the mean insertion						n insertion		
moment: $f_{\text{tor,k}} / R_{\text{tor,mean}} \ge 1,5$									
			Note: Refe	erence den	sity of the ti	mber 480 k	⟨g/m³		

Table C1.2: Characteristic values of the load-carrying capacities of fischer PowerFast II – Wood Construction screws

Outer thread diameter	d	[mm]	8,0	10,0	12,0				
Characteristic strength par	rameters								
Tensile strength	f tens,k	[kN]	23,0	31,0	42,0				
Torsional strength	f tor,k	[Nm]	28,0	42,0	64,0				
Yield moment	M∕y,Rk	[Nmm]	22200	37400	59900				
Yield strength	f _{y,k}	[N/mm ²]		975					
Characteristic stiffness par	rameters								
Modulus of elasticity	Es	[N/mm ²]		210.000					
Assessed performances									
Bendin	ig angle	[°]	No breaking	g has been o	bserved at a	bending angle of			
			$\alpha \leq 45^{\circ}/d^{0,7}$	⁷ +20°					
Safety factor insertion i	Safety factor insertion moment [-] Ratio of the characteristic torsional strength to the mean insertior								
			moment: $f_{\text{tor},k} / R_{\text{tor},\text{mean}} \ge 1,5$						
			Note: Refer	rence density	∕ of the timbe	er 480 kg/m³			

Note: The tear-off capacity of the screw head is greater than the tensile capacity of the screw

fischer PowerFast II

Characteristic values of the screws

Annex C1

Appendix 26 / 72

1 Mechanical Resistance and Stability

The load-carrying capacities for the »fischer PowerFast II« screws are applicable to the wood-based materials mentioned in Annex B, even though the term *»timber*« has been used in the following. European Technical Assessments for structural members or wood-based panels must be considered if applicable.

The characteristic lateral load-carrying capacities and the characteristic axial withdrawal capacities of »fischer PowerFast II« screws should be used for designs in accordance with EN 1995-1-1 or an appropriate valid national code.

ETA's for structural members or wood-based panels must be considered where applicable.

For screws arranged under an angle between screw axis and grain-direction $\varepsilon \le 15^{\circ}$ (see Figure D2.1), the threaded penetration length (inclusive the tip of the screw) has to fulfill equation (1).

$$l_{ef} = \min \begin{cases} \frac{4 \cdot d}{\sin \varepsilon} \\ 20 \cdot d \end{cases}$$
(1)

For screws arranged under an angle between screw and grain-direction $15^{\circ} < \varepsilon \le 90^{\circ}$ the minimum threaded penetration length must be $I_{ef} \ge 4 \cdot d$ (see also Figure D2.1). For the fixing of rafters or similar building parts, the point side penetration length must be at least 40 mm (i.e. $I_{ef} \ge 40$ mm).

Reductions in the cross-sectional area caused by »fischer PowerFast II« screws shall be considered in accordance to the EN 1995-1-1, section 5.2.

fischer PowerFast II

Mechanical Resistance and Stability

Annex D1

1.1 Lateral load-carrying capacity *F*_{v,Rk}

The characteristic lateral load-carrying capacity of »fischer PowerFast II« screws shall be calculated according to EN 1995-1-1. The contribution of the rope effect may be considered, if only lateral loads (no axial loads) are acting on the screws. For the calculation of the load-carrying capacity, the following parameters should be taken into account. Figure D2.1 shows the definition of the necessary angles which consider the angle between load and grain-direction α , the angle between the surface of wide face of the structural element and the screw axis β and the angle between the screw axis and the grain-direction ε .

Figure D2.1: Notations for angles in SWB, LVL, SB and WFB (figures not to scale)

1.1.1 Embedment strength $f_{h,\varepsilon,k}$ for the use in Structural Timber (ST-c/d, FST-c/d and GST-c/d, BGLT) and Parallel Laminated Timber (GLT-c)

The embedment strength for »fischer PowerFast II« screws in non-predrilled holes arranged at an angle between screw axis and grain-direction, $0^{\circ} \le \varepsilon \le 90^{\circ}$ for structural timber elements with $\rho_{k} \le 730 \text{ kg/m}^{3}$ can be calculated with the help of equation (2) and for predrilled applications with the help of equation (3)

$$f_{h,\varepsilon,k} = \frac{0,019 \cdot \rho_k^{1,24} \cdot d^{-0,3}}{2,5 \cdot \cos^2 \varepsilon + \sin^2 \varepsilon}$$
(2)

$$f_{h,\varepsilon,k} = \frac{0,082 \cdot \rho_k \cdot (1-0,01 \cdot d)}{2,5 \cdot \cos^2 \varepsilon + \sin^2 \varepsilon}$$
(3)

Note: Screws parallel to the end-grain-direction stressed perpendicular to the screw axis ($\varepsilon = 0^{\circ}$) are only allowed for short-time loads.

 fischer PowerFast II
 Annex D2

 Lateral load-carrying capacity
 Appendix 28 / 72

1.1.2 Embedment strength $f_{h,k}$ for the use in Cross Laminated Timber (CLT-c)

If there are no other technical specification (ETA) for Cross Laminated Timber (CLT-c), the embedment strength for screws can be calculated as stated below. The following specifications are only applicable for screws with a diameter d of at least 6 mm, possible influences of gaps between the single lamellas have to be considered.

- (1) Element plane
- (2) Plane surface
- (3) Edge surface (Narrow side)
- (4) Inner layer (Inner lamellas)
- (5) Outer layer (Outer lamellas)
- (6) Middle layer (Middle lamella)

Figure D3.1: Notations CLT-elements (figure not to scale)

Screws in the plane surface

The embedment strength for screws in the plane surface of CLT-elements should be assumed as for Solid Timber according to equation (2), based on the characteristic density of the outer layer.

Screws in the edge (narrow) side

The embedment strength for screws in the narrow side of CLT-elements should be assumed according to equation (4).

$$f_{h,k} = 20 \cdot d^{-0.5} \tag{4}$$

1.1.3 Embedment strength $f_{h,\beta,\varepsilon,k}$ for the use in Laminated Veneer Lumber in softwood (LVL-c)

The embedment strength for »fischer PowerFast II« screws arranged at an angle between screw axis and grain-direction ε and an angle between screw axis of wide surface of the LVL β for $d \le 12$ mm can be calculated with equation (5) for non-predrilled holes

$$f_{h,\beta,\varepsilon,k} = \frac{0,082 \cdot \rho_k \cdot d^{-0,3}}{(\sin^2 \beta + k_2 \cdot \cos^2 \beta) \cdot (\sin^2 \varepsilon + 2,5 \cdot \cos^2 \varepsilon)}$$
(5)

and for predrilled holes

$$f_{h,\beta,\varepsilon,k} = \frac{0,082 \cdot \rho_k \cdot (1-0,01 \cdot d)}{(\sin^2 \beta + k_2 \cdot \cos^2 \beta) \cdot (\sin^2 \varepsilon + 2,5 \cdot \cos^2 \varepsilon)}$$
(6)

with

	1	for LVL-P	
$k_2 = \{$	$\min\begin{cases} d/(d-2)\\ 3 \end{cases}$	for LVL-C	(7)

Annex D3

Lateral load-carrying capacity

fischer PowerFast II

Appendix 29 / 72

1.1.4 Embedment strength $f_{h,\alpha,\beta,k}$ for use in Laminated Veneer Lumber in hardwood LVL-d according to (ETA-14/0354)

The embedment strength for »fischer PowerFast II« screws arranged at an angle between load and grain-direction, $0^{\circ} \le \alpha \le 90^{\circ}$ can be calculated with the help of equation (8). Screws with d > 8 mm should be predrilled.

$$f_{h,\alpha,\beta,k} = \frac{f_{h,k}}{(k_{90} \cdot \sin^2 \alpha + \cos^2 \alpha) \cdot (\sin^2 \beta + k_1 \cdot \cos^2 \beta)}$$
(8)

with

$$k_{90} = 0,5 + 0,024 \cdot d$$

$$k_{1} = \begin{cases} 1,2 & \text{for LVL-P in hardwood} \\ \min \begin{cases} d / (d-2) \\ 3 & \text{for LVL-C in hardwood} \end{cases}$$

(9)

Where

d f	Outer diameter of the screw [mm] Characteristic embedment strength for screws $d < 12$ mm in LVL d [N/mm ²]
I h,α, <i>β</i> ,k	Characteristic embedment strength of sciews 0 ≤ 12 mm in LVL-u [twimin]
f _{h,β,ε,k}	Characteristic embedment strength for screws $d \le 12$ mm in LVL-c [N/mm ²]
f _{h,ε,k}	Characteristic embedment strength for screws $d \le 12$ mm in ST-c, FST, GLT, BGLT
	[N/mm ²]
f _{h,k}	Characteristic value of the embedment strength according to Table D5.1 [N/mm ²]
k_{90}	Factor to consider influences of the diameter [-]
$k_{1,} k_{2,} k_{3}$	Factors to consider influences of the diameter and material [-]
α	Angle between grain-direction and acting load [°]

- β Angle between screw axis and surface [°]
- ε Angle between screw axis and grain-direction [°]
- $\rho_{\rm k}$ Characteristic gross density of the wood-based element [kg/m³]

fischer PowerFast II

Lateral load-carrying capacity

Annex D4

1.1.5 Embedment strength $f_{h,k}$ for the use in Oriented Strand Boards (OSB),

Plywood (PLY), Fibreboards (HB, MB, SB), Particleboards (RPB) in the plane surface The embedment strength for »fischer PowerFast II« screws in non-predrilled holes if no other regulations are given, arranged at an angle $\beta = 90^{\circ}$ to the plane surface can be calculated with the help of Table D5.1.

