



#### **DECLARATION OF PERFORMANCE**

#### **DoP 0344**

for fischer concrete screw ULTRACUT FBS II R (Mechanical fastener for use in concrete)

FΝ

1. Unique identification code of the product-type: DoP 0344

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially annexes B1-

B5.

3. Manufacturer: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany

4. Authorised representative:

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330232-01-0601
European Technical Assessment: ETA-17/0740; 2022-03-08
Technical Assessment Body: ETA-Danmark A/S
Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

#### Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading) Method A:

- 1 Resistance to steel failure: Annex C1
- 2 Resistance to pull- out failure: Annex C1
- 3 Resistance to concrete cone failure: Annex C1
- 4 Robustness: Annex C1
- 5 Minimum edge distance and spacing: Annex B3
- 6 Edge distance to prevent splitting under load: Annex C1

#### Characteristic resistance to shear load (static and quasi-static loading):

- 7 Resistance to steel failure (shear load): Annex C1
- 8 Resistance to pry-out failure: Annex C1

#### Characteristic Resistance for simplified design:

- 9 Method B: NPD
- 10 Method C: NPD

#### Displacements:

11 Displacements under static and quasi-static loading: Annex C4

#### Characteristic resistance and displacements for seismic performance categories C1 and C2:

- 12 Resistance to tension load, displacements, category C1: Annex C2
  - Resistance to tension load, displacements, category C2: Annex C2
- 13 Resistance to shear load, displacements, category C1: Annex C2 Resistance to shear load, displacements, category C2: Annex C2
- 14 Factor for annular gap: Annex C2

#### Safety in case of fire (BWR 2)

15 Reaction to fire: Class (A1)

#### Resistance to fire:

- 16 Fire resistance to steel failure (tension load): Annex C3
- 17 Fire resistance to pull-out failure (tension load): Annex C3
- 18 Fire resistance to steel failure (shear load): Annex C3

#### **Durability:**

19 Durability: Annexes B1

#### 8. Appropriate Technical Documentation and/or Specific

#### Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering

Tumlingen, 2024-02-16

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP\_ECs\_V93.xlsm 1/1





Translation guidance Essential Characteristics and Performance Parameters for Annexes

