

DECLARACIÓN DE PRESTACIONES

DoP 0296

para el sistema inyección de fischer FIS EB II (Anclaje químico para conexión de armaduras)

Código de identificación única del producto tipo:
 DoP 0296

2. <u>Usos previstos:</u> Sistema de conexión de conexión de armaduras con resina para uso en hormigón, Véase el

apéndice, especialmente los anexos B1-B12.

3. Fabricante: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Alemania

Representante autorizado:

-

5. <u>Sistemas de evaluación y verificación de la constancia de las prestaciones (EVCP):</u>

6. Documento de evaluación europeo:

EAD 330087-01-0601 Edition 06/2021

Evaluación técnica europea: ETA-21/0470; 2022-03-03

Organismo de evaluación técnica: DIBt- Deutsches Institut für Bautechnik

Organismos notificados: 2873 TU Darmstadt

7. Prestaciones declaradas:

Resistencia mecánica y estabilidad (BWR 1)

Resistencia característica bajo carga estática y cuasi-estática:

Fuerza de adherencia de la barra de refuerzo post-instalada: Anexo C2

Factor de reducción: Anexo C1

Factor de amplificación para longitud mínima de anclaje: Anexo C1

Resistencia característica de armaduras a tracción por rotura del acero: Anexo C1

Resistencia característica bajo solicitaciones sísmicas:

Tensión de adherencia bajo solicitación sísmica, coeficiente de eficiencia sísmica por adherencia: NPD

Recubrimiento mínimo de hormigón bajo solicitaciones sísmicas: NPD

Seguridad en caso de incendio (BWR 2)

Reacción al fuego: Clase (A1)

Resistencia al fuego:

Tensión de adherencia a temperatura elevada para armaduras a posteriori - Evaluación a 50 años: Anexo C3 Tensión de adherencia a temperatura elevada para armaduras a posteriori - Evaluación a 100 años: NPD

Resistencia característica de armaduras a tracción por rotura del acero en la exposición al fuego: Anexo C2

Documentación técnica adecuada o documentación técnica específica:

Las prestaciones del producto identificado anteriormente son conformes con el conjunto de prestaciones declaradas. La presente declaración de prestaciones se emite, de conformidad con el Reglamento (UE) no 305/2011, bajo la sola responsabilidad del fabricante arriba identificado.

Firmado por y en nombre del fabricante por:

Dr.-Ing. Oliver Geibig, Director General Unidades de Negocio e Ingeniería

Jürgen Grün, Director General de Química y Calidad

Tumlingen, 2022-03-17

Esta DdR se ha preparado en distintos idiomas. En caso de que haya alguna controversia sobre la interpretación prevalecerá siempre la versión inglesa.

El Apéndice incluye información voluntaria y complementaria en idioma inglés que excede los requisitos legales (de idioma neutral).

Fischer DATA DOP_ECs_V60.xlsm 1/1

ES

 $f_{bd,PIR,100y} = NPD$ $k_{b,100y} = NPD$

 $\alpha_{lb,100y} = NPD$

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Rebar connection with fischer Injection system FIS EB II" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 32 mm or the fischer rebar anchor FRA of sizes M12 to M24 according to Annex A and injection mortar FIS EB II are used for rebar connections. The steel element is placed into a drilled hole filled with injection mortar FIS EB II and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1
Characteristic resistance under seismic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 2 to C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Installation conditions and application examples reinforcing bars, part 1

Figure A1.1:

Overlap joint with existing reinforcement for rebar connections of slabs and beams

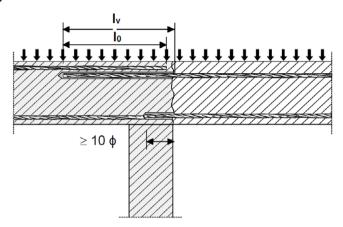


Figure A1.2:

Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed

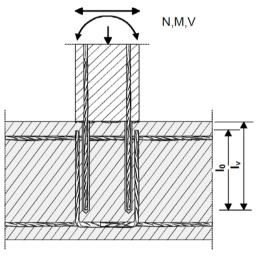
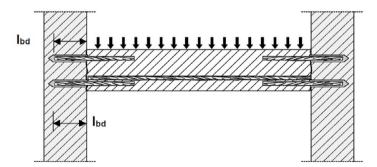



Figure A1.3:

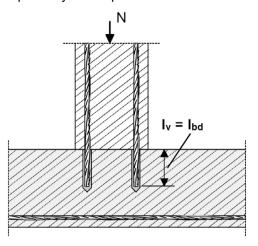
End anchoring of slabs or beams (e.g. designed as simply supported)

Figures not to scale

Rebar connection with fischer	injection system FIS EB II
-------------------------------	----------------------------