Figure D5.1: Screw arrangement in the plane surface of WBP (figure not to scale)

Table D5.1: Characteristic values of the embedment strength in the plane surface of OSB, HB, MB, SB, PLY and RPB

Outer thread diameter [mm]	d	3,5 mm – 6,0 mm	
Material		Embedment parameters in the plane surface [N/mm ²	1
OSB <i>t</i> > 5 mm (EN 300)	f _{h,k} =	48·d ^{-0,7} ·t ^{0,1}	
EGGER OSB 4 TOP predrilled <i>t</i> > 10 mm, (EN 13986)	<i>f</i> _{h,k} =	50· <i>d</i> ^{-0,6} t ^{-0,2}	
EGGER OSB 4 TOP without pre-drilling <i>t</i> >10 mm, (EN 13986)	<i>f</i> _{h,k} =	65· <i>d</i> ^{-0,7} · <i>t</i> ^{0,1}	
Plywood PLY <i>t</i> > 4 mm (EN 314-2)	<i>f</i> _{h,k} =	65· <i>d</i> ^{-0,7} · <i>t</i> ^{0,1}	
Fibreboard hard (HB) <i>t</i> > 3 mm (EN 622-2)	<i>f</i> _{h,k} =	30·d ^{-0,3} ·t ^{0,6}	
Fibreboard medium (MB) <i>t</i> > 3 mm (EN 622-3)	<i>f</i> _{h,k} =	28· <i>d</i> ^{-0,6} · <i>t</i> ^{0,6}	
Fibreboard soft (SB) 150 ≤ ρ _k ≤ 300 kg/m³ 18 mm ≤ <i>t</i> ≤ 60 mm	<i>f</i> _{h,k} =	$4 \cdot 10^{-4} \cdot t \cdot \rho_k^{1,2}$	
Fibreboard soft (SB) ρ _k < 150 kg/m³	<i>f</i> _{h,k} =	$15 \cdot 10^{-5} \cdot d^{-075} \cdot \rho_k^2$	
Particleboards (RPB) <i>t</i> > 5 mm (EN 312)	<i>f</i> _{h,k} =	50· <i>d</i> ^{-0,6} · <i>t</i> ^{0,2}	
Gypsum plasterboard t ≥ 9 mm (EN 520)	<i>f</i> _{h,k} =	3,9·d ^{-0,6} ·t ^{0,7}	
Gypsum board with fibrous reinforcement <i>t</i> ≥ 9 mm (EN 15283-2)	<i>f</i> h,k=	7,8·d ^{-0,2} ·t ^{0,7}	
	f	ischer PowerFast II	_ Δηρεγ Γ
	Late	ral load-carrying capacity	Appendix 31 /

1.1.6 Embedment strength $f_{h,k}$ for the use in Oriented Strand Boards (OSB),

Plywood (PLY), Fibreboards (HB, MB, SB), Particleboards (RPB) in the edge surface The embedment strength for »fischer PowerFast II« screws, if no other regulations are given, arranged at an angle $\beta = 0^{\circ}$ to the plane surface can be calculated with the help of Table D6.1.

Figure D6.1: Screw arrangement in the narrow surface of WBP (figure not to scale)

Table D6.1:	Characteristic	values of the	embedment	strength in	the edge	surface	of OSB
	Onaracichistic	values of the		Suchgurn	inc cuyc	Sunace	

Outer thread	d	≤ 5,0 mm	
Material			
EGGER OSB 4 TOP,			
t > 10 mm	f _{b k} =	50·d ^{-0,6} t ^{0,2}	
Load parallel to plane (EN 13986)			
EGGER OSB 4 TOP, without predrilling <i>t</i> >10 mm Load prallel to plane (EN 13986)	f _{h,k} =	65· <i>d</i> ^{-0,7} · <i>t</i> ^{0,1}	
EGGER OSB 4 TOP, predrilled <i>t</i> >10 mm Load normal to plane (EN 13986)	f _{h,k} =	65· <i>a</i> ^{-0,7} · <i>t</i> ^{0,1}	
EGGER OSB 4 TOP, without predrilling t >10 mm Load normal to plane (EN 13986)	f _{h,k} =	30· <i>d</i> ^{−0,3} · <i>t</i> ^{0,6}	
	f	ischer PowerFast II	Annex D
	Late	ral load-carrying capacity	Appendix 32 /

1.1.7 Embedment strength $f_{h,k}$ for the use in combination with predrilled steel plates

The characteristic embedment strength of »fischer PowerFast II« screws in steel plates can be taken like following into account.

$$f_{h,k} = k_{pl} \cdot 600 \, [\text{N/mm}^2]$$
 (10)

with

 k_{pl} =1,0for inner steel plates k_{pl} =0,5for the ratio $t / d \le 0,5$ for outer steel plates k_{pl} =1,0for the ratio t / d > 1,0 for outer steel platesIntermediate values should be linearly interpolated

Note: The 600 N/mm² should be used for any steel and may be different for other materials. The metal plate should be verified in accordance to the corresponding Eurocode (e.g. EN 1993-1-1, EN 1993-1-8, EN 1999-1-1).

1.1.8 Effective number of screws each row $n_{\rm ef}$

Splitting along the grain of a row of PowerFast II screws, should be considered by the effective number of fasteners n_{ef} .

For laterally loaded screws with d < 12 mm, the following rules for multiple fastener connections should be applied.

$$n_{ef} = n^{k_{ef}} \tag{11}$$

Distance	Materials	k _{ef}				
Distance	Materials	non-predrilled	predrilled			
<i>a</i> ₁ ≥ 14· <i>d</i>	SL, PL, CL and	1,0	1,0			
<i>a</i> ₁ ≥ 10· <i>d</i>	in the plane surface	0,85	0,85			
<i>a</i> ₁ ≥ 7· <i>d</i>	of LVL and GLVL	0,7	0,7			
<i>a</i> ₁ ≥ 4· <i>d</i>		-	0,5			
For intermediate spacings, linear interpolation of k_{ef} may be applied						
- in the narrow surface of LVL and GLVL $k_{ef} = \min \begin{cases} 1-0, 03 \cdot \left(20 - \frac{a_1}{d}\right) \\ 1 \end{cases}$						
For intermediate encoinde, linear internelation of k, may be explicit						

Table D7.1: Values for k_{ef} for SL, PL, CL and in the plane surface of LVL and GLVL

For intermediate spacings, linear interpolation of k_{ef} may be applied

For fischer PowerFast II screws with $d \le 8$ mm staggered at least by 1·*d* without predrilling the spacing a_1 may be doubled for the determination of n_{ef} .

Figure D7.1: Staggered arrangement of the screws parallel to the grain direction (figure not to scale)

The effective number of fasteners loaded perpendicular to grain should be taken as $n_{\text{ef}} = n_{90}$.

 fischer PowerFast II
 Annex D7

 Lateral load-carrying capacity – effective number of screws
 Appendix 33 / 72

For laterally loaded screws with $d \ge 12$ mm, the following rules for multiple fastener connections should be applied.

$$n_{ef} = \min \begin{cases} n \\ n^{0,9} \cdot \sqrt[4]{\frac{a_1}{13 \cdot d}} \end{cases} \quad \text{in SL, PL and CL}$$
(12)

$$n_{ef} = \min \begin{cases} n \\ n^{0.9} \cdot \sqrt[4]{\frac{t \cdot a}{50 \cdot d^2}} & \text{in LVL ang GLVL} \end{cases}$$
(13)

with

$$a = \begin{cases} a_{3} & \text{when n=1} \\ \min \begin{cases} a_{1} & \text{when n } \ge 2 \\ a_{3,t} & \text{when n } \ge 2 \end{cases}$$

$$t = \begin{cases} \min \begin{cases} t_{1} & \text{for single shear connection} \\ t_{2} & \text{for single shear connection} \\ min \begin{cases} 2 \cdot t_{1} & \text{for double shear connection} \\ t_{ms} & \text{for double shear connection} \end{cases}$$

$$(14)$$

Where

vvnere	Number of factories parallel to grain		
n₀ a₁	Spacing parallel to grain		
a, a,	Loaded end distance parallel to grain		
d	Nominal Diamter of fischer PowerFast II screws		
t_1 and t_2	thicknesses of the outer timber members		
t _{ma}	thickness of the inner member of double shear connections or the smallest th	ickness of	
l _{ms}	the inner member of multiple shear plane connections of the smallest th	ICKNESS OI	
fischer PowerFast II			
		Annex D8	
	Lateral load-carrying capacity – effective number of screws	Appendix 34 / 72	
		I	
1.2 Axial resistance of the screw under tension $F_{ax,t,Rd}$

The design axial tensile resistance $F_{ax,t,Rd}$ for a group of axially loaded screws is limited by the head pull-through parameter, the withdrawal capacity and the tensile capacity of the screw itself and should be considered as following.

$$F_{ax,t,Rd} = \min \begin{cases} n_{ef} \cdot F_{ax,t,Rd,1} \\ n \cdot F_{ax,t,Rd,2} \end{cases}$$
(16)

with

$$F_{ax,t,Rd,1} = \frac{k_{mod}}{\gamma_M} \cdot \min \begin{cases} \text{Headside: } \max\{F_{head,Rk}; F_{ax,\alpha,Rk}\} \\ \text{Tipside: } F_{ax,\alpha,Rk} \end{cases}$$
(17)

and

$$F_{ax,t,Rd,2} = \frac{f_{tens,k}}{\gamma_{M,2}}$$
(18)

Where Modification factor see also EN 1995-1-1 [-] *k*_{mod} Number of screws in a connection [-] n Effective number of screws in a connection [-] n_{ef} Partial factor for the screw, see EN 1995-1-1; Note: Recommended value _M=1,30 ΫМ Characteristic head pull-through resistance in according to see Annex D16 [N] Fhead Rk Characteristic withdrawal resistance according Annex D11, D12, D13, D14 [N] **F**_{ax.α.Rk} $F_{\text{ax.t.Rd}}$ Design withdrawal resistance [N] Design withdrawal resistance on the timber side [N] Fax.t.Rd.1 Design tension strength of the screw itself [N] Fax.t.Rd.2 Characteristic tensile strength of the »fischer PowerFast II« screws, *f*_{tens.k} see Table C1.1 and C1.2 [N], Note: Values in Table C1.1 and C1.2 are given in [kN]

 $\gamma_{M,2}$ Partial factor for resistance of cross-sections of a metal fastener in tension to fracture, see EN 1993-1-8; *Note: Recommended value* $\gamma_{M,2}$ =1,25

1.2.1 Withdrawal capacity $F_{ax,\alpha,Rk}$ for use in Structural Timber (ST-c, FST and GST) and Parallel Laminated Timber (GLT-c)