| Me  | chanical resistance and stability (BWR 1)                                                 |                                                                                                                                                                     |
|-----|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ch  | aracteristic resistance to tension load (static and quasi-static loading) Method A:       |                                                                                                                                                                     |
| 1   | Resistance to steel failure:                                                              | N <sub>Rk,s</sub> [kN]                                                                                                                                              |
| 2   | Resistance to pull-out failure:                                                           | N <sub>Rk,p</sub> [kN], ψ <sub>c</sub> [-]                                                                                                                          |
| 3   | Resistance to concrete cone failure:                                                      | k <sub>cr,N</sub> , k <sub>ucr,N</sub> [-], h <sub>ef</sub> , c <sub>cr,N</sub> [mm]                                                                                |
| 4   | Robustness:                                                                               | Vinst [-]                                                                                                                                                           |
| 5   | Minimum edge distance and spacing:                                                        | c <sub>min</sub> , s <sub>min</sub> , h <sub>min</sub> [mm]                                                                                                         |
| 6   | Edge distance to prevent splitting under load:                                            | N <sup>0</sup> <sub>Rk,sp</sub> [kN], c <sub>cr,sp</sub> [mm]                                                                                                       |
| Ch  | aracteristic resistance to shear load (static and quasi-static loading):                  |                                                                                                                                                                     |
| 7   | Resistance to steel failure (shear load):                                                 | V <sup>0</sup> <sub>Rk,s</sub> [kN], M <sup>0</sup> <sub>Rk,s</sub> [Nm], k <sub>7</sub> [-]                                                                        |
| 8   | Resistance to pry-out failure:                                                            | k <sub>8</sub> [-]                                                                                                                                                  |
| Ch  | aracteristic Resistance for simplified design:                                            | !                                                                                                                                                                   |
| 9   | Method B:                                                                                 | $\begin{aligned} & F^0_{Rk} \text{ [kN], } M^0_{Rk,s} \text{ [Nm], } \psi_c \text{ [-],} \\ & c_{cr}, s_{cr}, s_{min}, c_{min}, h_{min} \text{ [mm]} \end{aligned}$ |
| 10  | Method C:                                                                                 | F <sub>Rk</sub> [kN], M <sup>0</sup> <sub>Rk,s</sub> [Nm],<br>C <sub>cr</sub> , s <sub>cr</sub> , s <sub>min</sub> , h <sub>min</sub> [mm]                          |
| Dis | splacements:                                                                              | Scr. Scr. Smin: Thin [Tillin]                                                                                                                                       |
| 9   | Displacements under static and quasi-static loading:                                      | $\delta_{N0,}\delta_{N^\infty,}\delta_{V0,}\delta_{V^\infty}[mm]$                                                                                                   |
| Ch  | I aracteristic resistance and displacements for seismic performance categories C1 and C2: |                                                                                                                                                                     |
| 12  | Resistance to tension load, displacements, category C1:                                   | $N_{Rk,s,C1}$ , $N_{Rk,p,C1}$ [kN]                                                                                                                                  |
|     | Resistance to tension load, displacements, category C2:                                   | $N_{Rk,s,C2}$ , $N_{Rk,p,C2}$ [kN], $\delta_{N,C2}$ [mm]                                                                                                            |
| 13  | Resistance to shear load, displacements, category C1:                                     | V <sub>Rk,s,C1</sub> [kN]                                                                                                                                           |
|     | Resistance to shear load, displacements, category C2:                                     | $V_{Rk,s,C2}$ [kN], $\delta_{V,C2}$ [mm]                                                                                                                            |
| 14  | Factor for annular gap:                                                                   | α <sub>gap</sub> [-]                                                                                                                                                |
| Sa  | I<br>fety in case of fire (BWR 2)                                                         |                                                                                                                                                                     |
| 15  | Reaction to fire:                                                                         | Class                                                                                                                                                               |
| Re  | I<br>sistance to fire:                                                                    | -1                                                                                                                                                                  |
| 16  | Fire resistance to steel failure (tension load):                                          | N <sub>Rk,s,fi</sub> [kN]                                                                                                                                           |
| 17  | Fire resistance to pull-out failure (tension load):                                       | N <sub>Rk,p,fi</sub> [kN]                                                                                                                                           |
| 18  | Fire resistance to steel failure (shear load):                                            | $V_{Rk,s,fi}[kN], M^0_{Rk,s,fi}[Nm]$                                                                                                                                |
| Du  | I<br>rability:                                                                            |                                                                                                                                                                     |
| 19  | Durability:                                                                               | Description/Level                                                                                                                                                   |
|     | 1                                                                                         |                                                                                                                                                                     |

#### II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

### 1 Technical description of product and intended use

#### Technical description of the product

fischer concrete screw UltraCut FBS II R is a concrete screw made of stainless steel. The anchor is installed in a drilled hole and anchored by mechanical interlock.

An illustration of the product is given in Annex A.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex B, Table B2.1. The intended use specifications of the product are detailed in the Annex B1.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

# 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Characteristics of product

#### Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex C1, C2 and C4.

#### Safety in case of fire (BWR 2):

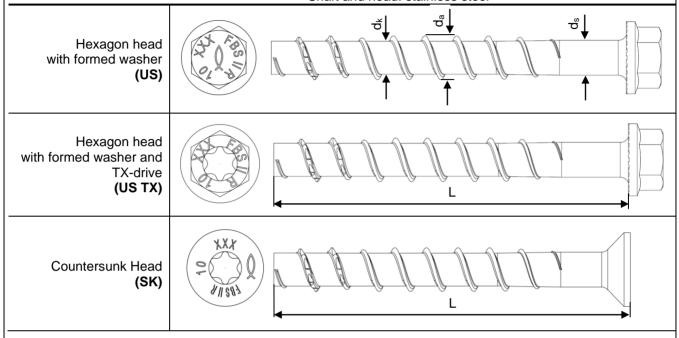
The essential characteristics are detailed in the Annex C3.

Other Basic Requirements are not relevant.

