

DECLARATION OF PERFORMANCE

No. 0012 - EN

1. Unique identification code of the product-type: fischer injection system FIS EM

2. Intended use/es:

Product	Intended use/es
Metal anchors for use in concrete (heavy-	For fixing and/or supporting concrete structural elements or heavy units such as
duty type)	cladding and suspended ceilings, see appendix, especially Annexes B 1 to B 10

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6a. Harmonised standard: ---

Notified body/ies: ---

6b. European Assessment Document: ETAG 001; 2013-04

European Technical Assessment: ETA-10/0012; 2015-03-19

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action for design according	See appendix, especially Annexes C 1 to C 14
to TR 029 or CEN/TS 1992-4:2009, Displacements	
Characteristic resistance for seismic performance categories C1 and C2 for	See appendix, especially Annexes C 15 to C 18
design according to Technical Report TR 045, Displacements	

Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

1.V. A. Dun

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

i.V. W. Mylal

Tumlingen, 2015-03-12

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The fischer injection system FIS EM is a bonded anchor consisting of a cartridge with injection mortar fischer FIS EM and a steel element. The steel element consist of

- a commercial threaded rod with washer and hexagon nut of sizes M8 to M30 or
- a fischer internal threaded anchor RG MI of sizes M8 to M20 or
- a deformed reinforcing bar of sizes $\phi = 8$ to 40 mm or
- a fischer rebar anchor FRA of sizes M12 to M24

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements	See Annex C 1 to C 14
Characteristic values for seismic performance categories C1 and C2 for design according to Technical Report TR 045, Displacements	See Annex C 15 to C 18

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

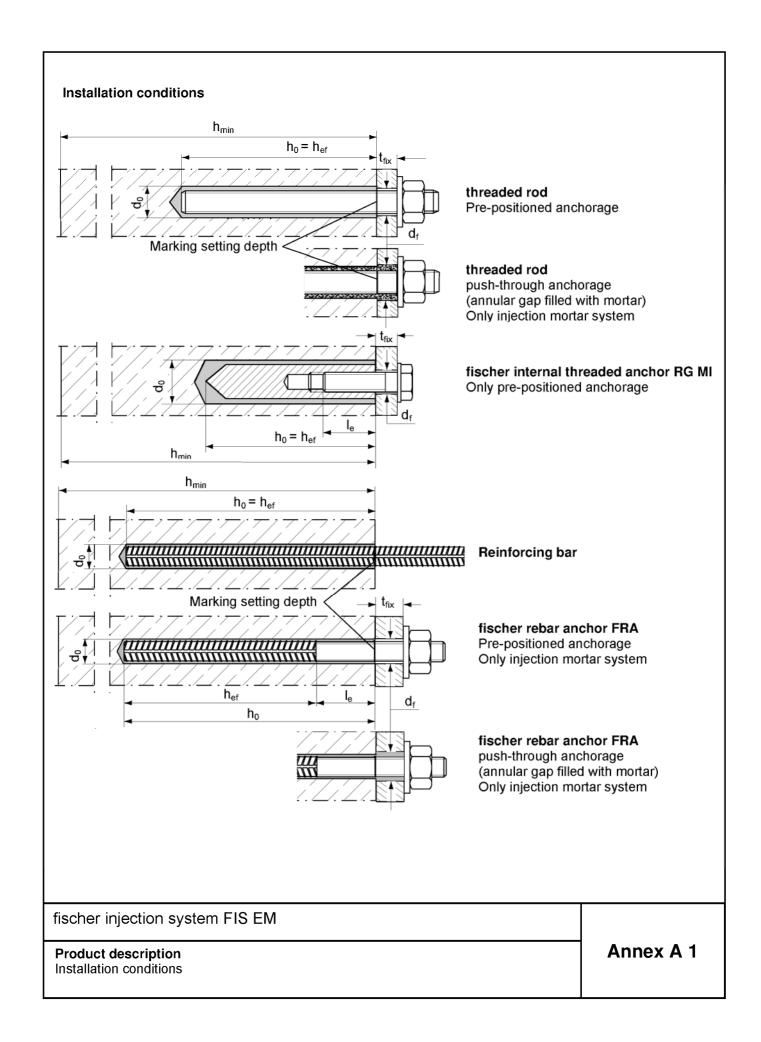
Not applicable.

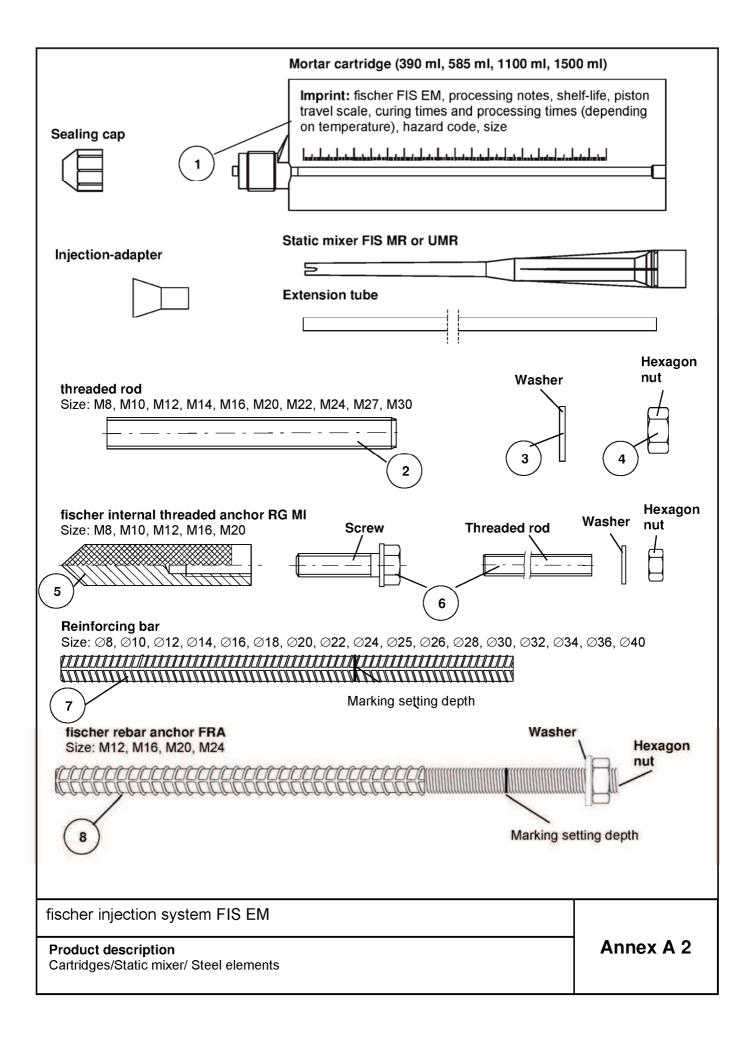
3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.