In Structural Timber (ST-c) and Glued Laminated Timber of softwood (GLT-c), the characteristic withdrawal capacities of »fischer PowerFast II« screws, with an angle of $0^{\circ} \le \varepsilon \le 90^{\circ}$ for self-tapping screws shall be calculated according to equation (19) or (20).

$$F_{ax,\alpha,Rk} = k_{ax} \cdot f_{ax,k} \cdot d \cdot l_{ef} \cdot \left(\frac{\rho_k}{350}\right)^{0.8}$$
(19)

$$F_{ax,\alpha,Rk} = k_{ax} \cdot f_{ax,k} \cdot d \cdot l_g \cdot \left(\frac{\rho_k}{350}\right)^{0,8}$$
(20)

with

$$k_{ax} = \min \begin{cases} 0.3 + (0.7 \cdot \varepsilon) / 45^{\circ} \\ 1.00 \end{cases}$$
(21)

fischer PowerFast II

Axial resistance of the screw under tension

Annex D9

Appendix 35 / 72

For screws arranged under an angle between screw axis and grain-direction $\varepsilon \le 15^{\circ}$ (see Figure D2.1), the threaded penetration length (inclusive the tip of the screw) has to fulfil equation (22).

$$l_{ef} = \min \begin{cases} \frac{4 \cdot d}{\sin \varepsilon} \\ 20 \cdot d \end{cases}$$
(22)

For screws arranged under an angle between screw and grain-direction $15^{\circ} < \varepsilon \le 90^{\circ}$ the minimum threaded penetration length must be $I_{ef} \ge 4 \cdot d$. For the fixing of rafters or similar building parts, the point side penetration length must be at least 40 mm (i.e. $I_{ef} \ge 40$ mm).

1.2.2 Withdrawal capacity $F_{ax,\alpha,Rk}$ for use in Structural Timber (ST-d, GLT-d) and Laminated Veneer Lumber (LVL-d) according to ETA-14/0354

The characteristic withdrawal capacity of »fischer PowerFast II« screws in Structural Timber (ST-d, GLT-d) and Laminated Veneer Lumber in hardwood (LVL-d) according to ETA-14/0354 with an angle of $0^{\circ} \leq \varepsilon \leq 90^{\circ}$ shall be calculated according to equation (23) or (24).

$$F_{ax,\alpha,Rk} = k_{ax} \cdot f_{ax,k} \cdot d \cdot l_{ef} \cdot \left(\frac{\rho_k}{730}\right)^{0.8}$$
(23)

$$F_{ax,\alpha,Rk} = k_{ax} \cdot f_{ax,k} \cdot d \cdot l_g \cdot \left(\frac{\rho_k}{730}\right)^{0,8}$$
(24)

with

$$k_{ax} = \min \begin{cases} 0.3 + (0.7 \cdot \varepsilon) / 45^{\circ} \\ 1.00 \end{cases}$$
(25)

The penetration length in hardwood has to be at least $I_{ef} \ge 4 \cdot d$.

Where		
d	Outer thread diameter of the screw [mm]	
f _{ax,k}	Characteristic withdrawal strength parameter, see Table D11.1 and D11.2 [N/m	m²]
k ax	Factor to consider the influence between the angle of the screw axis and the direction [-]	grain-
l _{ef}	Penetration length of the threaded part of the screw, including the screw head a screw tip [mm]	and/or
l_g	$l_{\rm g} = l_{\rm gp} - l_{\rm f} [\rm mm]$	
	Penetration length of the threaded part of the screw with $d = \text{const.}$	
	Values for <i>l</i> t see Annex A;	
	<i>I</i> t …length of the screw tip [mm]	
<i>n</i> ef	Effective number of screws, see Annex D15 [-]	
$F_{ax,\alpha,Rk}$	Characteristic withdrawal capacity of the screw with an angle α	
	to the grain-direction [N]	
ε	Angle between grain-direction and the screw axis [°], see Figure D2.1	
Dк	Characteristic gross density of the timber/wood based member [kg/m ³]	
<i>F</i>		
	finahar DowerFoot II	
	TISCHER POWERFAST II	
		Annex D10
	Axial resistance of the screw under tension	Appendix 36 / 72

Table D11.1: Characteristic values of »fischer PowerFast II – Chipboard screws« of the withdrawal strength parameter in Structural Timber in softwood and Laminated Veneer Lumber according to ETA-14/0354, referred to l_{ef}

Outer thread diameter d [mm]							
Values referred to the effe	Values referred to the effective length <i>l</i> ef,				4,0	4,5	5,0	6,0
see equations (19) and (2	3)							
Product	Abbreviation	Parameter		Withdra	awal ca	pacity [N/mm²]	
Structural Timber	ST-c, ST-d, FST,							
Parallel Laminated	GST, GLT-c, BGLT,	<i>f</i> ax,k	15,5	14,9	14,5	14,1	13,8	12,9
Timber	SWP-P, CLT							
LVL		f ax,90 90,k	-	-	-	-	40,0	32,0
according to	LVL	f ax,90 00,k	-	-	-	-	32,0	24,0
(see Figure D10.1)		f ax,00 00,k	-	-	-	-	32,0	24,0
Giant Bamboo		f _{ax,k}	-	-	-	-	-	30,0

Table D11.2: Characteristic values of »fischer PowerFast II – Wood Construction screws« of the withdrawal strength parameter in Structural Timber in softwood and Laminated Veneer Lumber according to ETA-14/0354, referred to l_{ef}

Outer thread diameter <i>d</i> [mm] Values referred to the effective length <i>l</i> _{ef} , see equations (19) and (23)				10,0	12,0	
Product	Abbreviation	Parameter		Withd	rawal ca	apacity [N/mm²]
Structural Timber Parallel Laminated Timber	ST-c, ST-d, FST, GST, GLT-c, BGLT, SWP-P	<i>f</i> ax,k	12,0	11,5	10,3	
Cross Laminated Timber in the plane surface	CLT	f _{ax,k}	12,0	11,5	10,3	
LVL		<i>f</i> ax,90 90,k	30,0	28,0	-	
according to ETA-14/0354	LVL	<i>f</i> ax,90 00,k	22,0	20,0	-	
(see Figure D10.1)		/ ax,00 00,k	22,0	20,0	-	

Figure D11.1: fischer PowerFast II in LVL-d (figure not to scale)

fischer PowerFast II - Performance

Axial resistance of the screw under tension

Annex D11

Appendix 37 / 72

Table D12.1: Characteristic values of »fischer PowerFast II – Chipboard screws« and »fischer PowerFast II - Wood Construction screws« of the withdrawal strength parameter in Structural Timber in softwood and Laminated Veneer Lumber according to ETA-14/0354, referred to $l_{\rm q}$

Outer thread diameter <i>d</i> [mm] Values referred to the threaded length with constant diameter l_g , see equation (20) and (24)				8,0	10,0	12,0	
Product	Abbreviation	Parameter	Withdrawal capacity [N/mm ²]				²]
Structural Timber Parallel Laminated Timber	ST-c, FST, GST, GLT-c, GLT-d, BGLT, SWP-P	f _{ax,k}	20,0	15,0	13,5	-	
		f ax,90 90,k	48,0	-	-	-	
LVL	LVL	<i>f</i> ax,90 00,k	44,6	-	-	-	
according to ETA-14/0354		<i>f</i> ax,00 00,k	31,6	-	-	-	

The characteristic axial withdrawal capacity of »fischer PowerFast II« screws with an angle of $\alpha = 90 \mid 90$ in wood-based panels with a minimum thickness and/or a penetration depth of the threaded part of at least $4 \cdot d$ can be calculated according to equation (26) for applications in the plane surface.

$$F_{ax,\alpha,Rk} = n_{ef} \cdot f_{ax,90|90,k} \cdot d \cdot l_{ef}$$
⁽²⁶⁾

Where

d Outer thread diameter of the screw [mm]

 $f_{ax,90|90,k}$ Characteristic withdrawal parameter in the plane surface [N/mm²]

*n*_{ef} Effective number of screws, see Annex D15 [-]

*l*_{ef} Penetration length of the threaded part of the screw, including the screw head and/or screw tip [mm]

Table D12.2: Characteristic values of »fischer PowerFast II – Chipboard screws« of the withdrawal strength parameter in the plane surface of derived wood panels, referred to *l*_{ef}

Outer thread diameter <i>d</i> [mm] Values referred to the effective length <i>l</i> _{ef} , see equations (19) and (23)				3,5	4,0	4,5	5,0	6,0
Product	Abbreviation	Parameter		Withdra	awal ca	pacity [N/mm²]	
Oriented strand board (EN 300)	OSB	f ax,k	9,3	9,0	8,6	8,3	8,0	7,1
Particleboard (EN 312)	RPB	f ax,k	11,9	11,1	10,3	9,5	8,7	7,1
Fibreboards (EN 622-2)	HB	f _{ax,k}	13,2	12,4	11,6	10,8	10,0	8,5
Laminated veneer lumber (EN 14374)	LVL-C	f ax,k	16,0	15,4	14,7	14,0	13,3	12,0

fischer PowerFast II - Performance

Annex D12

Axial resistance of the screw under tension

The characteristic axial withdrawal capacity of »fischer PowerFast II« screws for predrilled applications in the edge surface with an angle $\alpha = 90 \mid 00$ (see Figure D11.1) in wood-based panels with a thickness of at least $5 \cdot d$ arranged in the center of the thickness of the panel with a penetration depth of the threaded part of the screws of at least $6 \cdot d$ can be calculated according to equation (27).

$$F_{ax,\alpha,Rk} = n_{ef} \cdot f_{ax,90|00,k} \cdot d \cdot l_{ef}$$
⁽²⁷⁾

Where

dOuter thread diameter of the screw [mm]f_{ax,90|00,k}Characteristic withdrawal parameter in the edge surface [N/mm²]n_efEffective number of screws, see Annex D15 [-]l_efPenetration length of the threaded part of the screw, including the screw head and/or
screw tip [mm]

Table D13.1: Characteristic values of »fischer PowerFast II – Chipboard screws« of the withdrawal strength parameter in the edge surface of derived wood panels, referred to l_{ef}

Outer thread diameter d [mm	ו]					
Values referred to the effecti	ve length <i>l</i> ef,		4,0	4,5	5,0	6,0
see equations (19) and (24)						
Product	Abbreviation	Parameter	Wit	hdrawal ca	pacity [N/m	m²]
Oriented strand board (EN 300)	OSB	f _{ax,k}	6,0	5,8	5,6	5,1
Particleboard (EN 312)	RPB	f ax,k	5,6	5,4	5,2	4,7
Fibreboards (EN 622-2)	HB	f ax,k	7,0	6,5	6,0	5,1
Laminated veneer lumber (EN 14374)	LVL-C	f ax,k	9,2	8,8	8,4	7,5

fischer PowerFast II - Performance

Axial resistance of the screw under tension

1.2.3 Withdrawal capacity *F*_{ax,Rk} for use in Cross Laminated Timber (CLT)

If there are no other technical specification (ETA or hEN) for Cross Laminated Timber (CLT), the withdrawal capacity for screws can be calculated as following.