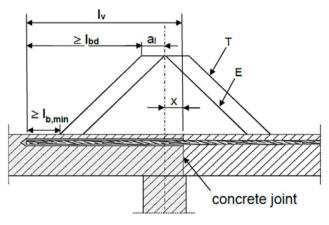
Product description

Installation conditions and application examples reinforcing bars, part 1


Annex A 1

Appendix 2/22

Installation conditions and application examples reinforcing bars, part 2


Figure A2.1:

Rebar connection for components stressed primarily in compression

Figure A2.2:

Anchoring of reinforcement to cover the line of acting tensile force in the bending member

(only post-installed rebar is plotted)

Key to Figure

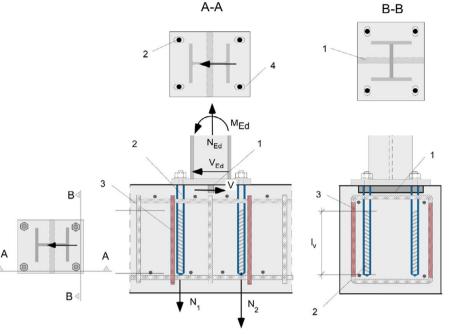
- T Acting tensile force
- E Envelope of M_{ed} / z + N_{ed} (see EN 1992-1-1:2004+AC:2010)
- x Distance between the theoretical point of support and concrete joint

Note to figure A1.1 to A1.3 and figure A2.1 to A2.2

In the figures no traverse reinforcement is plotted, the transverse reinforcement as required by EN 1992-1-1:2004+AC:2010 shall be present.

The shear transfer between old and new concrete shall be designed according to EN 1992-1-1:2004+AC:2010 Preparation of joints according to **Annex B 3** of this document.

Figures not to scale


Rebar connection with fischer injection system FIS EB II Product description Installation conditions and application examples reinforcing bars, part 2 Appendix 3/22

Installation conditions and application examples fischer rebar anchor

Figure A3.1:

Lap to a foundation of a column under bending.

- 1. Shear lug (or fastener loaded in shear)
- 2. fischer rebar anchor (tension only)
- 3. Existing stirrup / reinforcement for overlap (lap splice)
- 4. Slotted hole

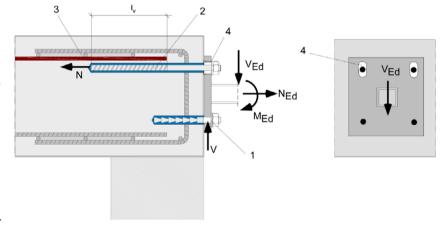


Figure A3.2:

Lap of the anchoring of guardrail posts or anchoring of cantilevered building components.

In the anchor plate, the drill holes for the fischer rebar anchors have to be designed as slotted holes with axial direction to the shear force.

- 1. Fastener for shear load transfer
- 2. fischer rebar anchor (tension only)
- Existing stirrup / reinforcement for overlap (lap splice)
- 4. Slotted hole

The required transverse reinforcement acc. to EN 1992-1-1:2004+AC:2010 is not shown in the figures. **The fischer rebar anchor may be only used for axial tensile force.** The tensile force must be transferred by lap to the existing reinforcement of the building. The transfer of the shear force has to be ensured by suitable measures, e.g. by means of shear force or anchors with European Technical Assessment (ETA).

Figures not to scale

Rebar connection with fischer injection system FIS EB II

Product description

Installation conditions and application examples fischer rebar anchors FRA / FRA HCR

Annex A 3

Appendix 4/22

Overview system components Injection cartridge (shuttle cartridge) FIS EB II with sealing cap; Sizes: 390 ml, 585 ml, 1100 ml, 1500 ml Imprint: fischer FIS EB II, processing notes, shelf-life, piston travel scale (optional), curing times and processing times (depending on temperature), hazard code, size, volume Static mixer FIS MR Plus for injection cartridges 390 ml Static mixer FIS UMR for injection cartridges ≥ 585 ml Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS UMR Reinforcing bar (rebar) Sizes: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$, \$\phi 25\$, \$\phi 26\$, \$\phi 26\$, \$\phi 26\$, \$\phi 30\$, \$\phi 32\$ marking setting depth fischer rebar anchor FRA, FRA HCR Sizes: M12, M16, M20, M24 Blow out pump AB G Compressed-air cleaning tool ABP with compressedair nozzle Figures not to scale Rebar connection with fischer injection system FIS EB II Annex A 4 **Product description** Overview system components: injection mortar, static mixer, injection adapter, Appendix 5/22 reinforcing bar, fischer rebar anchor, blow out pump

Properties of reinforcing bars (rebar)

Figure A5.1:

- The minimum value of related rib area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- The maximum outer rebar diameter over the ribs shall be:
 - The nominal diameter of the bar with rib ϕ + 2 · h (h ≤ 0,07 · ϕ)
 - ο (φ: Nominal diameter of the bar; h_{rib} = rib height of the bar)