3.8 General aspects


The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

Tahla	Δ1.	Material	C
IUDIC		IVICIONAL	J

Part	Designation		Material	
1	Mortar cartridge		Mortar, hardener, filler	
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C
2	Threaded rod	Property class 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated \geq 5 μ m, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 >$ 12% fracture elongation	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm² A ₅ > 12% fracture elongation	Property class 50 or 80 EN ISO 3506:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 12\%$ fracture elongation
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Screw or threaded rod for fischer internal threaded anchor	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
7	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods cla f_{yk} and k according to NDP $f_{uk} = f_{tk} = k \cdot f_{yk}$ (k see Annex	or NCL of EN 1992-1-1/ B 5)	
8	Rebar anchor FRA	Rebar part: Bars and de-co class B or C with f _{yk} and k a NDP or NCL of EN 1992-1- f _{uk} = f _{tk} = k•f _{yk} (k see Annex	ccording to 1/NA:2013	Threaded part: roperty class 70 ISO 3506:2009 1.4565; 1.4529 N 10088-1:2014

fischer injection system FIS EM	
Product description Materials	Annex A 3

Specifications of intended use (part 1)

Table B1: Overview use categories and performance categories

		50 511							
Anchorage	s subject to				FIS EN	with			
		Thr	eaded rod		rnal threaded or RG MI	Reinfo	orcing bar		her rebar chor FRA
				<u> </u>	+] [
Hammer dr	illing				all sizes	5			
Diamond di	rilling				all sizes	3			
Static and quasi static load, in	un- cracked concrete cracked concrete	all sizes	Tables: C1, C2, C9, C10	all sizes	Tables: C3, C4, C11, C12,	all sizes	Tables: C5, C6, C13, C14	all sizes	Tables: C7, C8, C15, C16
Seismic performance	ce C1	M10 - M30	Table C17			Ø 10 - Ø32	Table C18		
category (only hammer drilling)	C2	M12, M16, M20, M24	Table C19						
Use	Dry or wet concrete				all sizes	5			
category	Flooded hole				all sizes	5			
Installation	temperature				+5°C to +4	0°C			
service	Temperature range I	_	40°C to +60°C		long term tem short term tem				
tempe- rature	Temperature range II	-	40°C to +72°C		. long term tem short term tem	•			

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure including industrial and marine environment, if no particular aggressive conditions exist
 - (stainless steel or high corrosion resistant steel)
- Structures subject to permanently damp internal condition or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

fischer injection system FIS EM	
Intended Use Specifications (part 1)	Annex B 1

Specifications of intended use (part 2)

Design:

- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with TR 029 or CEN/TS 1992-4:2009
- Anchorages under seismic actions have to be designed in accordance with TR 045

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: The hole shall be filled with mortar
- · Marking and keeping the effective anchorage depth

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- · Materials, dimensions and mechanical properties according to Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents should be stored
- Marking of embedment depth

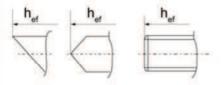
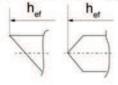
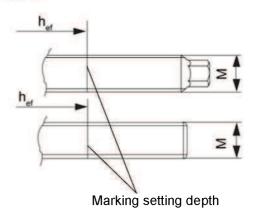

fischer injection system FIS EM	
Intended Use	Annex B 2
	Annex B 2

Table B2: Installation parameters for threaded rods													
Size	[-]	М8	M10	M12	M14	M16	M20	M22	M24	M27	M30		
Width across fla	at		SW	13	17	19	22	24	30	32	36	41	46
Nominal drill bit	diameter	d ₀	[mm]	12	14	14	16	18	24	25	28	30	35
Depth of drill ho	le	h ₀	[mm]					h ₀ =	h _{ef}				
Effective ancho	rage	$h_{\text{ef,min}}$	[mm]	60	60	70	75	80	90	93	96	108	120
depth		h _{ef,max}	[mm]	160	200	240	280	320	400	440	480	540	600
Minimum spacing and minimum edge distance	s	s _{min} = c _{min}	[mm]	40	45	55	60	65	85	95	105	120	140
Diameter of clearance hole	pre- positioned anchorage		[mm]	9	12	14	16	18	22	24	26	30	33
in the fixture ¹⁾	Push through anchorage	d _f	[mm]	14	16	16	18	20	26	28	30	33	40
Minimum thickn concrete memb		h _{min}	[mm]	h _{ef}	+ 30 ≥′	100	h _{ef} + 2d ₀						
Maximum torqu moment	e	$T_{inst,max}$	[Nm]	10	20 40 50 60 120 135 150 200				300				


¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

fischer threaded rod:

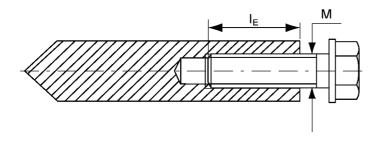

Alternative point geometry threaded rod FIS A

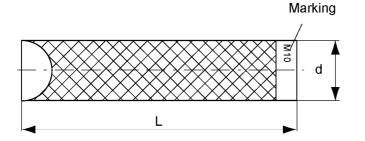
Alternative point geometry threaded rod RGM

Alternative head geometry threaded rod FIS A and RGM

Marking (on random place):

Property class 8.8 or high corrosion-resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel, property class 50: ••


fischer injection system FIS EM	
Intended Use Installation parameters threaded rods	Annex B 3


Table B3: Installation parameters fischer internal threaded anchors RG MI

Size			M8	M10	M12	M16	M20
Diameter of anchor	d _H	[mm]	12	16	18	22	28
Nominal drill bit diameter	d ₀	[mm]	14	18	20	24	32
Drill hole depth	h ₀	[mm]			$h_0 = h_{ef}$		
Effective anchorage depth (h _{ef} = L _H)	h _{ef}	[mm]	90	90	125	160	200
Maximum torque moment	$T_{inst,max}$	[Nm]	10	20	40	80	120
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d_{f}	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h _{min}	[mm]	120	125	165	205	260
Maximum screw-in depth	$I_{E,max}$	[mm]	18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$	[mm]	8	10	12	16	20

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

fischer internal threaded anchor RG MI

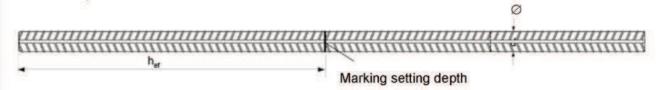
Marking: Anchor size

e.g.: M10

Stainless steel additional A4

e.g.: M10 A4

High corrosion-resistant steel additional C


e.g.: M10 C

Fastening screw or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Table A1

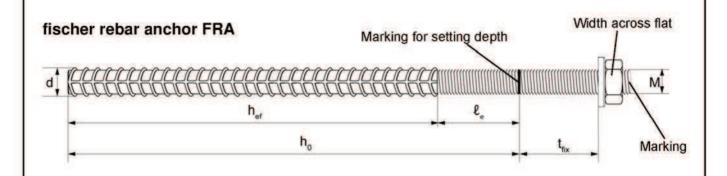
fischer injection system FIS EM	
Intended Use Installation parameters fischer internal threaded anchors RG MI	Annex B 4

Table B4: Installation	parameter	s reint	forcing	bars							
Reinforcing bar		Ø	8	10	12	14	16	18	20	22	24
Nominal drill bit diameter	d ₀	[mm]	12	14	16	18	20	25	25	30	30
Drill hole depth	h ₀	[mm]					$h_0 = h_e$	f			
Effective encharges don't	h _{ef,min}	[mm]	60	60	70	75	80	85	90	94	98
Effective anchorage depth	h _{ef,max}	[mm]	160	200	240	280	320	360	400	440	480
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	40	45	55	60	65	75	85	95	105
Minimum thickness of concrete member	h _{min}	[mm]		- 30 00 h _{ef} + 2d ₀							
Reinforcing bar		Ø	25	26	28	30	32	34	36	40	
Nominal drill bit diameter	d ₀	[mm]	30	35	35	40	40	40	45	55	
Drill hole depth	h _o	[mm]					$h_0 = h_e$	f			
Effective analysis of suth	h _{ef,min}	[mm]	100	104	112	120	128	136	144	160	
Effective anchorage depth	h _{ef,max}	[mm]	500	520	560	600	640	680	720	800	
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	110	120	130	140	160	170	180	200	_
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 2d ₀								

Reinforcing bar

Properties of reinforcement: refer to EN 1992-1-1 Annex C, Table C.1 and C.2N

Product form	Non-zinc-plated bars	and de-coiled rod			
Class	В С				
Characteristic yield strength	f _{yk} or f ₀	_{,2k} [MPa]	400 to	600	
Minimum value of $k = (f_t / f_y)_k$	≥ 1,08	≥ 1,15 < 1,35			
Characteristic strain at maximum fo	≥ 5,0 ≥ 7,5				
Bentability	Bend / Rebend test				
Maximum deviation from nominal mass (individual	Nominal har = 0		± 6,0		
bar) [%]	size [mm]	> 8	± 4,	5	
Nominal par -		8 to 12	0,040		
Minimum relative rib area, f _{R,min} (determination acc. to EN 15630)	> 12	0,056			