Screws in the plane surface

The withdrawal capacity for screws with $d \ge 6$ mm in the plane surface of CLT-c elements should be assumed as for Structural Timber according to equation (19) based on a characteristic density in accordance to equation (28), if there are no other specifications given. If necessary, gaps between the single lamellas have to be considered.

$$\rho_k = 1, 1 \cdot \rho_{lay,k} \tag{28}$$

Where

 $\begin{array}{ll} \rho_{k} & \text{Characteristic density for the calculation in equation (19) [kg/m^{3}]} \\ \rho_{\text{lay},k} & \text{Lowest characteristic density of the lamellas in a layer of the CLT-c element [kg/m^{3}]} \end{array}$

Screws in the narrow side

The withdrawal capacity for screws in the narrow side of CLT-elements should be assumed according to equation (29).

$$F_{ax,Rk} = 20 \cdot d^{0,8} \cdot l_{ef}^{0,9}$$
⁽²⁹⁾

If possible, the screws in the narrow side should be driven perpendicular into the grain-direction of the lamella. To avoid unwanted effects by screwing in only parallel to the grain direction, and gaps between lamellas in the narrow side of CLT panels, the considered penetration length I_{ef} in equation (29) should be decreased by $3 \cdot d$ (for calculation only).

If it is guaranteed that the angle between the grain-direction of the lamellas and the screw axis is $\geq 30^{\circ}$, the characteristic withdrawal capacity from equation (29) can be increased of about 25 %.

For screws penetrating more than one layer of Cross Laminated Timber, the different layers may be considered proportionally.

fischer PowerFast II

Axial resistance of the screw under tension

1.2.4 Effective number of screws *n*_{ef}

For axially loaded screws in tension, where the external force is parallel to the screw axis, the following rules should be applied.

$n_{ef} = \max \langle$	$ \begin{bmatrix} n^{0,9} \\ 0,9 \cdot n \\ 0,9 \cdot n \end{bmatrix} $	in general without torque controlled insertion drivers for screws $30^{\circ} \le \varepsilon \le 90^{\circ}$ and torque controlled insertion drivers for a group with more than 10 screws in a timber-to-timber connection (e.g. ST, PL, CL, LVL, PLY, OSB)	(30)
	n	for a group up to 10 screws in a timber-to-timber connection (e.g. ST, PL, CL, LVL, PLY, OSB)	

Where

- *n* Number of screws acting together in a joint [-]
- ε Angle between screw axis and grain-direction [°]

fischer PowerFast II

Effective number of screws for axial resistances of the screws under tension

1.3 Head pull-through capacity *F*_{head,Rk}

1.3.1 Head pull-through capacity *f*_{head,k} for use in Solid Timber (ST-c, FST, GST, BGLT)

Glued Laminated Timber (GLT-c), Cross Laminated Timber (CLT) and Wood-based panels (WFB, WPB)

The characteristic head pull-through capacity of »fischer PowerFast II« screws in Solid Timber can be calculate as following.

$$F_{head,Rk} = n_{ef} \cdot f_{head,k} \cdot d_h^2 \cdot \left(\frac{\rho_k}{350}\right)^{0.8}$$

(31)

Where

*d*_h Diameter of the screw head [mm]

 $n_{\rm ef}$ Effective number of screws according to Annex D7 and D14

 $\rho_{\rm k}$ Characteristic density of the timber element [kg/m³]

f_{head,k} Characteristic head pull-through parameter for »fischer PowerFast II« given below [N/mm²]

For timber elements with a thickness of at least 20 mm, the characteristic value of the head pull-through parameter $f_{head,k}$ can be taken into account as following.

Table D16.1: Characteristic values of the head pull-through parameter for ST-c/d, GST, FST. GLT-c/d. BGLT

Outer thread diamet	ter d		3,0	3,5	4,0	4,5	5,0	6,0	8,0	10,0	12,0
Head type	Material (Annex B)	Parameter			Head	d pull-t	hrough N/mm²	paran]	neter		
Countersunk, Raised countersunk and Pan head (Annex A1, A2, A3, A7)	ST-c, ST-d, FST, GST	ST-c, ST-d, FST, GST	19,0	16,3	15,0	14,2	13,4	13,0	12,5	12,0	11,6
Washer head and Screw with clamping effect (Annex A4, A5, A8)	GLT-c, GLT-d, BGLT, SW/P-P	f _{head,k}	-	-	-	-	20,0	15,5	14,3	12,6	11,2
Step countersunk (Annex A6, A9)	500 -		-	-	-	-	19,5	15,0	13,5	11,5	-
Hexagon head (Annex A10, A11)			-	-	-	-	-	-	10,0	10,0	10,0

For steel-to-timber connections the head pull-through capacity may be disregarded.

Notes: An accurate fit is important to avoid any kind of notch stresses see also Annex B4 The tear-off capacity of the screw head is greater than the tensile capacity of the screw

For the wood-based panels with a thickness of more than 20 mm the characteristic value of the head pull-through parameter can be calculated with

$$f_{head,k} = 10 \text{ N/mm}^2 \tag{32}$$

For wood-based panels with a thickness between 12 mm and 20 mm the characteristic value of the head pull-through parameter can be calculated with

$$f_{head,k} = 8 \text{ N/mm}^2 \tag{33}$$

For wood-based panels with a thickness of less than 12 mm the characteristic head pull-through capacity can be calculated with $f_{head,k}$ = 8 N/mm² with a limit of 400 N complying with a minimum thickness of the wood based panels of 1,2·*d*. In addition, the minimum thickness of Table D17.1 applies.

Table D17.1: Minimum thickness of Wood-Based Panels

 be fixed on the side of the screw head

Wood-based panel	Min. thickness [mm]
Plywood	6
Oriented strand board	8
Solid wood panels	12
Particleboards	8
Cement bonded particle boards	8
Fibreboards	6
(hard boards and medium boards)	0
Gypsum fibre and Plasterboards	12

The characteristic head pull-through capacity in softwood of the FAFS–Clip of adjustable frame screw can be calculated for tension and/or compression (push-through capacity) loads of the screws with the characteristic values given in Table D17.2.

 Table D17.2: Characteristic values of the head pull-through capacities of Screws with Clamping effect

 and FAFS-Clip (see Annex A4 and A12)

Outer thread dia	meter <i>d</i> [mm]	3,5	4,0	4,5	5,0	
Head type	Product Abbreviation	Parameter	Headside	pull-throu	igh capao	city [N]
Screw with clamping effect	ST & EST & CST &	$m{m{ au}}_{ ext{headside,Rk}}$	1220	1485	1750	-
	GLT-c, BGLT-c, GLT-c, BGLT-c,	F _{FAFS,t,Rk} (tension)	-	-	-	2200
	SVVF-F	F _{FAFS,c,Rk} (compression)	-	-	-	1290

fischer PowerFast II

Head pull-through capacity

1.4 Compression capacity in Solid Timber (ST, FST, GST) and

Glued Laminated Timber (GLT-c, BGLT) and Laminated Veneer Lumber (LVL-c)

The design compressive capacity $F_{ax,Rd}$ of »fischer PowerFast II« screws with the thread completely embedded in timber and a free screw length protruding from the timber member, including the screw head, and additional head supporting thick metal plates according to Annex L, shall be calculated as following.

$$F_{ax,\alpha,Rd} = \min \begin{cases} F_{ax,\alpha,Rd} \\ F_{b,Rd} \end{cases}$$
(34)

Where

 $F_{ax,\alpha,Rd}$ Withdrawal capacity see Annex D9 to D15 [N] $F_{b,Rd}$ Buckling strength [N]

$$F_{b,Rd} = 1,10 \cdot \kappa_c \cdot N_{pl,Rd}$$
(35)

With

$$\kappa_c = 1$$
 for $\overline{\lambda} \le 0, 2$

$$\kappa_c = \frac{1}{k + \sqrt{k^2 - \overline{\lambda}^2}} \quad \text{for } \overline{\lambda} > 0, 2 \tag{36}$$

and

$$k = 0,5 \cdot \left[1 + 0,49 \cdot \left(\overline{\lambda} - 0,2\right) + \overline{\lambda}^2\right]$$
(37)

The relative slenderness ratio shall be calculated with

$$\bar{\iota} = \sqrt{\frac{N_{pl,k}}{N_{b,k}}} \tag{38}$$

With the characteristic value for the axial capacity in case of plastic analysis

$$N_{pl,k} = \frac{d_s^2 \cdot \pi}{4} \cdot f_{y,k} \tag{39}$$

With

*d*_s Outer shank diameter of the screw [mm]

*f*_{y,k} Yield strength, see Annex C1, Table C1.1 [N/mm²]

 $N_{pl,k}$ Characteristic value of the plastic axial capacity [N]

fischer PowerFast II

Compression capacity of the screws

Annex D18

Appendix 44 / 72

With the characteristic value for buckling strength

$$N_{b,k} = \frac{\pi^2 \cdot E_s I_s}{l_{ef}^2} \tag{40}$$

With the

Modulus of elasticity

$$E_s = 210.000 \text{ N/mm}^2$$
 (41)

and the second moment of area

$$I_s = \frac{\pi \cdot d_s^4}{64} \tag{42}$$

Where

 d_{s} Outer shank diameter d_{s} [mm]

- *I*_{ef} Buckling length [mm] *with I*_{ef}=0,7□*I*
- *I* Free screw length protruding of the timber member including the screw head [mm]

Note: The compressive capacity must be modified for $F_{ax,\alpha,Rd}$ with the factors k_{mod} and γ_M for timber connections according to EN 1995-1-1, while $N_{pl,Rd}$ the partial-factor $\gamma_{M,1}$ for steel buckling according to EN 1993-1-1 and/or national standards respectively have to be considered. For γ_M , $\gamma_{M,1}$ the values $\gamma_M = 1,3$ and $\gamma_{M,1} = 1,1$ are recommended.