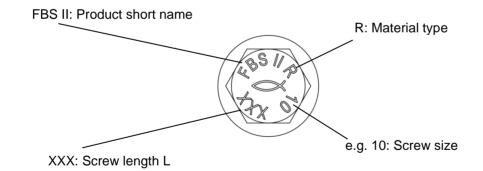
#### 3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirement 1 has been made in accordance with EAD 330232-01-0601; Mechanical fasteners for use in concrete.

#### $\label{lem:assessment} \textbf{Assessment and verification of constancy}$ 4 of performance (AVCP)


**4.1 AVCP system**According to the decision 1996/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No. 305/2011) is 1.

# Product in the installed condition FBS II US R / FBS II US TX R FBS II SK R (Fig. not to scale) Annex A1 fischer concrete screw UltraCut FBS II R of European Technical Assessment Product description ETA-17/0740 Product in the installed condition


| Table A2.1: Geo       | able A2.1: Geometry and material |      |                      |                    |      |  |  |  |  |
|-----------------------|----------------------------------|------|----------------------|--------------------|------|--|--|--|--|
| Type o                | of corous / cizo                 |      |                      | FBS II US R / SK R |      |  |  |  |  |
|                       | of screw / size                  |      | 8                    | 10                 | 12   |  |  |  |  |
| Thread outer diameter | da                               |      | 10,3                 | 12,5               | 14,6 |  |  |  |  |
| Core diameter         | d <sub>k</sub>                   | [mm] | 7,5                  | 9,4                | 11,1 |  |  |  |  |
| Shaft diameter        | ds                               |      | 8,0                  | 9,9                | 11,7 |  |  |  |  |
| Motorial              |                                  | -    | Tipu bardanad ataalu | •                  |      |  |  |  |  |

Material

Tip: hardened steel; Shaft and head: stainless steel



#### **Head Marking**



(Fig. not to scale)

| fischer concrete screw UltraCut FBS II R  | Annex A2                                           |
|-------------------------------------------|----------------------------------------------------|
| Product description Geometry and material | of European<br>Technical Assessment<br>ETA-17/0740 |

#### Specification of intended use: FBS II R Size 8 10 12 Nominal embedment depth [mm] 50 65 55 65 85 60 75 100 Static and quasi-static loads in cracked and uncracked concrete Fire exposure Seismic performance category C1 and C2

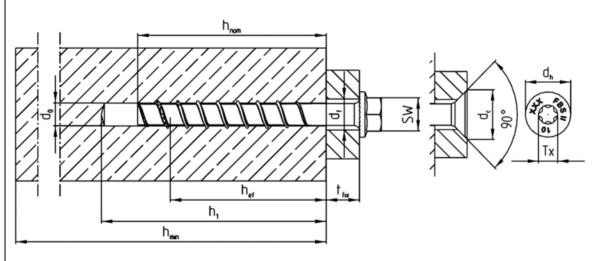
#### Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

#### Use conditions (Environmental conditions):

- Structures subjected to dry internal conditions
- For all other conditions according to EN 1993-1-4:2015-10, corresponding to corrosion resistance class CRC III

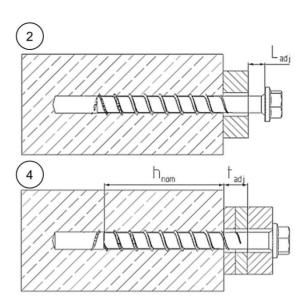
#### Design:


- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
  position of the screw is indicated on the design drawings
  (e.g. position of the screw relative to reinforcement or to supports, etc.).
- Design of fastenings according to EN 1992-4:2016 and EOTA Technical Report TR 055

#### Installation:

- Hammer drilling or diamond drilling or hollow drilling according to Annex B4
- Screw installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted
  hole or closer, if the hole is filled with a high strength mortar and only if the hole is not in the direction of the
  oblique tensile or shear load.
- Adjustability according to Annex B3
- Cleaning of drill hole is not necessary when using a hollow drill or:
  - If drilling vertically upwards
  - If drilling vertical downwards and the drill hole depth has been increased. It is recommended to increase the drill depth with additional 3 do.
- After correct installation further turning of the screw head should not be possible.
- The head of the screw must be fully engaged on the fixture and show no signs of damage.
- For seismic performance category C2 applications: The gap between screw shaft and fixture must be filled with mortar; mortar compressive strength ≥ 50 N/mm². (e.g. FIS V Plus, FIS HB, FIS SB or FIS EM Plus)