Rib height h: The rib height h must be $0.05 \cdot \emptyset \le h \le 0.07 \cdot \emptyset$

 \emptyset = nominal bar size

fischer injection system FIS EM	
Intended Use Installation parameters reinforcing bars	Annex B 5

Thread diameter			M12	M16	M20	M24	
Nominal bar size	Ø	[mm]	12	16	20	25	
Width across flat	SW	[mm]	19	24	30	36	
Nominal drill bit diame	eter d ₀	[mm]	16	20	25	30	
Depth of drill hole (ho	= I _{ges}) h ₀	[mm]		h _{ef} + I _e			
Effective anchorage d	h _{ef,min}	[mm]	70	80	90	96	
Effective anchorage d	h _{ef,max}	[mm]	140	220	300	380	
Distance concrete sur to welded join	face I _e	[mm]		100			
Minimum spacing and minimum edge distan	S . =C .	[mm]	55	65	85	105	
Diameter of	pre-positioned anchorage ≤ d _f	[mm]	14	18	22	26	
clearance hole in the fixture 1)	push through anchorage ≤ d _f	[mm]	18	22	26	32	
Minimum thickness of concrete member	h _{min}	[mm]	h ₀ + 30 ≥100	* n ₀ + 20 ₀			
Maximum torque mon	nent T _{inst,max}	[Nm]	40	60	120	150	

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

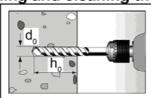
Marking: on head e.g.: FRA (for stainless steel); FRA C (for high corrosion-resistant steel)

fischer injection system FIS EM	
Intended Use Installation parameters rebar anchor FRA	Annex B 6

Table B6: Parameters of steel brush FIS BS Ø

Drill bit diameter	[mm]	12	14	16	18	20	24	25	28	30	32	35	40	45	55
Steel brush diameter d _b	[mm]	14	16	2	0	25	26	27	30		40		42	47	58

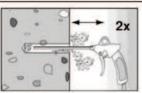
Table B7: Maximum processing time of the mortar and minimum curing time


System temperature [°C]	Maximum processing time [minutes]	Minimum curing time ¹⁾ [hours]
+5 to +10	120	40
≥ +10 to +20	30	18
≥ +20 to +30	14	10
≥ +30 to +40	7	5

¹⁾ In wet concrete or flooded holes the curing times must be doublet.

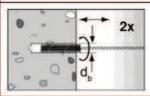
fischer injection system FIS EM	
Intended Use Cleaning tools Processing times and curing times	Annex B 7

Installation instructions part 1 Drilling and cleaning the hole (hammer-drilling)

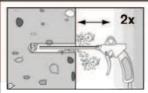

1

Drill the hole.

Drill hole diameter d₀ and drill hole depth h₀ see Tables B2, B3, B4, B5.


2

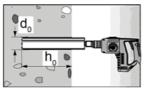
Clean the drill hole: Blow out the drill hole two times, using oil-free compressed air $(p \ge 6 \text{ bar})$



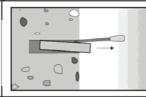
3

Brush the drill hole two times. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **Table B6**

4

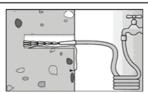


Clean the drill hole: Blow out the drill hole two times, using oil-free compressed air (p ≥ 6 bar)

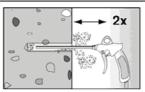


Drilling and cleaning the hole (diamond-drilling)

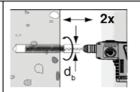
1



Drill the hole.
Drill hole diameter d₀ and drill hole depth h₀ see
Tables B2, B3, B4, B5.

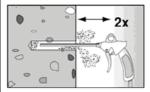

Break the drill core and draw it out.

2



Flush the drill hole until the water comes clear.

3

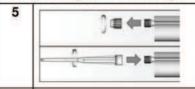


Blow out the drill hole two times, using oilfree compressed air (p > 6 bar)

Brush the drill hole two times using a power drill. Corres- ponding brushes see **Table B6**

4

Blow out the drill hole two times, using oilfree compressed air (p > 6 bar)


fischer injection system FIS EM

Intended use

Installation instructions part 1

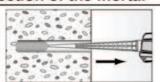
Annex B 8

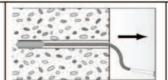
Installation instructions part 2 Preparing the cartridge

Twist off the sealing cap

Twist on the static mixer (the spiral in the static mixer must be clearly visible).

Place the cartridge into the dispenser.

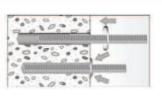

7

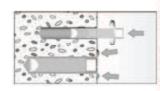


Press approx. 10 cm of material out until the resin is evenly grey in colour. Don't use mortar that is not uniformly grey.

Injection of the mortar

Fill approx. 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles.

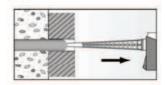

For drill hole depth ≥ 150 mm use an extension tube.



For overhead installation, deep holes ho > 250 mm or drill hole diameter d₀ ≥ 40 mm use an injection-adapter.

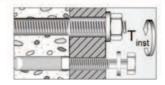
Installation threaded rods or fischer internal threaded anchors RG MI

9



Only use clean and oil-free anchor elements. Mark the setting depth of the anchor. Press the threaded rod or internal threaded anchor down to the bottom of the hole, turning it slightly while doing so. After inserting the anchor element, excess mortar must emerge around the anchor element.

For overhead installations support the threaded rod with wedges.



For push through installation fill the annular clearance with mortar.

10

Wait for the specified curing time. t_{cure} see Table B7.

Mounting the fixture T_{inst,max} see Tables B2, B3.

fischer injection system FIS EM

Intended use Installation instructions part 2 Annex B 9

Installation instructions part 3 Installation reinforcing bars and fischer FRA 9 Only use clean and oil-free reinforcing bars. Mark the setting depth of the reinforcing bar. Using a turning movement, push the reinforcement bar or the FRA vigorously into the filled hole up to the insertion depth marking. When reaching the setting depth mark, excess mortar must emerge from the mouth of the drill hole. Wait for the specified curing time tour see Table B7. Wait for the specified curing time tour see Table B7.

fischer injection system FIS EM

Intended use Installation instructions part 3

Annex B 10

Table C1:	Characteristic	values	of resis	stance	e for t	hread	ed ro	ds un	der te	ensior	1		
Size				M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Installation	dry and wet concrete	γ ₂ =	[-]		1,0 1,2								
safety factor	flooded hole	- γ _{inst} [-] 1,4											
Steel failure	•												
Characteristic re	esistance	$N_{Rk,s}$	[kN]					A _s :	x f _{uk}				
Combined pull	out and concre	te cone	failure										
Diameter of cal	8	10	12	14	16	20	22	24	27	30			
Characteristic bond resistance in un-cracked concrete C20/25													
hammer-drilling	(dry and wet co	ncrete)											
Temperature ra	nge I ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	16	16	15	14	14	13	13	13	12	12
Temperature ra	ngel II ¹⁾	$\tau_{Rk,ucr}$	[N/mm ²]	15	14	14	13	13	12	12	12	11	11
hammer-drilling	(flooded hole)												
Temperature ra	nge I ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	16	16	15	13	13	11	11	10	10	9
Temperature ra	nge II ¹⁾	$\tau_{Rk,ucr}$	[N/mm ²]	15	14	14	13	12	11	10	10	9	9
diamond-drilling	(dry and wet co	ncrete)											
Temperature ra	nge I ¹⁾	$\tau_{Rk,ucr}$	[N/mm ²]	16	15	13	12	12	10	10	10	9	9
Temperature ra	15	14	12	11	11	10	9	9	8	8			
diamond-drilling	(flooded hole)		[N/mm ²]										
Temperature ra	nge I ¹⁾	$\tau_{Rk,ucr}$	[N/mm ²]	16	15	13	12	12	10	10	10	9	9
Temperature ra	nge II ¹⁾	$\tau_{Rk,ucr}$	[N/mm ²]	15	14	12	11	11	10	9	9	8	8
Factor for un-cr	acked	k _{ucr}	[-]			•		10),1	•	•	•	