Table A5.1: Installation conditions for rebars

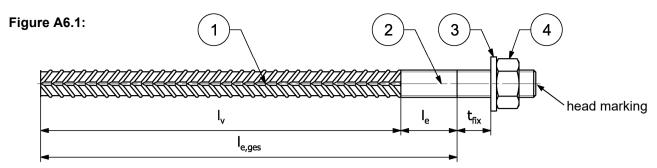
Nominal diameter of the bar		ф	8 ¹⁾	10) ¹⁾	12	1)	14	16	20	25	26	28	30	32
Nominal drill hole diameter	d_0		10 12	12	14	14	16	18	20	25	30	35	35	40	40
Drill hole depth	h ₀								h ₀	= I _v					
Effective embedment depth	Ιν	[mm]	[mm] acc. to static calculation												
Minimum thickness of concrete member	h _{min}		I _v + 30 (≥ 100)		I _v + 2d ₀										

¹⁾ Both drill hole diameters can be used

Table A5.2: Materials of rebars

Designation	Reinforcing bar (rebar)
Reinforcing bar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA f_{uk} = f_{tk} = $k \cdot f_{yk}$

Rebar connection with fischer injection system FIS EB II


Product description

Properties and materials of reinforcing bars (rebar)

Annex A 5

Appendix 6/22

Properties of fischer rebar anchors

Head marking e.g.: FRA (for stainless steel)

FRA HCR (for high corrosion-resistant steel)

Table A6.1: Installation conditions for fischer rebar anchors

Thread diameter			M1:	2 ²⁾	M16	M20	M24
Nominal diameter	ф	[mm]	12	2	16	20	25
Nominal drill bit diameter	d_0	[mm]	14	16	20	25	30
Drill hole depth (h ₀ = l _{e,ges})	l _{e,ges}	[mm]		•	l _v -	⊦ l _e	
Effective embedment depth	l _v	[mm]			acc. to station	calculation	
Distance concrete surface to welded joint	le	[mm]	100				
Diameter of clearance	Pre-positioned ≤ d _f	[mm]	14	4	18	22	26
hole in the fixture ¹⁾	Push through ≤ d _f	[mm]	16	18	22	26	32
Minimum thickness of concrete member	h _{min}	[mm]	h ₀ + (≥ 1			h ₀ + 2d ₀	
Maximum torque moment for attachment of the fixture	max T _{inst}	[Nm]	50	0	100	150	150

¹⁾ For bigger clearance holes in the fixture see EN 1992-4:2018

Table A6.2: Materials of fischer rebar anchors

Part	Description	Materials				
		FRA	FRA HCR			
		Corrosion resistance class CRC III	Corrosion resistance class CRC V			
		acc. to EN 1993-1-4:2006+A1:2015	acc. to EN 1993-1-4:2006+A1:2015			
1	Reinforcing bar	Bars and de-coiled rods class B or C	with f _{yk} and k according to NDP or NCI of			
1 Reilliording bai		EN 1992-1-1:NA; $f_{uk} = f_{tk} = k \cdot f_{yk}$; $(f_{yk} = 500 \text{ N/mm}^2)$				
2	Round bar with	Stainless steel, strength class 80,	Stainless steel, strength class 80,			
2	partial or full thread	according to EN 10088-1:2014	according to EN 10088-1:2014			
3	Washer	Stainless steel,	Stainless steel,			
3	ISO 7089:2000	according to EN 10088-1:2014	according to EN 10088-1:2014			
		Stainless steel, strength class 80,	Stainless steel, strength class 80, acc. to			
4	Hexagon nut	acc. to EN ISO 3506-2:2020,	EN ISO 3506-2:2020,			
		according to EN 10088-1:2014	according to EN 10088-1:2014			

Rebar connection with fischer injection system FIS EB II

Product description

Properties and materials of fischer rebar anchors

Annex A 6

Appendix 7/22

²⁾ Both drill bit diameters can be used

Specifications of intended use part 1

Table B1.1: Overview use and performance categories

Fastenings subject to			FIS EB II with				
			Reinfor	cing bar	fischer rebar anchor		
Hammer drilling with standard drill bit or compressed air drilling	G-00	*******		all s	izes		
Use category	I1	dry or wet concrete	all sizes				
Characteristic resistance under	in cra	acked rete	all sizes	Tables: C1.1	all sizes	Tables: C1.1 C1.2 C1.3	
static and quasi static loading,	in un	icracked rete		C1.2 C2.1		C1.4 C2.1 C2.2	
Characteristic resistance under seismic loading			_1)		_1)		
Installation direction			D3 (downward and horizontal and upwards (e.g. overhead))				
Installation temperature				T _{i,min} = +5 °C to	T _{i,max} = +40 °C		
Service temperature	Te	emperature range	-40°C to	o +80°C	(max. short term temperature +80°C; max long term temperature +50°C)		
Resistance to fire			all sizes	Annex C 3	all sizes	Table C2.2	