| fischer concrete screw UltraCut FBS II R | Annex B1                                     |
|------------------------------------------|----------------------------------------------|
| Intended use<br>Specification            | of European Technical Assessment ETA-17/0740 |


| FBS II R                                                     |                      |      | 8           |     |     | 10       |                 |             | 12   |     |  |
|--------------------------------------------------------------|----------------------|------|-------------|-----|-----|----------|-----------------|-------------|------|-----|--|
| Nominal embedment depth                                      | h <sub>nom</sub>     |      | 50          | 65  | 55  | 65       | 85              | 60          | 75   | 100 |  |
| Nominal drill hole diameter                                  | d <sub>0</sub>       |      | 8           | 3   |     | 10       |                 |             | 12   |     |  |
| Cutting diameter of drill bits                               |                      | [mm] | 8,4         | 45  |     | 10,45    |                 |             | 12,5 | 0   |  |
| Cutting diameter for diamond drillers                        | d <sub>cut</sub> ≤   |      | 8,          | 10  |     | 10,30    |                 | 12,30       |      |     |  |
| Clearance hole diameter                                      | df                   |      | 10,6 – 12,0 |     | 12  | 2,8 – 14 | <del>,</del> ,0 | 14,8 – 16,0 |      |     |  |
| Wrench size (US,S)                                           | SW                   |      | 1           | 15  |     |          | 17              |             |      |     |  |
| Tx-size                                                      | Tx                   | [-]  | 4           | 0   | 50  |          |                 |             |      |     |  |
| Countersunk head diameter                                    | dh                   |      | 18          |     | 21  |          |                 | -           |      |     |  |
| Countersunk diameter in fixture                              | dc                   |      | 2           | 20  |     | 23       |                 |             |      |     |  |
| Drill hole depth                                             |                      |      | 60          | 75  | 65  | 75       | 95              | 70          | 85   | 110 |  |
| Drill hole depth (with adjustable setting)                   | _ h <sub>1</sub> ≥   | [mm] | 70          | 85  | 75  | 85       | 105             | 80          | 95   | 120 |  |
| Thickness of fixture                                         | t <sub>fix</sub> ≤   |      |             |     |     | L - h    | nom             |             |      |     |  |
| I sweeth of second                                           | L <sub>min</sub> =   |      | 50          | 65  | 55  | 65       | 85              | 60          | 75   | 100 |  |
| Length of screw                                              | L <sub>max</sub> =   | ] [  | 400         | 415 | 405 | 415      | 435             | 410         | 425  | 450 |  |
| Torque impact screw driver                                   | T <sub>imp,max</sub> |      |             | 150 |     |          | 650             |             |      |     |  |
| Torque impact screw driver (with adjustable setting process) | T <sub>imp,max</sub> | [Nm] |             | 3   | 300 |          |                 | 450         |      |     |  |



(Fig. not to scale)

| fischer concrete screw UltraCut FBS II R | Annex B2                                           |
|------------------------------------------|----------------------------------------------------|
| Intended use<br>Installation parameters  | of European<br>Technical Assessment<br>ETA-17/0740 |

# Adjustment 1 nom adjustment 3



It is permissible to untighten the screw up to two times for adjustment purposes.

Therefore the screw may be untightened to a maximum of  $L_{adj} = 20$  mm to the surface of the initial fixture.

The total permissible thickness of shims added during the adjustment process is  $t_{adj} = 10$  mm.

The required nominal anchoring depth h<sub>nom</sub> must be kept after the adjustment process.