¹⁾ See Annex B 1

fischer injection system FIS EM	
Performances	Annex C 1
Design of bonded anchors	
Static or quasi-static action in tension	ĺ

Size			М8	M10	M12	M14	M16	M20	M22	M24	M27	M30
dry and we Installation concret	1 72	[-]			1	,0				1,	,2	
Installation <u>concret</u> safety factor flooded hol					1,2							
	/ 11151	[-]		000/0	•					1,4		
Characteristic bond resista hammer and diamond drilling				C20/2:)							
Temperature range I ¹⁾	<u> </u>	[N/mm ²]		7	7	7	6	6	7	7	7	7
Temperature range II ¹⁾	[N/mm ²]	7	7	7	7	6	6	7	7	7	7	
hammer and diamond drilling			'	,	'	'			'	,	,	•
Temperature range I ¹⁾		[N/mm ²]	6	7,5	7,5	7	6	6	6	6	6	6
Temperature range II ¹⁾	$\tau_{Rk,cr}$	[N/mm ²]	6	7	7	7	6	6	6	6	6	6
Factor for un-cracked	k _{cr}	[-]					7	,2				
	C25/30	[-]					1,0	02				
	C30/37	[-]					1,0	04				
Increasing factor	C35/45	[-]	1,06									
for $ au_{Rk}$	C40/50	[-]	1,07									
	C45/55	[-]					1,0	80				
	C50/60	[-]					1,0	09				
Splitting failure												
	/ h _{ef} ≥2,0	[mm]						h_{ef}				
J 01,5P	2,0 h / h _{ef}	[mm]					4,6 h _{ef}	– 1,8 ł	1			
	/ h _{ef} ≤1,3	[mm]						3 h _{ef}				
Axial distance s _{cr,sp}		[mm]					2 c	cr,sp				
¹⁾ See Annex B 1 Table C2: Characterist	ic values	of resis	stance	e for tl	hread	ed ro	ds un	der sl	hear			
Size			M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]					1,	,0				
Steel failure without lever a	rm											
Characteristic resistance	$V_{Rk,s}$	[kN]					0,5 A	s x f _{uk}				
Ductility factor acc. to CEN/TS	k ₂	[-]					0	•				

Size			M8	M10	M12	M14	M16	M20	M22	M24	M27	M30		
Installation safety factor	$\gamma_2 = \gamma_{\text{inst}}$	[-]	1,0											
Steel failure without lever a	m													
Characteristic resistance	$V_{Rk,s}$	[kN]					0,5 A	s x f _{uk}						
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]	0,8											
Steel failure with lever arm														
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	1,2 x W _{el} x f _{uk}											
Concrete pryout failure														
Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3	k ₍₃₎	[-]	2,0											
Concrete edge failure			•											
Effective length of anchor	I _f	[mm]				I _f	= min	(h _{ef} ; 8	d)					
Diameter of calculation	d	[mm]	8	10	12	14	16	20	22	24	27	30		
fischer injection system I	FIS EM													
Performances										Annex C 2				

Design of bonded anchors Static or quasi-static action in tension and under shear loads

Table C3: Characteristic values of resistance for fischer internal threaded anchors RG MI under tension load

Size					М8	M10	M12	M16	M20	
Installation		dry and wet concrete	γ ₂ =	[-]		1,0		1	,2	
safety factor		flooded hole	γ̃inst	[-]		1,2		1,4		
Steel failure										
		Property	5.8	[kN]	19	29	43	79	123	
Characteristic resistance with	N _{Rk.s} -	class	8.8	[kN]	29	47	68	108	179	
screw	INRk,s	Property	A4	[kN]	26	41	59	110	172	
		class 70	С	[kN]	26	41	59	110	172	
Combined pullout a	and co	ncrete cone fa	ilure							
Diameter of calculati		d	[mm]	12	16	18	22	28		
Characteristic bond	d resis	tance in un-cra	acked co	oncrete C2	20/25					
hammer-drilling (dry	and we	t concrete)								
Temperature range			$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	15	14	14	13	12	
Temperature range	II ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	14	13	13	12	11	
hammer-drilling (floo	ded hol	e)								
Temperature range	l ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	14	12	12	11	10	
Temperature range	II ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	13	12	11	10	9	
diamond-drilling (dry	and w	et concrete)								
Temperature range	l ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	13	12	11	10	9	
Temperature range		$ au_{Rk,ucr}$	[N/mm²]	12	11	10	9	8		
diamond-drilling (floo	oded ho	ole)								
Temperature range	l ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	13	12	11	10	9	
Temperature range	II ¹⁾		$ au_{Rk,ucr}$	[N/mm²]	12	11	10	9	8	
Factor for un-cracke	d conc	rete	k _{ucr}	[-]			10,1			

¹⁾ See Annex B 1

fischer injection system FIS EM	
Performances	Annex C 3
Design of bonded anchors	
Static or quasi-static action in tension	

Table C3.1: Characteristic values of resistance for fischer internal threaded anchors RG MI under tension load

Size				M8	M10	M12	M16	M20			
Characteristic bond	resistance in	racked conc	rete C20/2	25	1		ı				
hammer and diamond	d drilling (dry a	and wet concrete	!)								
Temperature range I ¹	1)	$ au_{Rk,cr}$	[N/mm²]	7	6	6	7	7			
Temperature range II	1)	$ au_{Rk,cr}$	[N/mm²]	7	6	6	7	7			
hammer and diamond	d drilling (dry a	and wet concrete	;)								
Temperature range I ¹⁾ $\tau_{Rk,cr}$ [N/mm ²] 7 6,5 6 6											
Temperature range II	1)	7	6	6	6	6					
Factor for cracked co	tor for cracked concrete k_{cr} [-] 7,2										
		C25/30	[-]	1,02							
		C30/37	[-]	1,04							
Increasing factor)T(C35/45	[-]	1,06							
for τ_{Rk}	Ψ_{c}	C40/50	[-]			1,07					
		C45/55	[-]			1,08					
		C50/60	[-]			1,09					
Splitting failure											
	h/h _{ef} ≥2,0	[mm]	1,0 h _{ef}								
Edge distance $c_{cr,sp}$ 2,0		2,0>h/h _{ef} >1,3	2,0>h/h _{ef} >1,3 [mm]			4,6 h _{ef} – 1,8 h					
		h/h _{ef} ≤1,3	[mm]	2,26 h _{ef}							
Axial distance	S _{cr,sp}		[mm]	_		2 c _{cr,sp}					

¹⁾ See Annex B 1

fischer injection system FIS EM	
Performances	Annex C 4
Design of bonded anchors	
Static or quasi-static action in tension	

Table C4: Characteristic values of resistance for fischer internal threaded anchors RG MI under shear load