¹⁾ No performance assessed

Rebar connection with fischer	r injection system FIS EB II
-------------------------------	------------------------------

Specifications of intended use part 2

Anchorages subject to:

- Static and guasi-static loading: reinforcing bar (rebar) size 8 mm to 32 mm
- · Resistance to fire

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Concrete strength classes C12/15 to C50/60 according to EN 206:2013+A1:2016
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+A1:2016
- · Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure, the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

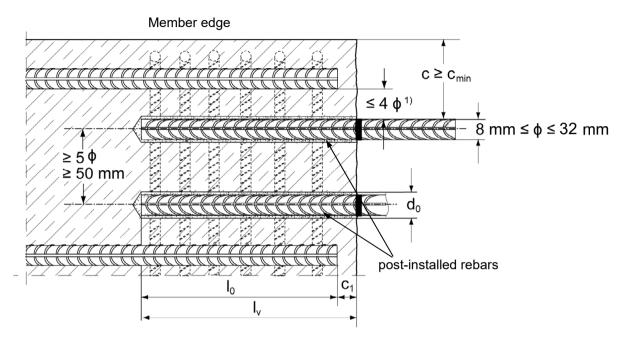
Use conditions (Environmental conditions) for fischer rebar anchors:

• For all conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 6 table A6.2

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- · Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B 3 and B 4.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:


- The installation of post-installed rebar respectively fischer rebar anchor shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for Supervision on site are up to the member states in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

	Rebar connection	with fischer	injection s	vstem FIS EB II
--	-------------------------	--------------	-------------	-----------------

General construction rules for post-installed rebars

Figure B3.1:

- Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

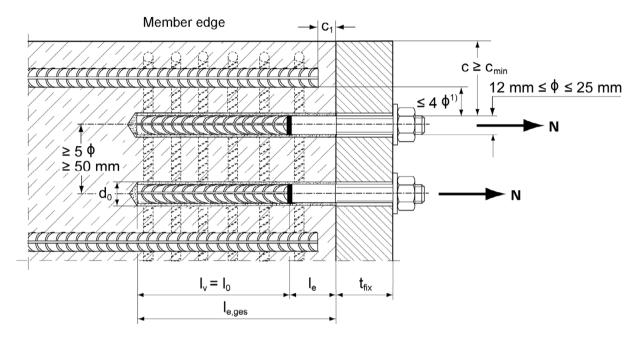
- $^{1)}$ If the clear distance between lapped bars exceeds 4 ϕ then the lap length shall be increased by the difference between the clear bar distance and 4 ϕ
 - c concrete cover of post-installed rebar
 - c₁ concrete cover at end-face of existing rebar
 - c_{min} minimum concrete cover according to table B5.1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 - φ nominal diameter of reinforcing bar
 - lo lap length, according to EN 1992-1-1:2004+AC:2010
 - l_v effective embedment depth, $\geq l_0 + c_1$
 - d₀ nominal drill bit diameter, see Annex B 6

Figures not to scale

Rebar connection with fischer injection system FIS EB II

Intended Use

General construction rules for post-installed rebars


Annex B 3

Appendix 10/22

General construction rules for post-installed fischer rebar anchors

Figure B4.1:

- Only tension forces in the axis of the fischer rebar anchor may be transmitted.
- The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transmission of the shear loading shall be ensured by appropriate additional measures, e.g. by shear lugs or by anchors with a European Technical Assessment (ETA).
- In the anchor plate, the holes for the tension anchor shall be executed as slotted holes with the axis in the direction of the shear force.

- $^{1)}$ If the clear distance between lapped bars exceeds 4 ϕ then the lap length shall be increased by the difference between the clear bar distance and 4 ϕ .
 - c concrete cover of post-installed fischer rebar anchor
 - c₁ concrete cover at end-face of existing rebar
 - c_{min} minimum concrete cover according to table B5.1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 - φ nominal diameter of reinforcing bar
 - l₀ lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
 - $I_{e,ges}$ overall embedment depth, $\geq I_0 + I_e$
 - d₀ nominal drill bit diameter, see Annex B 6
 - le length of the bonded in threaded part
 - t_{fix} thickness of the fixture
 - l_v effective embedment depth

Figures not to scale

Rebar connection with fischer injection system FIS EB II Intended Use General construction rules for post-installed fischer rebar anchors Annex B 4 Appendix 11/22