Screws loaded in compression with additional head supporting thick metal plates where distortion and displacement of the screw head perpendicular to the buckling loads are not possible, should be considered in accordance to Table L1.1 (see Annex L1).

fischer PowerFast II

Buckling capacities of screws with free span length

1.5 Combined laterally and axially loaded screws

For connections subjected to a combination of axial and lateral loads, the following equation has to be considered.

$$\left(\frac{F_{ax,Ed}}{F_{ax,Rd}}\right)^2 + \left(\frac{F_{\nu,Ed}}{F_{\nu,Rd}}\right)^2 \le 1$$
(43)

Where

*F*_{ax,Ed} Axial design action [N]

*F*_{v,Ed} Lateral design action [N]

 $F_{ax,Rd}$ Design load-carrying capacity of axially loaded screws [N]

*F*_{v,Rd} Design load-carrying capacity of laterally loaded screws [N]

fischer PowerFast II

Combined loads

Annex D20

Appendix 46 / 72

1.6 Slip modulus in the Serviceability Limit State

1.6.1 Laterally loaded screws

For laterally loaded »fischer PowerFast II« screws, the slip modulus, predrilled or non-predrilled, for the serviceability limit state (SLS) should be calculated according to EN 1995-1-1 independent of the load grain-direction angle α with equation (44).

$$K_{v,ser} = k_{st} \cdot k_{sp} \cdot C_{v,ser} \tag{44}$$

With

kst

 $k_{st} = \begin{cases} 1 & \text{for timber-timber connections} \\ 2 & \text{for steel-timber connections} \end{cases}$

 k_{sp} C_{v.ser}

Number of shear planes

Slip modulus in the Serviceability limit state (SLS) each shear plane. Table D21.1 [N/mm]

Figure D17.1: Definition of the shear plane k_{sp} (figure not to scale)

1.6.2 Axially loaded screws

For axially loaded screws the slip modulus for the serviceability limit state (SLS) can be calculated according to equation (45).

$$K_{ax,ser} = C_{ax,ser} \tag{45}$$

With

d Outer thread diameter [mm]

Penetration length of the threaded part, including the tip in [mm] *l*ef

Slip modulus in the serviceability limit state (SLS), Table D21.1 [N/mm] Cax.ser

fischer PowerFast II

Slip modulus in SLS

1.7 Slip modulus in the ultimate limit state

To consider the slip modulus K_u in the ultimate limit state (ULS) K_{ser} has to be reduced for both directions (laterally and axially) according to EN 1995-1-1 with

$$K_u = 2/3 \cdot K_{ser} \tag{46}$$

1.7.1 Laterally loaded screws

For laterally loaded »fischer PowerFast II« screws, the slip modulus, predrilled or non-predrilled, for the ultimate limit state (ULS) should be calculated according to EN 1995-1-1 independent of the load grain-direction angle α with equation (46).

Table D22.1: Mean values of the lateral slip-modules in Serviceability Limit State (SLS) in the plane surface of timber elements and wood based panels

Outer thread diameter	3,0 – 12,0 mm
Material	Lateral Slip-Modulus Cyser [N/mm]
Solid Timber Glued-Laminated Timber Softwood and Hardwood	$\frac{\rho_m^{1,5} \cdot d}{23}$
(EN 338, EN 15497, EN 14080) OSB t > 5 mm	6.8 · <i>ρ</i> _m · ď ^{−0,4}
(EN 300) Plywood t > 4 mm	740
Fibreboards t > 3 mm (EN 622-2, EN 622-3)	9. <i>p</i> m ⋅ d ^{-0,9}
Particleboards t > 5 mm (EN 312)	3 · <i>ρ</i> _{<i>m</i>} · d ^{−0,4}
Gypsum plasterboards t ≥ 9 mm (EN 520)	6700·d ⁻⁰⁸⁷
Gypsum boards with fibrous reinforcement t ≥ 9 mm (EN 15283-2)	<i>1,4</i> ·ρ _m · ď ^{−0,7}
LVL Soft- and Hardwood (EN 14374)	$\frac{\rho_m^{1.5} \cdot d}{20}$

fischer PowerFast II

Slip modulus in ULS

1.7.2 Axially loaded screws

For axially loaded »fischer PowerFast II« screws, the slip modulus, predrilled or non-predrilled, for the ultimate limit state (ULS) should be calculated according to EN 1995-1-1 independent of the load grain-direction angle α with equation (46).

Table D23.1: Mean values of the axial slip-modules in Serviceability Limit State (SLS) in the plane surface of timber elements and wood based panels

Outer thread diameter	3,0 – 12,0 mm
Material	Axial Slip-Modulus C _{ax,ser} [N/mm]
Softwood	32.4.1.
<i>ρ</i> _k ≥ 350 kg/m³	32.0. lef
Hardwood	20. 4. 1
<i>ρ</i> _k ≥ 510 kg/m³	So'u' lef
OSB	
t > 5 mm	10· <i>d</i> · <i>l</i> _{ef}
(EN 300)	
Fibreboards	
t > 3 mm	15· <i>d</i> · <i>l</i> _{ef}
(EN 622-2, EN 622-3)	
Particleboards	
t > 5 mm	10·d·l _{ef}
(EN 312)	
LVL (EN 14374)	
Soft- and Hardwood	28.d.l.
<i>ρ</i> _k ≥ 480 kg/m³	20 U lef
α=90 90, see D9.1	

fischer PowerFast II

Slip modulus in ULS

Appendix 49 / 72

Figure E3.1: Counter batten on rafters with insulation – Design loads (figure not to scale)

$$G_{s,Ed} = \gamma_G \cdot g_k \cdot e_s \cdot e_r$$

$$S_{s,Ed} = \gamma_Q \cdot s_k \cdot e_s \cdot e_r \cdot \cos \beta_r$$

$$R_{s,Ed} = (G_{s,Ed} + S_{s,Ed}) \cdot \sin \beta_r$$

$$F_{s,Ed} = R_{s,Ed} / \tan \alpha_r$$
(48)

Where

$F_{\rm ax,Ed}$	Axial load of the screws [N]
F s,Ed	Point loads perpendicular to the battens by screws [N]
$G_{s,Ed}$	Point load by dead weight [N]
$R_{s,Ed}$	Shear load due to dead weight and snow load [N]
S _{s,Ed}	Point load by snow load [N]
W _{S,Ed}	Point load by wind pressure [N]
es	Distance of the screws [mm]
e r	Distance of the rafters [mm]
g k	Characteristic dead load on the roof [N/m ²]
Sk'	Characteristic snow load on the roof [N/m ²]
$\alpha_{\rm r}$	Inclination of the screw axis (see Figure L3.1) [°]
$\beta_{\rm r}$	Roof inclination [°]
γG	Partial factor for permanent action acc. to EN 1990 [-]
γQ	Partial factor for variable action acc. to EN 1990 [-]

Note: For the calculation design values must be used

The bending stresses of the battens are calculated with

$$M_{Ed} = \frac{\left(F_{Ed} + F_{s,Ed}\right) \cdot l_{char}}{4} \tag{49}$$

Where

F _{Ed} F _{s,Ed} M _{Ed} I _{char}	Point loads perpendicular to the battens [N] Point loads perpendicular to the battens in the area of the screw heads [I Design bending moment of the batten [Nmm] Characteristic length of the batten [mm] with $l_{char} = \sqrt[4]{\frac{4 \cdot EI}{w_{ef} \cdot K}}$, where EI Bending stiffness of the batten [Nmm ²] w_{ef} Effective width of the thermal insulation [mm] with $w_{ef} = w + t_{il} / 2$, where w Minimum width of the batten or rafter [mm] t_{ii} Thickness of the thermal insulation [mm] K Bedding modulus [N/mm ³] The coefficient K may be calculated from the modulus of elastic thickness t_{ii} of the thermal insulation if the effective width w_{ef} of insulation under compression is known. Due to the load extensi insulation the effective width w_{ef} is greater than the width of the rafter, respectively. For further calculations, the effective width thermal insulation may be determined with $K = \frac{E_{ti}}{t_{vi}}$, where	N] Sity E_{ti} and the the thermal ion in the batten or w_{ef} of the
The followin	E_{ti} Modulus of elasticity of the thermal insulation [N/mm ²] t_{ti} Thickness of the thermal insulation [mm] og conditions shall be satisfied: $\sigma_{m,Ed}$	
Where	$\frac{-m_{m,d}}{f_{m,d}} \le 1$	(50)
$\sigma_{ m m,Ed} \ f_{ m m,d}$	Design value of the bending stress of the batten [N/mm²] Design value of the bending strength [N/mm²]	
	$\frac{\tau_{Ed}}{f_{v,d}} = \frac{3 \cdot V_{Ed}}{2 \cdot A_{ef} \cdot f_{v,d}} \le 1$	(51)
Where $f_{\rm v,d}$ $A_{\rm ef}$ $V_{\rm Ed}$ $\tau_{\rm Ed}$	Design value of the shear strength of the batten [N/mm ²] Net cross section of the batten [mm ²] Design shear load onto the batten [N] with $V_{Ed} = \frac{F_{Ed} + F_{s,Ed}}{2}$ Design value of the shear stress of the batten [N/mm ²]	
	fischer PowerFast II	Appay 54
	Fixations of on-roof insulation	(informative) Appendix 53 / 72

If the compressive stresses are transferred over the thermal insulation and not the screws, the following equation has to be considered.

$$\sigma_{c,Ed} = \frac{1.5 \cdot F_{Ed} + F_{s,Ed}}{2 \cdot l_{char} \cdot w_{ef}}$$
(52)