(Fig. not to scale)

Table B3.1: Minimum thickness of concrete members, minimum spacing and edge distance

| FBS II R                             |                  |      | 8   |     | 10  |     |     | 12  |     |     |
|--------------------------------------|------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| Nominal embedment depth              | h <sub>nom</sub> |      | 50  | 65  | 55  | 65  | 85  | 60  | 75  | 100 |
| Minimum thickness of concrete member | h <sub>min</sub> | [mm] | 100 | 120 | 100 | 120 | 140 | 110 | 130 | 150 |
| Minimum spacing                      | Smin             |      | ,   | 35  |     | 40  |     |     | 50  |     |
| Minimum edge distance                | Cmin             |      |     | 35  |     | 40  |     |     | 50  |     |

| fischer concrete screw UltraCut FBS II R                                                  | Annex B3<br>of European             |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|
| Intended use – Adjustment Minimum thickness of members, minimum spacing and edge distance | Technical Assessment<br>ETA-17/0740 |  |  |  |

| Installation instruction part 1   |                                                                                                                                                                                                                                                                             |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 130874                            | Step 1: Creation of the drill hole:                                                                                                                                                                                                                                         |
|                                   | Drill the hole using hammer drill, hollow drill or diamond core drill                                                                                                                                                                                                       |
|                                   | Drill hole diameter d <sub>0</sub> and drill hole depth h <sub>1</sub> according to table B2.1                                                                                                                                                                              |
| P30.274                           | Step 2: Cleaning of the drill hole - horizontal:                                                                                                                                                                                                                            |
|                                   | Clean the drill hole. This step can be omitted in the preparation of the hole by using a hollow drill bit or diamond core drill. (recommendation: use the fischer FHD hollow drill bit)                                                                                     |
| NI.                               | Step 2: Cleaning of the drill hole - vertical:                                                                                                                                                                                                                              |
| h <sub>1</sub> +3x d <sub>0</sub> | Cleaning of the drill hole can be omitted, if drilling vertically upwards or if drilling vertically downwards and the hole depth has been increased. It is recommended to increase the drill hole depth by an additional 3 x drilling ø when drilling vertically downwards. |
| ROWA ROWA                         | Step 3: Installation:                                                                                                                                                                                                                                                       |
| Programme Programme               | Turn in until the head is in contact with the fixture.                                                                                                                                                                                                                      |
|                                   | Installation with any torque impact screw driver up to the maximum mentioned torque moment (T <sub>imp,max</sub> according to table B2.1).  (recommendation: use the fischer FSS 18V 400BL)                                                                                 |
|                                   | , ,                                                                                                                                                                                                                                                                         |
|                                   | Alternatively, all other tools without an indicated torque moment are allowed (e.g. ratchet spanner). The indicated torque                                                                                                                                                  |
|                                   | moments T <sub>imp,max</sub> for impact screw driver are not decisive for manual installation.                                                                                                                                                                              |
| F0.27                             | Step 4: Checking of the correct installation:                                                                                                                                                                                                                               |
|                                   | After installation a further turning of the screw must not be possible. The head of the screw must be in contact with the fixture and is not damaged                                                                                                                        |
|                                   |                                                                                                                                                                                                                                                                             |
|                                   |                                                                                                                                                                                                                                                                             |
|                                   |                                                                                                                                                                                                                                                                             |
|                                   |                                                                                                                                                                                                                                                                             |
|                                   |                                                                                                                                                                                                                                                                             |
|                                   |                                                                                                                                                                                                                                                                             |

| fischer concrete screw UltraCut FBS II R | Annex B4 of European                |
|------------------------------------------|-------------------------------------|
| Installation Instructions                | Technical Assessment<br>ETA-17/0740 |

## **Installation instruction part 2** Adjustment Optional: It is permissible to adjust the screw twice. Therefore, the screw may be untightened to a maximum of $L_{adj} = 20 \text{ mm}$ off the surface of the initial fixture. The total permissible thickness of shims added during the adjustment process is $t_{adj} = 10 \text{ mm}$ . The required nominal anchoring depth h<sub>nom</sub> must be kept after the adjustment process. (see also annex B3) max 20 mm max 10 mm Filling of the annular gap For seismic performance category C2 applications: The gap between screw shaft and fixture must be filled with mortar; mortar compressive strength ≥ 50 N/mm<sup>2</sup> (e. g. FIS V Plus, FIS HB, FIS SB or FIS EM Plus). As an aid for filling the gap, the filling disc FFD is recommended. Annex B5 fischer concrete screw UltraCut FBS II R of European Technical Assessment **Installation Instructions** ETA-17/0740