Table B5.1: Minimum concrete cover c_{min}¹⁾ depending on the drilling method and the drilling tolerance

	nominal diameter	Minimum concrete cover c _{min}					
Drilling method	of reinforcing bar φ [mm]	Without drilling aid [mm]		drilling aid [mm]			
Hammer drilling with standard drill	< 25	30 mm + 0,06 l _v ≥ 2 ф	30 mm + 0,02 l _v ≥ 2 ф				
bit	≥ 25	40 mm + 0,06 l _v ≥ 2 φ	40 mm + 0,02 l _ν ≥ 2 φ	Drilling aid			
Compressed air	< 25	50 mm + 0,08 l _v	50 mm + 0,02 l _v	29 44			
drilling	≥ 25	60 mm + 0,08 l _v ≥ 2 ф	60 mm + 0,02 l _v ≥ 2 φ				

¹⁾ See Annex B 3, figure B3.1 and Annex B 4, figure B4.1 Note: The minimum concrete cover as specified in EN 1992-1-1:2004+AC:2010 must be observed.

Table B5.2: Dispensers and cartridge sizes corresponding to maximum embedment depth I_{v,max} resp. I_{e,ges,max}

maximam embedment depth ty,max resp. te,ges,max								
reinforcing	fischer	Manual	Pneumatic or cordless	Pneumatic or cordless dispenser				
bars (rebar)	rebar	dispenser	dispenser (small)	(large)				
	anchor		Cartridge	size				
			≥390 ml (e.g. 390 ml, 585	ml, 1100 ml, 1500 ml)				
φ [mm]	Designation		I _{v,max} / I _{e,ges,m}	_{nax} [mm]				
8 to 10								
40	FRA M12							
12	FRA HCR M12							
14								
16	FRA M16							
10	FRA HCR M16		2000					
20	FRA M20							
20	FRA HCR M20							
25	FRA M24	M24						
25	FRA HCR M24							
26 to 32								

Table B5.3: Conditions for use static mixer without an extension tube

Nominal drill hole diameter	d_0		10	12	14	16	18	20	24	25	28	30	35	40
Drill hole depth h ₀ by	FIS MR Plus	[mm]	≤9	90	≤120	≤140	≤150	≤160	≤190			≤210		
using	FIS UMR		ı	-	≤90	≤160	≤180	≤190	≤2	20		≤2	50	

Rebar connection with fischer injection system FIS EB II
Intended Use

Minimum concrete cover;

dispenser and cartridge sizes corresponding to maximum embedment depth

Annex B 5

Appendix 12/22

Table B6.1: Working times twork and curing times tcure

Temperature at anchoring base [°C] ²⁾	Maximum processing time 1) twork	Minimum curing time
5 to 10	180 min	96 h
> 10 to 15	90 min	60 h
> 15 to 20	60 min	36 h
> 20 to 30	30 min	24 h
> 30 to 40	15 min	12 h

¹⁾ Maximum time from the beginning of the injection to rebar / fischer rebar anchor setting and positioning

Table B6.2: Installation tools for drilling and cleaning the bore hole and injection of the mortar

reinforcing			Drilling ar	nd cleaning		Inje	ection	
bars (rebar)	fischer rebar anchor	Nominal drill bit	Diameter of cutting	Steel brush	Diameter of cleaning	extension tube 9 mm	extension tube 15 mm	
		diameter	edge	ulametei	nozzle	Injection adapter	Injection adapter	
φ [mm]	Designation	d ₀ [mm]	d _{cut} [mm]	d₀ [mm]	[mm]	[colour]	[colour]	
8 ¹⁾		10 ²⁾	≤ 10,50	11				
0 7		12	≤ 12,50	14		nature		
10 ¹⁾		12	≤ 12,50	14	11	Hature		
10		14	≤ 14,50	16		blue		
12 ¹⁾	FRA M12 ¹⁾	14	≤ 14,50	16				
	FRA HCR M12 ¹⁾	16	≤ 16,50	20	15	red		
14		18	≤ 18,50	20		yellow		
16	FRA M16 FRA HCR M16	20	≤ 20,55	25	19	green	green	
20	FRA M20 FRA HCR M20	25	≤ 25,55	27	19	black	black	
25	FRA M24 ¹⁾ FRA HCR M24 ¹⁾	30	≤ 30,55	32	28	grey	grey	
26		35	≤ 35,70	37	28	brown	brown	
28		35	≤ 35,70	37	28	brown	brown	
30		40	≤ 40,70	42	38	red	red	
32		40	≤ 40,70	42	38	red	red	

¹⁾ Both drill bit diameters can be used

Rebar connection with fischer injection system FIS	FR II	ı
--	-------	---

Intended Use

Working times and curing times;

Installation tools for drilling and cleaning the bore hole and injection of the mortar

Annex B 6

Appendix 13/22

²⁾ If the temperature in the concrete falls below 10 °C the cartridge has to be warmed up to +20 °C.

²⁾ Only hammer drilling with standard drill bit

Safety regulations

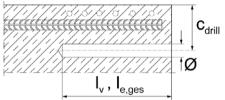
Review the Safety Data Sheet (SDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with mortar FIS EB II.