Size					М8	M10	M12	M16	M20
Installation safety	/ factor	γ2	= γ _{inst}	[-]			1,0		
Steel failure with	hout lever	arm							
		Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0
Characteristic	17	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0
resistance	$V_{Rk,s}$	Property	A4	[kN]	12,8	20,3	29,5	54,8	86,0
		class 70	C	[kN]	12,8	20,3	29,5	54,8	86,0
Ductility factor acc. 2009 Section 6.3.2	k ₂	[-]	8,0						
Steel failure with	h lever arn	n							
		Property	5.8	[Nm]	20	39	68	173	337
Characteristic	$M^0_{Rk,s}$	class	8.8	[Nm]	30	60	105	266	519
resistance	IVI Rk,s	Property	A4	[Nm]	26	52	92	232	454
		class 70	C	[Nm]	26	52	92	232	454
Concrete pryout	t failure								
Factor k acc. to TR resp. k ₃ acc. to CE Section 6.3.3	[-]	2,0							
Concrete edge f	ailure								
Effective length of	[mm]	$I_f = \min (h_{ef}; 8 d)$							
Diameter of calculation d [mm] 8 10 12 16								20	

fischer injection system FIS EM	
Performances Design of bonded anchors Static or quasi-static action under shear loads	Annex C 5

Reinforcing bar	ı			ø	8	10	12	14	16	18	20	22	24		
Installation	dry and wet γ_2 stallation concrete γ_2							1,0				1	,2		
safety factor		flooded hole	= γ _{inst}	[-]											
Combined pullout and concrete cone failure															
Diameter of calc	ulatior	n d	[mn	n]	8	10	12	14	16	18	20	22	24		
Characteristic b	ond r	esistance in	un-cra	acked	concre	ete									
hammer-drilling	dry ar	nd wet concre	te)												
Temperature range	e I ¹⁾	$ au_{Rk,ucr}$	[N	/mm²]	16	16	15	14	14	14	13	13	13		
Temperature range	e II ¹⁾	$ au_{Rk,ucr}$	[N	/mm²]	15	14	14	13	13	13	12	12	12		
hammer-drilling	(floode												,		
Temperature range	e I ¹⁾	$ au_{Rk,ucr}$	[N	/mm²]	16	16	14	13	12	12	11	11	10		
Temperature range	e II ¹⁾	$ au_{Rk,ucr}$	[N	/mm²]	15	14	13	12	11	12	11	10	10		
Reinforcing bar				ø	25	26	28	30	32	34	36	40			
Installation		dry and wet	γ2	[-]				1	,2						
safety factor		flooded hole	= γ _{inst}	[-]					,4						
Combined pullo	out an							•	, .						
Diameter of calc			[mn		25	26	28	30	32	34	36	40			
Characteristic b	ond r	esistance in	un-cra	acked	concre	ete									
hammer-drilling	dry ar	nd wet concre	te)												
Temperature range	e I ¹⁾	$ au_{Rk,ucr}$	[N	/mm²]	13	13	13	12	12	12	12	12			
Temperature range	e II ¹⁾	$ au_{Rk,ucr}$	[N	/mm²]	12	11	11	11	11	11	11	10			
hammer-drilling	(floode											ı			
Temperature range	e I ¹⁾	$ au_{Rk,ucr}$	[N	/mm²]	10	10	10	9	9	9	8	8			
Temperature range		$ au_{Rk,ucr}$	[N	/mm²]	9	9	9	9	8	8	8	8			
¹⁾ See Annex E	3 1														

fischer injection system FIS EM	
Performances Design of bonded anchors Static or quasi-static action in tension	Annex C 6

Temperature range II ¹⁾	Reinforcing bar			ø	8	10	12	14	16	18	20	22	24
Safety factor flooded hole flooded flooded hole flooded hole flooded hole flooded hole flooded hole flooded	 Installation			[-]		l		1,0				1	,2
	safety factor			[-]					1,4			l	
Temperature range I ¹⁾ $\tau_{Rk,ucr}$ [N/mm²] 16 15 13 12 12 10 10 9 diamond-drilling (flooded hole) Temperature range II ¹⁾ $\tau_{Rk,ucr}$ [N/mm²] 15 14 12 11 11 10 10 9 diamond-drilling (flooded hole) Temperature range II ¹⁾ $\tau_{Rk,ucr}$ [N/mm²] 16 15 13 12 12 11 10 10 10 Temperature range II ¹⁾ $\tau_{Rk,ucr}$ [N/mm²] 15 14 12 11 11 10 10 9 P P P P P P P P P P P P P P P P P P	Characteristic bond	resistance in t		cked	concr	ete C20	/25						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	diamond-drilling (dry a	and wet concret	te)										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Temperature range I ¹⁾	$ au_{Rk,ucr}$	[N/r	nm²]	16	15	13	12	12	10	10	10	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Temperature range II ¹⁾	$ au_{Rk,ucr}$	[N/r	mm²]	15	14	12	11	11	10	10	9	Ø
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	diamond-drilling (flood	led hole)											
		$ au_{Rk,ucr}$	[N/r	mm²]	16	15	13	12	12	11	10	10	10
Installation safety factor $\frac{\text{dry and wet concrete}}{\text{flooded hole}} = \begin{bmatrix} -1 \\ y_{\text{inst}} \end{bmatrix} = \begin{bmatrix} -1 \\ 1,2 \end{bmatrix}$ $\frac{1,2}{1,4}$ Characteristic bond resistance in un-cracked concrete C20/25 diamond-drilling (dry and wet concrete) Temperature range I^{1} $\tau_{Rk,ucr}$ $[N/mm^2]$ 9 9 9 9 8 8 8 7 7 7 Temperature range I^{1} $\tau_{Rk,ucr}$ $[N/mm^2]$ 9 8 8 8 8 7 7 7 diamond-drilling (flooded hole) Temperature range I^{1} $\tau_{Rk,ucr}$ $[N/mm^2]$ 9 9 9 9 8 8 8 7 7 Temperature range I^{1} $\tau_{Rk,ucr}$ $[N/mm^2]$ 9 9 9 9 7 7 Temperature range I^{1} $\tau_{Rk,ucr}$ $[N/mm^2]$ 9 8 8 8 8 7 7 7	Temperature range II ¹⁾	$ au_{Rk,ucr}$	[N/r	nm²]	15	14	12	11	11	10	10	9	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reinforcing bar			ø	25	26	28	30	32	34	36	40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		[-]				1	,2				
	safety factor	flooded hole	γinst	[-]				1	,4				
Temperature range I $^{1)}$ $\tau_{Rk,ucr}$ [N/mm 2] 9 9 9 9 8 8 8 7 7 7 7 Temperature range II $^{1)}$ $\tau_{Rk,ucr}$ [N/mm 2] 9 8 8 8 8 7 7 7 7 diamond-drilling (flooded hole) Temperature range I $^{1)}$ $\tau_{Rk,ucr}$ [N/mm 2] 9 9 9 9 8 8 8 7 7 7 7 Temperature range II $^{1)}$ $\tau_{Rk,ucr}$ [N/mm 2] 9 8 8 8 8 7 7 7 7 Factor for up-	Characteristic bond	resistance in i	un-cra	cked	concr	ete C20	/25						
Temperature range II $^{1)}$ $\tau_{Rk,ucr}$ [N/mm 2] 9 8 8 8 8 7 7 7 diamond-drilling (flooded hole) Temperature range I $^{1)}$ $\tau_{Rk,ucr}$ [N/mm 2] 9 9 9 9 8 8 8 7 7 7 Temperature range II $^{1)}$ $\tau_{Rk,ucr}$ [N/mm 2] 9 8 8 8 8 7 7 7 7	diamond-drilling (dry a	and wet concret	te)										
	Temperature range I ¹⁾	$ au_{Rk,ucr}$	[N/r	nm²]	9	9	9	9	8	8	8	7	
Temperature range I $^{1)}$ $\tau_{Rk,ucr}$ [N/mm 2] 9 9 9 8 8 8 7 Temperature range II $^{1)}$ $\tau_{Rk,ucr}$ [N/mm 2] 9 8 8 8 7 7 7	Temperature range II ¹⁾	$ au_{Rk,ucr}$	[N/r	mm²]	9	8	8	8	8	7	7	7	
Temperature range II ¹⁾	diamond-drilling (flood	led hole)											
Factor for un-	Temperature range I ¹⁾	$ au_{Rk,ucr}$	[N/r	nm²]	9	9	9	9	8	8	8	7	
Factor for un-	Temperature range II ¹⁾	$ au_{Rk,ucr}$	[N/r	nm²]	9	8	8	8	8	7	7	7	
cracked concrete k _{ucr} [-] 10,1	Factor for un- cracked concrete	k _{ucr}	[-]						10,1				
1) See Annex B 1	1) See Annex B 1												

fischer injection system FIS EM	
Performances Design of bonded anchors Static or quasi-static action in tension	Annex C 7