| FBS II R                                              |                |                    |           |        | 8          |        | 10   |                         |       | 12   |                                      |
|-------------------------------------------------------|----------------|--------------------|-----------|--------|------------|--------|------|-------------------------|-------|------|--------------------------------------|
| Nominal embed                                         | dment depth    | h <sub>nom</sub>   | [mm]      | 50     | 65         | 55     | 65   | 85                      | 60    | 75   | 100                                  |
| Steel failure fo                                      | r tension load | and she            | ar load   |        |            |        |      |                         |       |      |                                      |
| Characteristic r                                      | esistance      | N <sub>Rk,s</sub>  | [kN]      | 2      | 27,8       |        | 43,8 |                         |       | 67,7 |                                      |
| Partial factor                                        |                | γMs,N              | -         |        |            |        |      | 1,5                     | •     |      |                                      |
| Characteristic r                                      | esistance      | $V^0$ Rk,s         | [kN]      | 18,0   | 27,8       | 13,2   | 19,3 | 36,6                    | 20,4  | 40,1 | 45,8                                 |
| Partial factor γ <sub>Ms,V</sub>                      |                | r 1                |           | •      |            |        | 1,25 |                         |       | •    |                                      |
| Factor for ducti                                      | lity           | k <sub>7</sub>     | [-]       |        |            |        |      | 1,0                     |       |      |                                      |
| Characteristic bending resistance M <sup>0</sup> Rk,s |                | [Nm]               | 3         | 31,3   |            | 68,5   |      |                         | 112,8 |      |                                      |
| <b>Pullout failure</b>                                |                |                    |           |        |            |        |      |                         |       |      |                                      |
| Charact. resistance in                                | uncracked      | $N_{Rk,p}$         | [kN]      | 7,0    | 14,0       | 8,5    | 14,0 | $\geq N^{0}_{Rk,c}^{1}$ | 10,0  | 12,0 | $\geq N^{0}_{Rk,c^{1}}$              |
| concrete<br>C20/25                                    | cracked        | $N_{Rk,p}$         | [kN]      | 4,0    | 9,0        | 4,5    | 6,0  | 16,0                    | 4,5   | 11,0 | ≥ N <sup>0</sup> Rk,c <sup>1</sup> ) |
| <u>_</u>                                              | C25/30         |                    |           |        |            |        |      | 1,12                    |       |      |                                      |
|                                                       | C30/37         | _                  | [-]       | 1,22   |            |        |      |                         |       |      |                                      |
| Increasing factors -                                  | C35/45         | _<br>_ ψc          |           | 1,32   |            |        |      |                         |       |      |                                      |
| concrete _                                            | C40/50         | _                  |           | 1,41   |            |        |      |                         |       |      |                                      |
|                                                       | C45/55         |                    |           | 1,50   |            |        |      |                         |       |      |                                      |
|                                                       | C50/60         |                    |           |        |            |        |      | 1,58                    |       |      |                                      |
| Installation fact                                     | or             | γinst              | [-]       |        |            |        |      | 1,0                     |       |      |                                      |
| Concrete cone                                         | failure and sp | olitting fa        | ailure; c | oncret | e pryout f | ailure |      |                         |       |      |                                      |
| Effective embed                                       |                | h <sub>ef</sub>    | [mm]      | 40     | 52         | 43     | 51   | 68                      | 47    | 60   | 81                                   |
| Factor for uncra<br>Factor for crack                  |                | k <sub>ucr,N</sub> | [-]       |        |            |        |      | 11,0<br>7,7             |       |      |                                      |
| Characteristic e                                      | edge distance  | Ccr,N              | []        |        |            |        |      | 1,5 h <sub>ef</sub>     |       |      |                                      |
| Characteristic s                                      | pacing         | S <sub>cr,N</sub>  | [mm]      |        |            |        |      | 3 h <sub>ef</sub>       |       |      |                                      |
| Char. resistanc                                       |                | $N^0$ Rk,Sp        | [kN]      | 12,0   | 18,4       | 13,0   | 17,9 | $\geq N^{0}_{Rk,c^{1}}$ | 15,8  | 22,9 | $\geq N^{0}_{Rk,c}$ 1)               |
| Char. edge dist<br>splitting                          | ance for       | C <sub>cr,sp</sub> | [mm]      |        |            |        |      | 1,5 h <sub>ef</sub>     |       |      |                                      |
| Char. spacing f                                       | or splitting   | Scr,sp             | . []      |        |            |        |      | 3 h <sub>ef</sub>       |       |      |                                      |
| Factor for pryou                                      |                | k <sub>8</sub>     |           |        | 1,         | 0      |      | 2,0                     | 1,0   | 2    | 2,0                                  |
| Installation fact                                     | or             | γinst              | [-]       |        |            |        |      | 1,0                     |       |      |                                      |
| Concrete edge                                         | failure        |                    |           |        |            |        |      |                         |       |      |                                      |
| Effective length                                      | in concrete    | $I_f = h_{nom}$    | [mm]      | 50     | 65         | 55     | 65   | 85                      | 60    | 75   | 100                                  |
| Nominal diame                                         | ter of screw   | d <sub>nom</sub>   | [mm]      |        | 8          |        | 10   |                         |       | 12   |                                      |
| Adjustment                                            |                |                    |           |        |            |        |      |                         |       |      |                                      |
| Maximum thick                                         | ness of shims  | t <sub>adj</sub>   | [         |        |            |        |      | 10                      |       |      |                                      |
| Max. number of                                        | f adjustments  | na                 | [mm]      | 2      |            |        |      |                         |       |      |                                      |