Where

$\sigma_{ m c,Ed}$	Design	value of the compression stresses of the thermal insulation						
F _{Ed} F _{s,Ed} I _{char}	Point loa Point loa Charact	int loads perpendicular to the battens [N] int loads perpendicular to the battens in the area of the screw heads [N] aracteristic length of the batten [mm]						
	with l_{chain}	$_{r} = 4 \sqrt{\frac{4 \cdot EI}{w_{ef} \cdot K}}$, where						
	EI W _{ef}	Bending stiffness of the batten [Nmm ²] Effective width of the thermal insulation [mm]						
		with $W_{ef} = W + t_{ti} / 2$, Where w Minimum width of the batten or rafter [mm] t_{ti} Thickness of the thermal insulation [mm]						
	К	Bedding modulus [N/mm ³] The coefficient <i>K</i> may be calculated from the modulus of elastic thickness t_{ii} of the thermal insulation if the effective width w_{ef} of insulation under compression is known. Due to the load extensi insulation the effective width w_{ef} is greater than the width of the rafter, respectively. For further calculations, the effective width thermal insulation may be determined with $K = \frac{E_{ii}}{t_{ii}}$, where E_{ti} Modulus of elasticity of the thermal insulation [N/mm ²] the Thickness of the thermal insulation [mm]	tity <i>E</i> _{ti} and the the thermal ion in the batten or w _{ef} of the					
Note: The a stress at 10	lesign val % deforn	ue of the compressive stress shall not be greater than 110 % of a nation calculated according to EN 826.	the compressive					
		fischer PowerFast II	Annex E5					
		Fixations of on-roof insulation	(informative) Appendix 54 / 72					

The screws are loaded predominantly axially. The axial tension force in the screw may be calculated from the shear loads of the roof

$$F_{ax,Ed} = \frac{R_{s,Ed}}{\cos \alpha_r} \le F_{ax,\alpha,Rd}$$
(53)

Where

$F_{ax,Ed}$	Design value of the axial tension forces onto the screw [N]
$F_{ax,\alpha,Rd}$	Design value of the withdrawal capacity of the screw [N]
$R_{s,Ed}$	Shear loads onto the screw [N]
$\alpha_{\rm r}$	Angle inclined screw (see Figure L3.1) [°]

In order to limit the deformation of the screw head for heat insulation thicknesses over 200 mm or with compressive strength below 0,12 N/mm², respectively, the axial withdrawal capacity of the screws shall be reduced by the factors k_1 and k_2 .

The design axial capacity of fischer PowerFast II screws for rafter or façade installation should be calculated with equation (54). The load-carrying capacity of axially loaded screws is the minimum design value of the axial withdrawal capacity of the threaded part of the screw, the head pull-through capacity of the screw and the tensile capacity of the screw.

$$F_{ax,\alpha,Rd} = \min\left\{k_{ax} \cdot f_{ax,d} \cdot d \cdot l_{ef,r} \cdot k_1 \cdot k_2 \cdot \left(\frac{\rho_{k,r}}{350}\right)^{0,8}; \max\left\{\frac{f_{head,d} \cdot d_h^2}{k_{ax} \cdot f_{ax,d} \cdot d \cdot l_{ef,b}}\right\} \cdot \left(\frac{\rho_{k,b}}{350}\right)^{0,8}; f_{tens,d}\right\}$$
(54)

Where

$F_{ax, \alpha, Rd}$	Design value of the withdrawal capacity of the screw [N]					
d	Diameter of the screw [mm]					
d h	Head diameter of the screw [mm]					
f _{ax,d}	Design value of the withdrawal parameter of the threaded part of the screw [N/mm ²]					
f _{head,d}	Design value of the head pull-through capacity of the screw [N/mm ²]					
f _{tens,d}	Design value of the tensile capacity of the screw [N]					
<i>k</i> _{ax}	Coefficient according to equation (21)					
<i>k</i> ₁	min {1; 200 / t_{tl} [-]					
<i>k</i> ₂	min {1; $\sigma_{10\%,Ed}$ / 0,12} [-], where					
	$\sigma_{10\%,Ed}$ Compressive stress of the heat insulation at 10 % deformation [N/mm ²]					
	<i>t</i> _{ti} Thickness of the thermal insulation [mm]					
<i>l</i> _{ef.r}	Point side penetration length of the threaded part in the rafter with $l_{ef} \ge 40$ mm					
<i>l</i> ef.b	Penetration length of the threaded part in the batten					
α	Angle between grain and screw axis ($\alpha > 30^{\circ}$) [°]					
0x	Characteristic density of the timber element [kg/m ³]					
r n						

Note: If the factors k_1 and k_2 are considered in the equation for $F_{ax,Rd}$, the deflection of the battens is not be taken into account. Alternatively to the battens, panels with a minimum thickness of 20 mm from plywood according to EN 636, national provisions or with an ETA that apply at the installation site, particle board according to EN 312, national provisions or with an ETA that apply at the installation site, oriented strand board according to EN 300, national provisions or with an ETA that apply at the installation site and solid wood panels according to EN 13353, national provisions or with an ETA that apply at the installation site or Cross- laminated Timber according to an ETA may be used.

fischer PowerFast II	Annex E6	
Fixations of on-roof insulation	(informative) Appendix 55 / 72	

Thermal insulation material on rafters with parallel screws perpendicular to the roof plane

Alternative to the battens, panels with a minimum thickness of 20 mm from plywood according to EN 636, particleboard according to EN 312, oriented strand board OSB/3 and OSB/4 according to EN 300 or European Technical Assessment and solid wood panels according to EN 13353 may be used.

The insulation must have a minimum compressive strength of $\sigma_{10\%}$ =0,05 N/mm² at 10 % deformation according to EN 826.

The battens or wood-based panels, respectively, must have sufficient strength and stiffness. The maximum design value of the compressive stress between the battens or boards, respectively, and the insulation shall not exceed 1,1 $\sigma_{10\%}$.

Characteristic load-carrying capacity of a screw loaded in shear may be calculated with

$$F_{v,Rk} = \min \begin{cases} f_{h,b,k} \cdot d \cdot t_{b} \\ f_{h,r,k} \cdot d \cdot t_{r} \\ \frac{f_{h,b,k} \cdot d \cdot \beta}{1+\beta} \cdot \left(\sqrt{4t_{ti}^{2} + (2+\frac{1}{\beta})t_{b}^{2} + (2+\beta)t_{r}^{2} + 4t_{ti}(t_{b} + t_{r}) + 2t_{b}t_{r}} - 2t_{ti} - t_{b} - t_{r}\right) + \frac{F_{ax,Rk}}{4} \\ 1,05 \cdot \frac{f_{h,b,k} \cdot d \cdot \beta}{\frac{1}{2} + \beta} \left(\sqrt{t_{ti}^{2} + t_{ti}t_{b} + \frac{t_{b}^{2}}{2}\left(1 + \frac{1}{\beta}\right) + \frac{M_{y,k}}{f_{h,b,k} \cdot d}\left(1 + \frac{2}{\beta}\right)} - t_{ti} - \frac{t_{b}}{2}\right) + \frac{F_{ax,Rk}}{4} \\ 1,05 \cdot \frac{f_{h,b,k} \cdot d \cdot \beta}{\frac{1}{2} + \beta} \left(\sqrt{t_{ti}^{2} + t_{ti}t_{r} + \frac{t_{r}^{2}}{2}(1+\beta) + \frac{M_{y,k}}{f_{h,b,k} \cdot d}\left(2 + \frac{1}{\beta}\right)} - t_{ti} - \frac{t_{r}}{2}\right) + \frac{F_{ax,Rk}}{4} \\ 1,15 \cdot \frac{f_{h,b,k} \cdot d}{1+\beta} \left(\sqrt{\beta^{2}t_{ti}^{2} + 4 \cdot \beta(\beta+1) \cdot \frac{M_{y,k}}{f_{h,b,k} \cdot d}} - \beta \cdot t_{ti}\right) + \frac{F_{ax,Rk}}{4} \end{cases}$$
(55)

Where

F _{v.RK}	Characteristic load-carrying capacity of a screw loaded in shear [N]
<i>M</i> _{y,k}	Characteristic yield moment of the screw [Nmm]
F _{ax,Rk}	The minimum characteristic load-carrying capacity of the axially loaded screws acc. to Annex D [N]
f _{h,b,k}	Characteristic embedment strength of the batten [N/mm ²]
f h,r,k	Characteristic embedment strength of the rafter [N/mm ²]
d	Outer thread diameter [mm]
t _b	Batten thickness [mm]
<i>t</i> r	The lower value of rafter thickness or screw penetration length [mm]
t _{ti}	Thickness of the thermal insulation [mm]
β	Coefficient of the embedment strength of the rafter to the batten [-]
	with a flork/

with $\beta = \int f_{h,r,k} / f_{h,b,k}$

fischer PowerFast II

Fixations of on-roof insulation

FAFS-Clip of adjustable frame screw: Installations of ceilings or technical shells

The FAFS-Clip has to be used in combination with fischer PowerFast II – Chipboard screws with d=5 mm and countersunk head geometry (see Annex A1). It should be considered that the screw-in direction referred to the load direction (see Figure F1.1) is $0 \pm 5^{\circ}$. Horizontal loads which also effects bending moments of the screws should be avoided or otherwise transferred with additional slanted screws.