Reinforcing bar			ø	8	10	12	14	16	18	20	22	24
Installation	lry and wet	γ ₂	[-]	-		<u> </u>	1,	,0	1	1	1	,2
safety factor	andad bala	= γ _{inst}	[-]	-			1,2				1,4	
Characteristic bond res	istance in cra	acked	concre	ete C2	0/25							
hammer and diamond dri	lling (dry and	wet c	oncrete)								
Temperature range I ¹⁾	$ au_{Rk,cr}$	[N	l/mm²]	7	7	7	7	6	6	6	7	7
Temperature range II ¹⁾	$ au_{Rk,ucr}$	[N	l/mm²]	7	7	7	7	6	6	6	7	7
hammer and diamond dri	lling (flooded	hole)										
Temperature range I ¹⁾	$ au_{Rk,cr}$	[N	l/mm²]	6	7,5	6,5	6,5	6,5	6	6	6	6
Temperature range II ¹⁾	$ au_{Rk,cr}$	[N	l/mm²]	6	6,5	6,5	6	6	6	6	6	6
Reinforcing bar			ø	25	26	28	30	32	34	36	40	
Installation		γ ₂	[-]				1,	2				
safety factor	andad bala	= inst	[-]				1	4				
Characteristic bond res				ete C2	0/25			· •				
hammer and diamond dri					0,20							
Temperature range I ¹⁾	$ au_{Rk,cr}$		l/mm²]	, 7	7	7	7	5	5	5	5	
Temperature range II ¹⁾	τ _{Rk,cr}		J/mm²]	7	7	7	7	5	5	5	5	
hammer and diamond dri								-			_	
Temperature range I ¹⁾	$ au_{Rk,cr}$		l/mm²]	6	6	6	6	5	5	5	5	
Temperature range II ¹⁾	$ au_{Rk,cr}$	[N	l/mm²]	6	6	6	6	5	5	5	5	
Factor for cracked concre		k _{cr}	[-]					7,2				
	C25		[-]					1,02				
	C30		[-]					1,04				
Increasing factor for $_{\Psi_{\mathbf{c}}}$	C35		[-]					1,06				
$ au_{Rk}$	C40		[-]					1,07				
	C50		[-] [-]					1,08 1,09				
Splitting failure		700	[]					1,00				
<u> </u>	h/h _{ef} ≥	2,0	[mm]					1,0 h _{ef}				
Edge distance c _{cr,sp}	2,0>h/h _{ef} >	1,3	[mm]				4,6	h _{ef} -1	,8 h			
	h/h _{ef} ≤	1,3	[mm]					2,26 h _e				
Axial distance	S	cr,sp	[mm]					2 c _{cr,sp}				
1) See Annex B 1												
fischer injection syst	em FIS EM											
Performances Design of bonded ancho									\dashv	Ann	ex C	8

istic values	of resist	ance	for rei	nforcir	ng bar	s und	er she	ar loa	ds	
			I	I	T	I	I	I		
	Ø	8	10	12	14	16	18	20	22	24
d	[mm]	8	10	12	14	16	18	20	22	24
	ø	25	26	28	30	32	34	36	40	
d	[mm]	25	26	28	30	32	34	36	40	
$\gamma_2 = \gamma_{inst}$	[-]					1,0				
arm										
$V_{Rk,s}$	[kN]	0,5 A _s x f _{uk}								
k ₂	[-]	0,8								
$M^0_{Rk,s}$	[Nm]				1,2	x W _{el} x	κ f _{uk}			
k ₍₃₎	[-]	2,0								
I _f	[mm]				I _f = r	nin (h _{ef}	; 8 d)			
	d $\gamma_2 = \gamma_{inst}$ arm $V_{Rk,s}$ k_2 m $M^0_{Rk,s}$	$d [mm]$ $d [mm]$ $\gamma_2 = \gamma_{inst} [-]$ arm $V_{Rk,s} [kN]$ $k_2 [-]$ m $M^0_{Rk,s} [Nm]$ $k_{(3)} [-]$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

fischer injection system FIS EM	
Performances Design of bonded anchors	Annex C 9
Static or quasi-static action under shear loads	

Table C7: Characteristic values of resistance for fischer rebar anchors FRA under tension loads

Size			M12	M16	M20	M24
Installation dry and v	1 4	[-]		1,0		1,2
safety factor flooded he	ole γ _{inst}	[-]		1,2		1,4
Steel failure						
Characteristic resistance	$N_{Rk,s}$	[kN]	63	111	173	270
Partial safety factor	γ _{Ms,N} 2)	[-]		1	,4	
Combined pullout and con	crete cone f	ailure				
Diameter of calculation	d	[mm]	12	16	20	25
Characteristic bond resista	ance in un-c	racked con	crete C20/25	5		
hammer-drilling (dry and wet	concrete)					
Temperature range I 1)	$ au_{Rk,ucr}$	[N/mm ²]	15	14	13	13
Temperature range II 1)	$ au_{Rk,ucr}$	[N/mm ²]	14	13	12	12
hammer-drilling (flooded hole	e)					
Temperature range I 1)	$ au_{Rk,ucr}$	[N/mm ²]	15	13	11	10
Temperature range II 1)	$ au_{Rk,ucr}$	[N/mm ²]	14	12	11	10
diamond-drilling (dry and we	t concrete)					
Temperature range I 1)	$ au_{Rk,ucr}$	[N/mm ²]	13	12	10	10
Temperature range II 1)	$ au_{Rk,ucr}$	[N/mm ²]	12	11	10	9
diamond-drilling (flooded hole	e)					
Temperature range I 1)	$ au_{Rk,ucr}$	[N/mm ²]	13	12	10	10
Temperature range II 1)	$ au_{Rk,ucr}$	[N/mm ²]	12	11	10	9
Factor for un-cracked concre	ete k _{ucr}	[-]		10	0,1	

¹⁾ See Annex B 1

Performances

Design of bonded anchors Static or quasi-static action in tension

²⁾ In absence of other national regulations

Table C7.1: Characteristic values of resistance for fischer rebar anchors FRA under tension loads

Size				M12	M16	M20	M24
Installation	-	nd wet γ ₂ ncrete =	[-]		1,0		1,2
safety factor —	floode	d hole γ _{inst}	[-]		1,2		1,4
Characteristic bo	ond res	istance in cr	acked conc	rete C20/25			
hammer-drilling (d	dry and v	wet concrete))				
Temperature rang	je I ¹⁾	$ au_{R}$	k,cr [N/mm²]	7	6	6	7
Temperature rang	je II ¹⁾	$ au_{R}$	_{k,cr} [N/mm ²]	7	6	6	7
hammer-drilling (f	looded l	hole)					
Temperature rang	je I ¹⁾	$ au_{R}$	k,cr [N/mm²]	7	6	6	6
Temperature rang	je II ¹⁾	$ au_{R}$	_{k,cr} [N/mm ²]	7	6	6	6
Factor for cracked	d concre	ete	k _{cr} [-]		7	,2	
		_C25/3	30 [-]		1,	02	
		_C30/3	37 [-]		1,	04	
Increasing factor	Ψο	C35/4	45 [-]		1,	06	
for τ_{Rk}	٠ ٥	C40/	50 [-]		1,	07	
		C45/	55 [-]		1,	80	
		C50/6	30 [-]		1,	09	
Splitting failure							
		h/h _{ef} ≥2	,0 [mm]		1,0) h _{ef}	
Edge distance	C _{cr,sp}	2,0>h/h _{ef} >1	,3 [mm]		4,6 h _{ef}	– 1,8 h	
		h/h _{ef} ≤1	,3 [mm]		2,2	6 h _{ef}	
Axial distance	S _{cr,sp}		[mm]		2 (cr,sp	