fischer concrete screw UltraCut FBS II R

Annex C1
of European
Technical Assessment
ETA-17/0740

| FBS II R                                                                                       |                                       |                      |            | 8                        | 1                                                     | 0                | 12                                  |
|------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|------------|--------------------------|-------------------------------------------------------|------------------|-------------------------------------|
| Nominal embedr                                                                                 | ment depth                            | h <sub>nom</sub>     | [mm]       | 65                       | 8                                                     | 5                | 100                                 |
|                                                                                                | tension load and                      |                      |            |                          |                                                       |                  |                                     |
|                                                                                                |                                       | N <sub>Rk,s,C1</sub> |            | 27,8                     | 43                                                    | 3,8              | 67,7                                |
| Characteristic re                                                                              | sistance                              | V <sub>Rk,s,C1</sub> | [kN]       | 18,1                     | 29                                                    |                  | 36,6                                |
| Without filling of the annular gap <sup>1)</sup> With filling of the annular gap <sup>1)</sup> |                                       | ,-,-                 |            | ,                        | 0.                                                    |                  | ,                                   |
|                                                                                                |                                       | — α <sub>gap</sub>   | [-]        |                          |                                                       | ,0               |                                     |
| Pullout failure                                                                                |                                       |                      |            |                          |                                                       | •                |                                     |
| Characteristic re                                                                              | sistance in                           | NI=                  | [LAN]]     | 0.0                      | 16                                                    | 2.0              | ≥ N <sup>0</sup> Rk,c <sup>2)</sup> |
| cracked concrete                                                                               |                                       | N <sub>Rk,p,C1</sub> | [kN]       | 9,0                      | 10                                                    | 5,0              | ≥ IN°Rk,c <sup>=</sup> /            |
| Concrete cone                                                                                  |                                       |                      |            |                          | T                                                     |                  |                                     |
| Effective embed                                                                                | · · · · · · · · · · · · · · · · · · · | h <sub>ef</sub>      |            | 52                       | 6                                                     |                  | 81                                  |
| Concrete cone                                                                                  | Edge distance                         | Ccr,N                | [mm]       |                          |                                                       | h <sub>ef</sub>  |                                     |
| failure                                                                                        | Spacing                               | Scr,N                |            |                          |                                                       | h <sub>ef</sub>  |                                     |
| Installation facto                                                                             |                                       | γinst                | [-]        |                          | 1,                                                    | ,0               |                                     |
| Concrete pryou                                                                                 |                                       |                      |            |                          |                                                       |                  |                                     |
| Factor for pryout                                                                              |                                       | k <sub>8</sub>       | [-]        | 1,0                      |                                                       | 2,0              |                                     |
| Concrete edge                                                                                  |                                       |                      |            |                          |                                                       |                  |                                     |
| Effective length i                                                                             |                                       | $I_f = h_{nom}$      | [mm]       | 65                       | 8                                                     |                  | 100                                 |
| Nominal diamete                                                                                | er of screw                           | d <sub>nom</sub>     | []         | 8                        | 1                                                     | 0                | 12                                  |
|                                                                                                | Characteristic v                      | alues for            | Seismic    | Performance Ca           |                                                       |                  |                                     |
| FBS II R                                                                                       |                                       |                      |            | 8                        | 1                                                     |                  | 12                                  |
| Nominal embedr                                                                                 | ·                                     | h <sub>nom</sub>     | [mm]       | 65                       | 8                                                     | 5                | 100                                 |