Figure F1.1: Installation of a ceiling or technical shell with the FAFS-Clip (figure not to scale)

The load-carrying capacity for acting loads $q_{Ed}^{(+)}$ can be calculated like following:

$$q_{Ed}^{(+)} \cdot e \le \min \begin{cases} F_{ax,Rd} \\ F_{FAFS,t,Rd} \end{cases}$$
(56)

With

 $F_{ax,Rd}$ According to Table D10.1 for screws in Annex A1 with d = 5,0 mm $F_{FAFS,t,Rd}$ According to Table D16.2 for FAFS-Clip in Annex A12

The load carrying capacity for acting loads q_{Ed}⁽⁻⁾ should be calculated like shown below

$$q_{Ed}^{(-)} \cdot e \leq \min \begin{cases} F_{ax,Rd} \\ F_{ki,Rd} \\ F_{FAFS,c,Rd} \end{cases}$$
(57)

With

 $F_{ax,Rd}$ According to Table D10.1 for screws in Annex A1 with d = 5,0 mm $F_{FAFS,c,Rd}$ According to Table D16.2 for FAFS-Clip in Annex A12

and

$$F_{ki,Rd} = \kappa_c \cdot N_{pl,d}$$
(58)

where

$$\kappa_c = \frac{1}{k + \sqrt{k^2 - \overline{\lambda}^2}} \quad \text{for } \overline{\lambda} > 0, 2 \tag{59}$$

fischer PowerFast II

 $\kappa_{a} = 1$ for $\overline{\lambda} \leq 0, 2$

FAFS-Clip Applications

Annex F1 (informative) Appendix 57 / 72

FAFS-Clip of adjustable frame screw: Installations of ceilings or technical shells

with

$$k = 0, 5 \cdot \left[1 + 0, 49 \cdot \left(\overline{\lambda} - 0, 2\right) + \overline{\lambda}^2\right]$$
(60)

The relative slenderness ratio shall be calculated with

$$\overline{\lambda} = \frac{4 \cdot L_{cr}}{\pi \cdot (0, 7 \cdot d)} \cdot \sqrt{\frac{f_{y,k}}{E_s}}$$
(61)

With the characteristic value for the axial capacity in case of plastic analysis referred to the diameter

$$N_{pl,k} = \frac{(0,7 \cdot d)^2 \cdot \pi}{4} \cdot f_{y,k}$$
(62)

For screws with a diameter of 5 mm, according to Annex A1

$$N_{pl,k} = 8710 \text{ N}$$
 (63)

And the buckling length L_{cr} on the side of the screw tip with a minimum penetration depth of 8.d

$$L_{cr} = 0, 7 \cdot l_d \tag{64}$$

Where

d e E _s	Nominal diameter of the screw [mm] Effective distance (supporting points) between parallel arranged screws [m] Modulus of elasticity of the screw [N/mm²], see Annex C
F _{ax,Rd}	Design withdrawal capacity of the screw in the structural timber element (2) [N], see Annex D10.1
F _{FAFS,t,Rd}	Design head pull-through capacity of the FAFS-Clip in timber part (1) for tension forces [N], see Annex D16
F _{FAFS,c,Rd}	Design head push-through capacity of the FAFS-Clip in timber part (1) for compression forces [N], see Annex D16
L _{cr}	Buckling length of the screw [mm]
l _d	Distance between (1) and (2) [mm]
N _{pl,k}	Characteristic axial capacity in case of plastic analysis [N]
$q_{Ed}^{(+)}$	Design load effecting tension loads on the installation element (1) [N/m]
$q_{Ed}^{(-)}$	Design load effecting compression loads on the installation element (1) [N/m]

Note: The compressive capacity must be modified for $f_{ax,d}$ with the factors k_{mod} and γ_M for timber according to EN 1995-1-1, while $N_{pl,d}$ the partial-factor $\gamma_{M,1}$ for steel buckling according to EN 1993-1-1 and/or national standards must be considered.

fischer PowerFast II

FAFS-Clip Applications

Examples of different Façade Systems

Type of »fischer PowerFast II« screws have to be selected based on the loads, base materials and geometric boundaries.

Example: PowerFast II used as substrate fixings

e.g. fischer BWM facade system AKT 100

e.g. fischer BWM facade system AKT 100 Zela

e.g. fischer BWM facade system AKT 103

Annex G1 (informative) Appendix 59 / 72

Use with Mounting Channels

fischer PowerFast II

Annex G2 (informative) Appendix 60 / 72

The load-carrying capacity

$$F_{\nu,Rk} = \frac{1}{\sqrt{\left(\frac{\cos\alpha}{F_{\nu,Rk}}\right)^2 + \left(\frac{\sin\alpha}{F_{ax,Rk}}\right)^2}}$$
(66)

The slip modulus, see also Annex D20 to D22

$$K_{ser} = K_{v,ser} \cdot \cos\alpha \cdot (\cos\alpha - \mu \cdot \sin\alpha) + K_{ax,ser} \cdot \sin\alpha \cdot (\sin\alpha + \mu \cdot \cos\alpha)$$
(67)

For cross coupled screws the friction should not be considered, which leads to

$$K_{ser} = K_{v,ser} \cdot \cos^2 \alpha + K_{ax,ser} \cdot \sin^2 \alpha$$
(68)

Considering the deformations in both parts leads to the total slip modulus

$$K_{v,tot,ser} = \frac{1}{\frac{1}{K_{ax,ser,1}} + \frac{1}{K_{ax,ser,2}}}$$
(69)

Where

d $F_{v,Rk}$ $F_{ax,Rk}$ $K_{ax,ser}$ $K_{v,ser}$ α μ	Outer thread diameter of the screw [mm] Characteristic load-carrying capacity of a screw each shear plane [N] Withdrawal capacity of the screw [N], see Annex D Slip modulus parallel to the screw axis in the serviceability limit state [N/n Slip modulus perpendicular to the screw axis in the serviceability limit stat [N/mm] Angle between screw axis and grain-direction [°] Coefficient of friction, if permanent compression forces between the timbe elements can be ensured $\mu = 0.25$	nm] te er
	fischer PowerFast II	Annex H2
	Inclined screws for timber-to-timber connections	(informative) Appendix 63 / 72

- Connections with side members of timber elements – simplified rules for laterally loaded screws

Figure J1.1: Fire design for unprotected screws – laterally loaded (figures not to scale)

The fire resistance of unprotected timber-to-timber joints with screws with $d \ge 3,5$ mm where spacing, edge and end distances and side member dimensions comply with minimum requirements given in EN 1995-1-1 have a fire resistance of

$$t_{d,fi} = 15 \text{ min}$$
 (70)

For connections with non-protruding heads, the fire resistance periods $t_{d,fi}$ can be extended by increasing the following dimensions with a_{fi} to a maximum of 30 minutes.

- The thickness of the side members
- The width of the side members
- The end- and edge distances of the screws

With

$$a_{fi} = 1, 5 \cdot \beta_n \cdot (t_{req} - t_{d,fi}) \tag{71}$$

fischer PowerFast II

Fire design for unprotected screws – laterally loaded

Annex J1 (informative) Appendix 64 / 72

The values for the design notional charring rate β_n under standard fire exposure are given below.

Table J2.1: Notional charring rate

Material	β _n [mm/min]				
Softwood and beech					
Glued Laminated Timber with a characteristic density of \ge 290 kg/m ³	0,70				
Solid Timber with a characteristic density of \geq 290 kg/m ³	0,80				
Hardwood					
Solid or Glued Laminated hardwood with a characteristic density of \ge 290 kg/m ³	0,70				
Solid or Glued Laminated hardwood with a characteristic density of \ge 450 kg/m ³	0,55				
LVL					
LVL with a characteristic density of \geq 480 kg/m ³	0,70				

b) Protected connections

Figure J2.1: Fire design for protected screws – laterally loaded (figures not to scale)

If the construction is protected by the addition of wood panelling, wood-based panels or gypsum plasterboards type *A* or *H* or other fire protection panels with an ETA including fire resistance, the time until start of charring should satisfy

$$t_{ch} \ge t_{req} - 0.5 \cdot t_{d,fi} \tag{72}$$

If the connection is protected by the addition of gypsum plasterboard type F, the time until start of charring should satisfy equation (73).

$$t_{ch} \ge t_{req} - 1, 2 \cdot t_{d,fi} \tag{73}$$

For connections where the screws are protected by glued-in timber plugs, the length of the plugs should be determined according to

$$a_{fi} = 1, 5 \cdot \beta_n \cdot (t_{req} - t_{d,fi}) \tag{74}$$

The fixings of the additional protection should prevent its premature failure. Additional protection provided by wood-based panels or gypsum plasterboards should remain in place until charring of the member starts ($t = t_{ch}$). Additional protection provided by gypsum plasterboards type *F* should remain in place during the required fire resistance period ($t = t_{req}$).

The following rules apply for the fixing of additional protections by screws:

- The distance between the screws should be not more than 100 mm along the board edges and not more than 300 mm for fastenings within the area of the boards

- The edge distance of fasteners should be equal or greater than a_{fi}, calculated using expression

$$a_{fi} = 1, 5 \cdot \beta_n \cdot (t_{req} - t_{d,fi})$$
(75)

The penetration depth of the screws for fixing the additional protection made of wood, wood-based panels or gypsum plasterboards type A or H should be at least $6 \cdot d$.

For gypsum plasterboards type F, the penetration length into unburnt wood (that is beyond the charline) should be at least 10 mm (see also EN 1995-1-2).

Where

- *a*_{fi} Extra thickness of member to improve the fire resistance [mm]
- *t*_{req} Required time of fire resistance [min]
- *t*_{d,fi} Time of the fire resistance of the unprotected connection [min]
- β_n Notional charring rate [mm/min]

fischer PowerFast II

Annex J3 (informative) Appendix 66 / 72

Fire design for unprotected screws - laterally loaded

- Simplified rules for axially loaded screws

Figure J4.1: Fire design for axially loaded screws (figure not to scale)

For axially loaded screws which are protected from direct fire exposure, the design resistance of the screws should be calculated with

$$F_{ax,d,t,fi} = \eta \cdot \frac{1,05 \cdot F_{ax,Rk}}{\gamma_{M,fi}}$$
(76)

For connections where the distances a_2 and a_3 of the screws satisfy the equations (77), the conversion factor η for the reduction of the axial resistance of the screw in the fire situation should be calculated with equation (78).

$$a_2 \ge a_1 + 40 a_3 \ge a_1 + 20$$
(77)

$$\eta = \begin{cases} 0 & \text{for } \mathbf{a}_{1} \leq 0, 6 \cdot t_{d,fi} \\ \frac{0, 44 \cdot a_{1} - 0, 264 \cdot t_{d,fi}}{0, 2 \cdot t_{d,fi} + 5} & \text{for } 0, 6 \cdot t_{d,fi} \leq \mathbf{a}_{1} \leq 0, 8 \cdot t_{d,fi} + 5 \\ \frac{0, 56 \cdot a_{1} - 0, 36 \cdot t_{d,fi} + 7, 32}{0, 2 \cdot t_{d,fi} + 23} & \text{for } 0, 8 \cdot t_{d,fi} + 5 \leq \mathbf{a}_{1} \leq t_{d,fi} + 28 \\ 1, 0 & \text{for } \mathbf{a}_{1} \geq t_{d,fi} + 28 \end{cases}$$
(78)

Where

a ₁ , a ₂ , a ₃	Distances and spacing of the screws [mm]
t d,fi	Time of the fire resistance of the unprotected connection [min]
F _{ax,Rk}	Characteristic withdrawal strength [N]
F _{ax,d,t,fi}	Design value of the withdrawal strength in the fire situation [N]
2∕M,fi	Partial factor for timber in the case of fire, see national regulations
	(in absence of other national regulations, a partial factor for the resistance
	⁄‰,₅=1,0 under fire impact is recommended) [-]
η	Conversion factor for the reduction of the load-bearing capacity in the case of fire [-]

fischer PowerFast II

Fire design for protected screws - axially loaded

Screw gluing methods

Screw gluing methods are only allowed for the usage in serviceability class 1 and 2 according to EN 1995-1-1

Figure K1.1: Arrangement of screws for screw-gluing (figure not to scale)

Note: The figure above is a vertical section and the distances between each screw row for assembling must be $\ge a_2$. For additional layers above, screws must have a distance of at least 3·d in grain direction to screw rows below. For additional information about the configuration see also figures in Annex K2.

d

ls.