¹⁾ See Annex B 1

Performances

Design of bonded anchors Static or quasi-static action in tension

Table C8: Characteristic values of resistance for fischer rebar anchors FRA under shear load

Size			M12	M16	M20	M24
Installation safety factor	$\gamma_2 = \gamma_{\text{inst}}$	[-]		1	,0	•
Steel failure without lever arm						
Characteristic resistance	$V_{Rk,s}$	[kN]	30	55	86	124
Partial safety factor	γ _{Ms,V} 1)	[-]		1,	,56	
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]		С),8	
Steel failure with lever arm						
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	92	233	454	785
Partial safety factor	γ _{Ms,V} 1)	[-]		1,	,56	
Concrete pryout failure						
Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3	k ₍₃₎	[-]		2	2,0	
Concrete edge failure						
Effective length of anchor	I _f	[mm]		I _f = min	(h _{ef} ; 8 d)	
Diameter of calculation	d	[mm]	12	16	20	24

¹⁾ In absence of other national regulations

fischer injection system FIS EM	
Performances	Annex C 12
Design of bonded anchors	
Static or quasi-static action under shear loads	

Table C9: Displacements under tension load for threaded rods¹⁾

Size				M10	M12	M16	M20	M24	M27	М30
Un-cracked and cracked concrete; temperature range I, II										
Displacement	δ_{N0}	[mm/(N/mm ²)]	0,07	0,08	0,09	0,10	0,11	0,12	0,13	0,13
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,13	0,14	0,15	0,17	0,17	0,18	0,19	0,19

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{\text{N0}} \cdot \tau_{\text{sd}}$ / 1,4 Displacement for long term load = $\delta_{\text{N}\infty} \cdot \tau_{\text{sd}}$ / 1,4 (τ_{sd} : design bond strength)

Table C10: Displacements under shear load for threaded rods¹⁾

Size			M8	M10	M12	M16	M20	M24	M27	M30	
Un-cracked and cracked concrete; temperature range I, II											
Displacement	δ_{V0}	[mm/kN]	0,18	0,15	0,12	0,09	0,07	0,06	0,05	0,05	
Displacement	δ _{V∞}	[mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09	0,08	0,07	

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d / 1,4$ Displacement for long term load = $\delta_{V\infty} \cdot V_d / 1,4$ (V_d : design shear resistance)

Table C11: Displacements under tension load for fischer internal threaded anchors RG MI¹⁾

Size	М8	M10	M12	M16	M20		
Un-cracked and cra	acked cor	ncrete; temperatu	re range I,	II			
Displacement	δ_{N0}	[mm/(N/mm ²)]	0,09	0,10	0,10	0,11	0,19
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,13	0,15	0,15	0,17	0,19

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{N0} \cdot \tau_{sd} / 1,4$ Displacement for long term load = $\delta_{N\infty} \cdot \tau_{sd} / 1,4$ (τ_{sd} : design bond strength)

Table C12: Displacements under shear load for fischer internal threaded anchors RG MI¹⁾

Size	М8	M10	M12	M16	M20				
Un-cracked and cracked concrete; temperature range I, II									
Displacement	δ_{V0}	[mm/kN]	0,12	0,09	0,08	0,07	0,05		
Displacement	δ _{V∞}	[mm/kN]	0,18	0,14	0,12	0,10	0,08		

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d / 1,4$ Displacement for long term load = $\delta_{V\infty} \cdot V_d / 1,4$ (V_d : design shear resistance)

Performances

Displacements threaded rods and fischer internal threaded anchor RG MI

Table C	12. Did	colocomonte	under	toncion	load fo	or reinforcing	hare 1)
I able C	, I 3 . DR	spiacemenis	unuen	(CHSIOH	iuau iu	n rennording	Dai S

Size	8	10	12	14	16	20	25	28	32		
Un-cracked and cracked concrete; temperature range I, II											
Displacement	δ_{N0}	[mm/(N/mm ²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,12	0,13	0,13
Displacement	δ _{N∞}	[mm/(N/mm ²)]	0,12	0,13	0,13	0,15	0,16	0,16	0,18	0,20	0,20

 $^{^{1)}}$ Calculation of the displacement for design load Displacement for short term load = $\delta_{\text{N0}} \cdot \tau_{\text{sd}}$ / 1,4 Displacement for long term load = $\delta_{\text{N}\infty} \cdot \tau_{\text{sd}}$ / 1,4

 $(\tau_{sd}: design bond strength)$

Table C14: Displacements under shear load for reinforcing bars 1)

Size		Ø d	8	10	12	14	16	20	25	28	32
Un-cracked and cracked concrete; temperature range I, II											
Displacement	δ_{V0}	[mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07	0,06	0,05	0,05
Displacement	δ _{V∞}	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,09	0,08	0,06

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d / 1,4$ Displacement for long term load = $\delta_{V\infty} \cdot V_d / 1,4$ (V_d : design shear resistance)

Table C15: Displacements under tension load for fischer rebar anchors FRA 1)

Size		Ø	12	16	20	24				
Un-cracked and cracked concrete; temperature range I, II										
Displacement	δ_{N0}	[mm/(N/mm ²)]	0,09	0,10	0,11	0,12				
Displacement	δ _{N∞}	[mm/(N/mm ²)]	0,13	0,16	0,16	0,18				

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{\text{N0}} \cdot \tau_{\text{sd}} / 1,4$ Displacement for long term load = $\delta_{\text{N}\infty} \cdot \tau_{\text{sd}} / 1,4$ (τ_{sd} : design bond strength)

Table C16: Displacements under shear load for fischer rebar anchors FRA 1)

Size		Ø	12	16	20	24				
Un-cracked and cracked concrete; temperature range I, II										
Displacement	δ_{V0}	[mm/kN]	0,12	0,09	0,07	0,06				
Displacement	δ _{V∞}	[mm/kN]	0,18	0,14	0,11	0,09				

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d / 1,4$ Displacement for long term load = $\delta_{V\infty} \cdot V_d / 1,4$ (V_d : design shear resistance)

fischer injection system FIS EM

Performances

Displacements reinforcing bars and fischer rebar anchor FRA

Table C17A: Characteristic values of resistance for fischer threaded rods FIS A and RGM under seismic action performance category C1 in hammer drilled hole

Size				М8	M10	M12	M14	M16	M20	M22	M24	M27	M30	
Characteristic re	sistance ten	sion load	, stee	failur	е					•				
	Zinc plated	Property	5.8	-	29	43	58	79	123	152	177	230	281	
$N_{Rk,s,C1}$	steel	class	8.8	-	47	68	92	126	196	243	282	368	449	
	Stainless	Property	50	-	29	43	58	79	123	152	177	230	281	
[kN]	steel A4	class	70	-	41	59	81	110	172	212	247	322	393	
	and steel C		80	-	47	68	92	126	196	243	282	368	449	
	Zinc plated	Property	5.8					1,	50					
1) γ̃M,s, C1	steel	class	8.8					1,	50					
	Stainless Property 7								86					
[-]	steel A4 class					1,50 ²⁾ / 1,87								
			80	1,6										
Characteristic bo		e, combi	ned p	ullout	and co	oncret	e cone	failur	е					
(dry and wet conc	rete)			1	,					,	,			
Temperature range	l ³⁾	; _{Rk,C1} [N	/mm²]	-	7,0	7,0	6,7	5,7	5,7	6,7	6,7	6,7	6,7	
Temperature range	1 ³⁾ τ	; _{Rk,C1} [N	/mm²]	-	7,0	7,0	6,7	5,7	5,7	6,7	6,7	6,7	6,7	
(flooded hole)														
Temperature range	Ι ³⁾	Rk,C1 [N	'mm²]	ı	7,5	7,5	6,5	6,5	5,7	6,7	5,7	5,7	5,7	
Temperature range	II ³⁾ τ	; _{Rk,C1} [N	mm²]	-	6,8	6,8	6,5	5,7	5,7	5,7	5,7	5,7	5,7	
Characteristic re	sistance she	ar load, s	teel f	ailure	withou	t leve	r arm							
	Zinc plated	Property	5.8	-	15	21	29	39	61	76	89	115	141	
$V_{Rk,s,C1}$.	steel	class	8.8	-	23	34	46	63	98	122	141	184	225	
	Stainless	Property	50	-	15	21	29	39	61	76	89	115	141	
[kN]	steel A4 and steel C	class	70	-	20	30	40	55	86	107	124	161	197	
	Sieer C		80	-	23	34	46	63	98	122	141	184	225	