Important: Observe the instructions for use provided with each cartridge.

Installation instruction part 1

Hole drilling

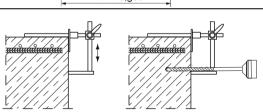
Note: Before drilling, remove carbonated concrete; clean contact areas (see Annex B 2) In case of aborted drill holes the drill hole shall be filled with mortar.


Hammer drilling or compressed air drilling

1

Drill the hole to the required embedment depth using a hammer drill with carbide drill bit set in rotation hammer mode or a pneumatic drill.

Drill bit sizes see table B6.2.


Measure and control concrete cover c

 $(c_{drill} = c + \emptyset / 2)$

Drill parallel to surface edge and to existing rebar.

Where applicable use fischer drilling aid.

2

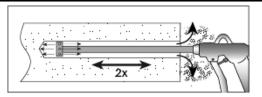
For holes $l_v > 20$ cm use drilling aid.

Three different options can be considered:

- A) fischer drilling aid
- B) Slat or spirit level
- C) Visual check

Minimum concrete cover c_{min} see table B5.1

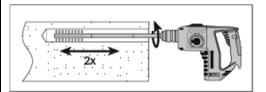
Rebar connection with fischer injection system FIS EB II


Safety regulations; Installation instruction part 1, hole drilling

Annex B 7

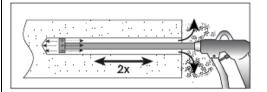
Appendix 14/22

Installation instruction part 2


Drill hole cleaning with oil-free compressed air

Blowing

twice from the back of the hole with the appropriate nozzle (oil-free compressed air \geq 6 bar) until return air stream is free of noticeable dust.


Personal protective equipment must be used (see safety regulations **Annex B 7**).

Brushing (with power drill)

Check steel brush with brush control template. The brush must produce a noticeable resistance when it is inserted into the drill hole.

Fix an adequate steel brush with an extension into a drilling machine and brush the bore hole twice.

Blowing

twice from the back of the hole with the appropriate nozzle (oil-free compressed air ≥ 6 bar) until return air stream is free of noticeable dust.

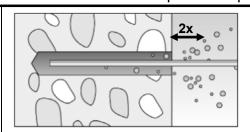
Personal protective equipment must be used (see safety regulations **Annex B 7**).

Go to step 4

3a

Rebar connection with fischer injection system FIS EB II

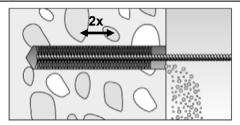
Intended Use


Installation instruction part 2, drill hole cleaning

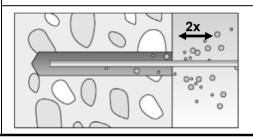
Annex B 8

Appendix 15/22

Installation instruction part 3


Drill hole cleaning: manual cleaning is permitted for hammer drilled boreholes up to hole diameters $d_0 < 18$ mm and depths l_v resp. $l_{e,ges} \le 12 \cdot \phi$

Blowing


blow out the hole twice by hand from the back of the hole. Use only the fischer blow out pump AB G.

Personal protective equipment must be used (see safety regulations **Annex B 7**).

Brushing

Twice with the specified brush size by inserting the round steel brush to the back of the hole and twisting motion. The brush must produce a noticeable resistance when it is inserted into the drill hole. Corresponding brushes see **table B6.2**.

Blowing

blow out the hole twice by hand from the back of the hole. Use only the fischer blow out pump AB G.

Personal protective equipment must be used (see safety regulations **Annex B 7**).

Go to step 4

3b

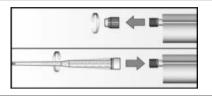
Rebar connection with fischer injection system FIS EB II

Intended Use

Installation instruction part 3, drill hole cleaning

Annex B 9

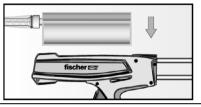
Appendix 16/22


Installation instruction part 4

reinforcing bars (rebar) / fischer rebar anchor and cartridge preparation

Before use, make asure that the rebar or the fischer rebar anchor is dry and free of oil or other residue.

Mark the embedment depth (e.g. with tape)
Insert rebar in borehole, to verify drill hole depth and setting depth


5

Twist off the sealing cap

Twist on the static mixer (the spiral in the static mixer must be clearly visible).

6

Place the cartridge into a suitable dispenser.

7

Press out approximately 10 cm of mortar until the resin is permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed.

Go to step 8

Rebar connection with fischer in	jection system FIS EB II
----------------------------------	--------------------------

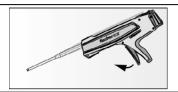
Intended Use

Installation instruction part 4, reinforcing bars (rebar) / fischer rebar anchor and cartridge preparation

Annex B 10

Appendix 17/22

Installation instruction part 5; Installation with FIS EB II

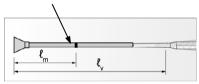

Injection of the mortar without extension tube

Inject the mortar from the back of the hole towards the front and slowly withdraw the static mixer step by step with each trigger pull.