Legend

- (1) fischer PowerFast II
- partial threaded screw
- (2) Bonded part
- (3) Glue joint
- t_1, t_2 Thickness of the gluing parts
- a₁ Spacing of the screws parallel to the grain in a row
- Nominal diameter of the screw
- Screw length
- Threaded length (Igp for partial-threaded screws)
- I_{gf} Threaded lengt d_h Head diameter
- $a_{3,c}$ Distance of the screw to the unloaded end grain

The shown applications for screw-bonding applies only for structures in serviceability class 1 and 2 according to EN 1995-1-1. The use of an adhesive with joint filling properties is necessary. If the joint thickness of a maximum of 0,3 mm can be ensured, adhesives according to EN 15425 and adhesives type I may also be used according to EN 301. The adhesive manufacturer's instructions must be fulfilled. Only »fischer PowerFast II« screws with washer or step countersunk heads (see Annex A5, A6, A8, A9) with a nominal diameter $d \ge 5$ mm should be used.

In the use of partial-threaded screws, no part of the thread should be in the bonded part. When using fully threaded screws, the glued part must be pre-drilled with a borehole of at least d + 1,0 mm. The upper side of the screw head or the washer, must be countersunk at least 2 mm from the surface of the glued part. The figure above shows the different options for installing the partial threaded screws of the assembling structural elements.

fischer PowerFast II

Screw-Gluing

The minimum spacing for connections with axially loaded screws must be observed. The maximum distance in the adhesive surface to the ends of the components must be $a_{3,c} \le 10 \cdot d$, and to the edges $a_{4,c} \le 5 \cdot d$. With a single-row screw connection, the rib width b_{rib} may not be larger than $d_h + 2 \cdot t_1$, otherwise a multi-row screw connection must be carried out.

Figure K2.1: Arrangement of screws for screw-gluing of ribbed panels (figure not to scale)

Legend

- (1) Partial threaded screw with washer
- (2) Panel
- (3) Glue joint
- (4) Rib (timber beam)
- *a*₁ Spacing of the screws parallel to the grain in a row
- a_1^* Reduced spacing of the screw parallel to the grain in a row to ensure a distance of $a_1/2$ between adjoining screw rows
- *a*₂ Spacing of the screws perpendicular to the grain direction

- *a*_{3,c} Distance to the unloaded end grain
- *a*_{4,c} Distance to the unloaded edge
- *d* Nominal diameter of the screw
- *I*s Screw length
- *t*₁ Thickness of the bonded panel
- *b*_{rip} Width of the beam web
- dh Head diameter
- *l*gf Threaded length (*l*gp for partial-threaded screws)

 fischer PowerFast II
 Annex K2 (informative)

 Screw-Gluing
 Appendix 69 / 72

The surfaces of the bonded parts must be suitable for bonding and are in accordance to the requirements of the adhesive manufacturer. In general, the finishes needed to be sanded or smoothed planed and without coatings, dirt, dust and impurities.

The tolerance of the joint thickness of the assembling parts must fulfil the tolerances for

- Beam- and plate-shaped screw-gluing: max. 1 mm per 1 m
- Ribbed panels: max. 2 mm per 2 m

If several layers are glued together, each layer must be screwed-on separately. The screws must be arranged staggered (see also figure Annex K1.1, and figure Annex K2.1 right below), to apply enough pressure in all joints. In the intermediate layers, the screw heads should not protrude the surface of the intermediate layer.

Deformations and movements that lead to damages of the adhesive-joints have to be avoided. The screw parameters and distances depend on the thickness of the assembling parts, given in the table below.

				Maximum screw spacings		Length	
Material bonded part	Thickness bonded part	Recommended nominal diameter	Min. nominal head diameter	Parallel to the grain direction of the outer layer	Perpendicular to the grain direction of the outer layer	of the threaded screw part in the structural part	Calculated compressive stress Pcal,min
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[N/mm²]
Beam- and panel s	shaped screw-	gluing					
LVL of softwood, three-layered solid timber panel, OSB	12 ≤ <i>t</i> < 19	≥ 5 e.g. Annex A5, A6, A8, A9	9,8	100	65	6∙ <i>d</i>	
LVL beech				100	100	8· <i>d</i>	
Lamellas and one-layered solid timber panels		≥6	10,8	140	65	6∙d	0,10
LVL in spruce three-layered solid timber panel, OSB	19 ≤ <i>t</i> < 27	9 ≤ <i>t</i> < 27 e.g. Annex A5, A6, A8, A9	Washer, e.g. Annex A13	140	90	6∙d	
LVL beech			10,8	140	140	8∙ <i>d</i>	
SWB, PLY-c, OSB, LVL	27 ≤ <i>t</i> < 42	≥ 8 e.g. Annex A8,	19,2	175	100	6· <i>d</i>	0,15
PLY-beech		A9		175	175	15∙d	
3-layered SWB panel, LVL	42 ≤ <i>t</i> ≤ 60	≥ 8 e.g. Annex A8,	19,2	225	100	6∙ <i>d</i>	
PLY-beech		A9		250	250	15∙d	
Ripped Panels							
	60 ≤ <i>tcL</i> < 100	≥ 8 e.g. Annex A7	30	225	160	10· <i>d</i>	0,18
CLT with GLT	100 ≤ <i>t</i> _{CL} ≤ 200	with Washer A13 + (EN ISO 7094)	45	250	200	15∙ <i>d</i>	0,25

Table K3.1: Properties of the bonded parts, screw parameters and compressive stress

fischer PowerFast II

Screw-Gluing

Annex K3 (informative)
Applications of PowerFast II screws for the structural use in timber constructions

As an alternative to the specifications in the Table K3.1, the maximum screw spacing can also be determined with the empirical equation (79).

$$a_{i,max} = 3,35 \cdot \sqrt[4]{E_{mean,i} \cdot I_{i,b=1}}$$
(79)

with *i* = 1 or 2

In addition, it must be proven, that the calculated minimum compressive stress per screw is observed.

$$\frac{F_{ax,Rd}}{a_1 \cdot a_2} \ge p_{cal,min} \tag{80}$$

Where

 $a_{i,max}$ Maximum spacing of the screws in i-direction [mm] $I_{i,b=1}$ Moment of inertia in *i*-direction for a width of 1 mm of the bonded part [mm⁴] $E_{mean,i}$ Modulus of elasticity in i-direction of the bonded part [N/mm²] $a_{i,max}$ Maximum spacing of the screws [mm] $F_{ax,Rd}$ Design withdrawal strength of the screw [N] $p_{cal,min}$ Minimum calculated compressive stress according to Annex K3

For the characteristic head pull-through parameter $f_{head,k}$ the following models can be used:

- Screws with glued parts made of solid timber and wood-based materials in softwood with

$$f_{head,k} = 14 \cdot d_h^{-0.14} \cdot \left(\frac{\rho_k}{\rho_a}\right)^{0.8}$$

- Screws with glued parts made of LVL in beech with

$$f_{head,k} = 25 \text{ N/mm}^2$$
(82)

For the decrease in the pressure until the adhesive hardens, one should consider in the calculation model with $k_{\text{mod}} = 1,0$ and $\gamma_{\text{M}} = 1,3$. Table in K3.1 is based on these model assumptions. After the required bond strength has been reached, the screws can be unscrewed.

fischer PowerFast II

Screw-Gluing

Annex K4 (informative) Appendix 71 / 72

(81)

Applications of PowerFast II screws for the structural use in timber constructions

Supporting plates to restrain screw heads

Metric screws with hexagon head, countersunk head or cylindric head or threaded rods with nut and washer – each according to the structural requirements – at least $2 \times M8$ (≥ 4.6 respectively A2-50) for the connection of the two plates made of aluminium (mechanical properties at least like e.g. EN AW 6082, EN AW 5083, EN AW 6060 or EN AC-44100); made of carbon steel or made of stainless steel (each at least S235).

Figure L1.1: Screw head supporting plate for fischer PowerFast II screws (figure not to scale)

For screws loaded in compression which are not completely embedded in timber, values from Table L1.1 can be used for the critical buckling load in combination with screw head supporting plates shown in Figure L1.1.

Table L1.1: Design buckling capacities $F_{b,Rd}$ in [kN] for screws with a free screw length protruding from the timber member including the screw head and the screw fixed between two metal plates where distortion and displacement of the screw head perpendicular to the buckling loads of the screw head are not possible, referred to a minimum gross density of the timber member of 350 kg/m³ and a partial factor of $\gamma_{M,1}=1,1$

Free screw length protruding from the timber	Nominal diameter [mm]	
member including the screw head [mm]	8,0	10,0
≤ 120 ¹⁾	11,12	18,52
140	8,91	15,26
160	7,23	12,62
180	5,96	10,53
200	4,98	8,87
220	4,21	7,56
240	3,61	6,51
260	3,12	5,65
280	2,73	4,96
300	2,40	4,38
¹⁾ For free screw lengths < 120 mm, buckling is not decisive		

ew ieriyuis 120 mm, bucking is not

fischer PowerFast II

Annex L1 (informative) Appendix 72 / 72

Screw Head Supporting Plates