 $^{^{1)}}$ For fischer threaded rods FIS A / RGM the factor for steel ductility is 1,0 $^{2)}$ f_{uk} = 700 N/mm 2 ; f_{yk} = 560 N/mm 2 See Annex B 1

Design of bonded anchors Seismic performances C1

Table C17B: Characteristic values of resistance for standard threaded rods under seismic action performance category C1 in hammer drilled hole

Size						M12	M14	M16	M20	M22	M24	M27	M30
Characteristic resistance tension load, steel					•								
Steel failure	Steel failure				See Table 17A								
Characteristic bond resistance, combined pullout and concrete cone failure				See Table 17A									
Characterist	Characteristic resistance shear load, steel failure without lever arm												
	Zinc plated	Property	5.8	-	11	15	20	27	43	53	62	81	99
$V_{Rk,s,C1}$	steel	class	8.8	-	16	24	32	44	69	85	99	129	158
			50	-	11	15	20	27	43	53	62	81	99
[kN]	Stainless steel A4 and steel C	' ' ////	-	14	21	28	39	60	75	87	113	138	
	714 dila stoci C	0,000	80	-	16	24	32	44	69	85	99	129	158

fischer injection system FIS EM	
Performances	Annex C 16
Design of bonded anchors	
Seismic performances C1	

Table C18: Characteristic values of resistance for reinforcing bars under seismic action performance category C1 in hammer drilled hole

l 														
Reinforcing bar	size	8	10	12	14	16	18	20	22	24				
Characteristic resistance tension	on load, steel	l failure	9											
N _{Rk,s, C1}	[kN]	-	44	63	85	111	140	173	209	249				
Characteristic bond resistance,	, combined p	ullout	and co	ncrete	cone fa	ailure								
(dry and wet concrete)														
Temperature range I $^{1)}$ $ au_{Rk, C1}$	[N/mm²]	-	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7				
Temperature range $II^{1)}$ $ au_{Rk, C1}$	[N/mm²]	-	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7				
(flooded hole)														
Temperature range I $^{1)}$ $ au_{Rk, C1}$	[N/mm²]	ı	7,5	7,0	6,5	5,7	5,7	5,7	6,7	5,7				
Temperature range II ¹⁾ τ _{Rk, C1}	[N/mm²]	-	6,8	6,8	5,8	5,8	5,7	5,7	5,7	5,7				
Characteristic resistance shear load, steel failure without lever arm														
$V_{Rk,s,C1}$	[kN]	-	15	22	30	39	49	61	74	88				
Reinforcing bar	size	25	26	28	30	32	34	36	40					
Characteristic resistance tension	on load, steel	l failure	9											
N _{Rk,s,C1}	[kN]	270	292	339	389	443	-	-	-					
Characteristic bond resistance,	, combined p	ullout	and co	ncrete	cone fa	ailure								
(dry and wet concrete)														
Temperature range I $^{1)}$ $ au_{Rk,s,C1}$	[N/mm²]	6,7	6,7	6,7	6,7	4,8	-	-	-					
Temperature range II ¹⁾ $ au_{Rk,s,\;C1}$	[N/mm²]	6,7	6,7	6,7	6,7	4,8	-	-	-					
(flooded hole)														
1)	[N/mm²]	5,7	5,7	5,7	5,7	5,7	-	-	-					
Temperature range I $^{1)}$ $ au_{Rk,s,C1}$		- · · · · · · · · · · · · · · · · · · ·												
		5,7	5,7	5,7	5,7	4,8	-	-	-					
1)	[N/mm²]				<u> </u>	4,8	-	-	-					

¹⁾ See Annex B 1

fischer injection system FIS EM	
Performances	Annex C 17
Design of bonded anchors	
Seismic performances C1	

Table C19: Characteristic values of resistance for fischer threaded rods FIS A, RGM and standard threaded rods under seismic action performance category C2 in hammer drilled hole

Size				М8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Characteristic re	sistance te	nsion loa	d, steel	failur	е								
	Zinc plated	Property	5.8	-	-	39	-	72	108	-	177	-	-
N _{Rk,s, C2}	steel	class	8.8	-	-	61	ı	116	173	-	282	ı	-
	Stainless	D	50	-	-	39	-	72	108	-	177	-	-
[kN]	steel A4	Property class	70	-	-	53	-	101	152	-	247	-	-
	and steel C		80	-	-	61	-	116	173	-	282	-	-
Characteristic bo	ond resista	nce, coml	oined p	ıllout	and co	oncret	e cone	failur	e (dry	and w	et con	crete)	
Temperature range	I ¹⁾	$ au_{Rk,C2}$ [N/mm²]	-	-	2,2	-	3,5	1,8	-	2,4	-	-
Temperature range	II ¹⁾		N/mm²]	-	-	2,2	-	3,5	1,8	-	2,4	-	-
Characteristic bo	ond resista	· ·	oined pu	ıllout	and co	oncret	e cone	failur	e (floo	ded he	ole)		
Temperature range			N/mm²]	-	-	2,3	-	3,5	1,8	-	2,1	-	-
Temperature range	II ¹⁾		N/mm²]	-	-	2,3	-	3,5	1,8	ı	2,1	-	-
	a) I												
$\delta_{N,(E}$	DLS) 3)		l/mm²)]	-	-	0,09	-	0,10	0,11	-	0,12	-	-
$\delta_{N,(L)}$	JLS) 3)	[mm/(N	l/mm²)]	-	-	0,15	-	0,17	0,17	-	0,18	-	-
Characteristic re	alatanaa ah		otool fo	. د میریان	itha	ıt lava	4 0 4 700						
Characteristic re			5.8	illure v	Withou	14	ariii	27	43	_	62		_
2)	Zinc plated steel	Property class	8.8	<u> </u>	<u> </u>	22		44	69		99		-
$V_{Rk,s, C2}^{(2)}$			50		_	14		27	43		62		<u> </u>
[kN]	Stainless steel A4	Property	70		_	20		39	60		87		
	and steel C	VIOC6			_	22		44	69		99	_	
			80		<u> </u>		_		03	_	33	-	
δ _{V (Γ}	ols) 4)	[r	nm/kN]	-	-	0,18	-	0,10	0,07	-	0,06	-	-
$\delta_{V,(l)}$		<u>-</u> [r	nm/kN]	-	-	0,25	-	0,14	0,11	-	0,09	-	-

⁴⁾ Calculation for displacement

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \bullet \tau;$

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V;$

 $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot \tau$;

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V;$

fischer injection system FIS EM

Performances Design of bonded anchors Seismic performances C2

 $^{^{1)}\,\}mbox{See}$ Annex B 1 $^{2)}\,\mbox{For fischer threaded rods FIS A / RGM the factor for steel ductility is 1,0$

³⁾ Calculation for displacement