Avoid bubbles.

Fill holes approximately 2/3 full, to ensure that the annular gap between the rebar and the concrete will be completely filled with adhesive over the entire embedment length.

The conditions for mortar injection without extension tube can be found in **table B5.3**


After injecting, release the dispenser. This will prevent further mortar discharge from the static mixer.

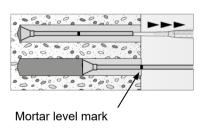
Injection of the mortar with extension tube

Assemble mixing nozzle FIS MR Plus or FIS UMR, extension tube and appropriate injection adapter (see **table B6.2**)

Mortar level mark

Mark the required mortar level I_m and embedment depth I_v resp. $I_{e,ges}$ with tape or marker on the injection extension tube.

a) Estimation:


$$l_m = \frac{1}{3} \cdot l_v resp. l_m = \frac{1}{3} \cdot l_{e,ges}$$
 [mm]

b) Precise equation for optimum mortar volume:

$$l_m = l_v \, resp. \, l_{e,ges} \, \left((1,2 \, \cdot \, \frac{d_s^2}{d_0^2} - 0,2) \right)$$
 [mm]

8b

8a

Insert injection adapter to back of the hole. Begin injection allowing the pressure of the injected adhesive mortar to push the injection adapter towards the front of the hole. Do not actively pull out!

Fill holes approximately 2/3 full, to ensure that the annular gap between the rebar and the concrete will be completely filled with adhesive over the embedment length.

When using an injection adapter continue injection until the mortar level mark l_m becomes visible.

Maximum embedment depth, see table B5.2

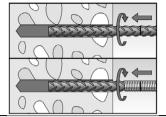
After injecting, release the dispenser. This will prevent further mortar discharge from the static mixer.

Go to step 9

Rebar connection with fischer injection system FIS EB II

Intended Use

Installation instruction part 5, mortar injection

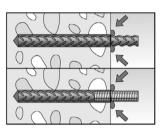

Annex B 11

Appendix 18/22

Installation instruction part 6; Inatallation with FIS EB II

Insert rebar / fischer rebar anchor

9



Insert the rebar / fischer rebar anchor slowly twisted into the borehole until the embedment mark is reached.

Recommendation:

Rotation back and forth of the reinforcement bar or the fischer rebar anchor makes pushing easy

10

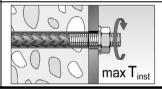
After installing the rebar or fischer rebar anchor the annular gap must be completely filled with mortar.

Proper installation

- Desired embedment depth is reached l_v resp. l_{e,ges}: embedment mark at concrete surface
- Excess mortar flows out of the borehole after the rebar or fischer rebar anchor have been fully inserted up to the embedment mark.

11

For overhead installation, support the rebar / fischer rebar anchor and secure it from falling till mortar started to harden, e.g. using wedges.


12

Observe the working time "twork" (see **table B6.1**), which varies according to temperature of base material. Minor adjustments to the rebar / fischer rebar anchor position may be performed during the working time

Full load may be applied only after the curing time "tcure" has elapsed (see **table B6.1**)

13

Mounting the fixture, max T_{inst} see **table A6.1**

Rebar connection with fischer injection system FIS EB II

Intended Use

Installation instruction part 6, insert rebar / fischer rebar anchor

Annex B 12

Appendix 19/22

Minimum anchorage length and minimum lap length

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{o,min}$ according to EN 1992-1-1:2004+AC:2010 shall be multiplied by the relevant amplification factor α_{lb} according to **table C1.1**.

Table C1.1: Amplification factor α_{lb} related to concrete strength class and drilling method

Hammer drilling an	d compressed air	drilling
--------------------	------------------	----------

Rebar / fischer				Amplif	ication fac	tor α _{lb}			
rebar anchor	Concrete strength class								
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 32					1,0				

Table C1.2: Bond efficiency factor k₀ for hammer drilling and compressed air drilling

Hammer drilling and compressed air drilling

Rebar / fischer				Bond e	fficiency fa	actor k _b			
rebar anchor	Concrete strength class								
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 32					1,0				

Table C1.3: Characteristic **tensile yield strength** for rebar part of **fischer rebar anchors**

fischer rebar anchor FRA / F		M12	M16	M20	M24		
Characteristic tensile yield strength for rebar part							
Rebar diameter	ф	[mm]	12	16	20	25	
Characteristic tensile yield strength	f_{yk}	[N/mm ²]	500	500	500	500	
Partial factor for rebar part	γ _{Ms,N} 1)	[-]		1,	15		

¹⁾ In absence of national regulations

Table C1.4: Characteristic resistance to **steel failure** under tension loading of **fischer** rebar anchors

fischer rebar anchor FRA / F	RA HCR	M12	M16	M20	M24			
Characteristic resistance to	steel failure unde	tension loading	1					
Characteristic resistance	N _{Rk,s} [kN]	62 111 173 263						
Partial factor								
Partial factor	γ _{Ms,N} 1) [-]		1	,4				

¹⁾ In absence of national regulations

Rebar connection with fischer injection system FIS EB II

Performances

Amplification factor α_{lb} , bond efficiency factor k_b , characteristic resistance to steel failure of fischer rebar anchors; characteristic tensile yield strength for rebar part

Annex C 1

Appendix 20/22

Table C2.1: Design values of the bond strength f_{bd,PIR} in N/mm² for hammer drilling, compressed air drilling

 $f_{bd,PIR} = k_b \cdot f_{bd}$

 f_{bd} : Design value of the bond strength in N/mm² considering the concrete strength classes and the rebar diameter for good bond condition (for all other bond conditions multiply the values by η_1 = 0,7) and recommended partial factor γ_c = 1,5 according to EN 1992-1-1: 2004+AC:2010

 k_b : Bond efficiency factor according to **table C1.2**

Hammer drilling	ng and com	npressed a	ir drilling									
	bond strength fbd,PIR [N/mm²]											
Rebar /	Concrete strength class											
fischer rebar anchor	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
φ [mm]												
8 to 32	1,7	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3			

Table C2.2: Characteristics resistance to **steel failure** for **fischer rebar anchors** under tension loading and fire exposure R30 to R120

fischer rebar anchor FRA / FRA HCR			M12	M16	M20	M24	
Characteristic resistance to steel failure under tension loading and fire exposure	R30	N _{Rk,s,fi}	[kN]	2,5	4,7	7,4	10,6
	R60			2,1	3,9	6,1	8,8
	R90			1,7	3,1	4,9	7,1
	R120			1,3	2,5	3,9	5,6

Rebar connection with fischer	injection system	FIS EB II
-------------------------------	------------------	-----------

Design values of the bond strength f_{bd,PIR}; characteristic resistance to steel failure for fischer rebar anchor NRk,s,fi under tension loading and fire exposure

Annex C 2

Appendix 21/22

The bond strength $f_{bd,fi}$ at increased temperature for concrete strength classes C12/15 to C50/60 (all drilling methods)

The bond strength fbd.fi at increased temperature has to be calculated by the following equation:

$$f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \frac{\gamma_c}{\gamma_{m,fi}}$$

If:
$$\theta > 49$$
 °C

$$k_{fi}(\theta) = \frac{39924 \cdot \theta^{-2,134}}{f_{hd,PIR} \cdot 4,3} \le 1.0$$

If: $\theta > \theta_{max}$ (200 °C)

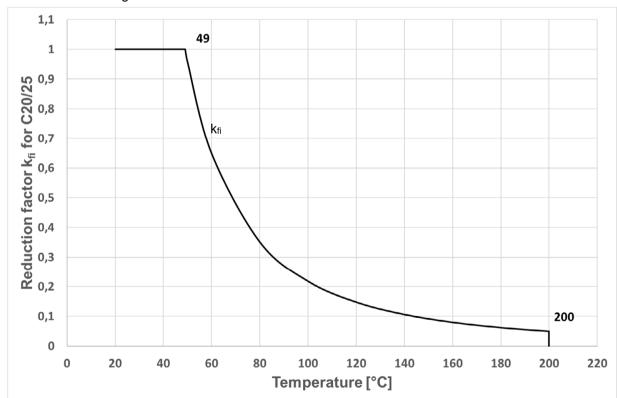
$$k_{fi}(\theta) = 0$$

f_{bd.fi} = The bond strength at increased temperature in N/mm²

 (θ) = Temperature in °C in the mortar layer

 $k_{fi}(\theta)$ = Reduction factor at increased temperature

f_{bd,PIR} = Design value of the bond strength in N/mm² in cold condition according to table C2.1 considering the concrete strength classes, the rebar diameter, the drilling method and


the bond conditions according to EN 1992-1-1:2004+AC:2010

 $\gamma_{\rm C}$ = 1,5 recommended partial factor according to EN 1992-1-1:2004+AC:2010

 $\gamma_{m,fi}$ = 1,0 recommended partial factor

For evidence at increased temperature the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent ultimate bond strength f_{bd,fi}.

Figure C3.1: Example of the graph of reduction factor k_{fi} (θ) for concrete strength class C20/25 for good bond conditions

Rebar connection with fischer injection system FIS EB II

Performances

Design values of bond strength $f_{\text{bd,fi}}$ at increased temperature

Annex C 3

Appendix 22/22