| Steel failure for                                                                              | tension load and                      |                      | ad C2      | <b></b>                  | 1                                                     |                  |                                     |
| Characteristic resistance                                                                      |                                       | N <sub>Rk,s,C2</sub> | [kN]       | 27,8                     | 43                                                    |                  | 67,7                                |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                         | 1                                     | V <sub>Rk,s,C2</sub> | F 3        | 9,7                      | 8.                                                    |                  | 19,7                                |
| With filling of the                                                                            | annular gap <sup>17</sup>             | α <sub>gap</sub>     | [-]        |                          | 1,                                                    | ,0               |                                     |
| Pullout failure Characteristic re                                                              | cictoneo in                           |                      |            |                          |                                                       |                  |                                     |
| cracked concrete                                                                               |                                       | $N_{Rk,p,C2}$        | [kN]       | 2,8                      | 5.                                                    | ,0               | 7,3                                 |
| Concrete cone                                                                                  | failure                               |                      |            |                          |                                                       |                  |                                     |
| Effective embed                                                                                | ment depth                            | h <sub>ef</sub>      |            | 52                       | 6                                                     | 8                | 81                                  |
| Concrete cone                                                                                  | Edge distance                         | Ccr,N                | [mm]       |                          | 1,5                                                   | h <sub>ef</sub>  |                                     |
| failure                                                                                        | Spacing                               | S <sub>cr,N</sub>    |            |                          | 3                                                     | h <sub>ef</sub>  |                                     |
| Installation facto                                                                             | r                                     | γinst                | [-]        |                          | 1                                                     | ,0               |                                     |
| Concrete pryou                                                                                 |                                       |                      |            |                          |                                                       |                  |                                     |
| Factor for pryout                                                                              |                                       | k <sub>8</sub>       | [-]        | 1,0                      |                                                       | 2,0              |                                     |
| Concrete edge                                                                                  |                                       |                      |            |                          |                                                       |                  |                                     |
| Effective length i                                                                             |                                       | $I_f = h_{nom}$      | [mm]       | 65                       |                                                       | 5                | 100                                 |
| Nominal diamete                                                                                | er of screw                           | $d_{nom}$            | []         | 8                        | 1                                                     | 0                | 12                                  |
| 1) Filling of the a                                                                            | nnular gap accord                     | ling annex           | B 5. Appli | cation without filling o | of the annula                                         | ır gap not allov | wed.                                |
|                                                                                                | fischer concr                         | ete screw            | UltraCut   | FBS II R                 |                                                       |                  | nnex C2                             |
|                                                                                                | teristic values for                   | Seismic Pe           | erformance | • Category C1 and C2     | of European Technical Assess ory C1 and C2 ETA-17/074 |                  |                                     |

| Nominal embedm               | FBS II R     |                                      |                                  |                       |                                    |                            | 10       |         |        | 12     |          |            |
|------------------------------|--------------|--------------------------------------|----------------------------------|-----------------------|------------------------------------|----------------------------|----------|---------|--------|--------|----------|------------|
|                              | ent dept     | h                                    | h <sub>nom</sub>                 | [mm]                  | <b>8</b> 50                        | 65                         | 55       | 65      | 85     | 60     | 75       | 100        |
| Steel lanure for t           |              |                                      |                                  |                       | <sub>k.s.fi</sub> = N <sub>R</sub> | $R_{k,s,fi} = V_{Rk,s,fi}$ | fi)      |         |        |        |          |            |
|                              |              |                                      | R30                              |                       | 2,3                                | 6,4                        | 3,5      |         | 11,0   | 4,6    |          | 15,2       |
|                              | US,          |                                      | R60                              | +                     | 1,8                                | 4,7                        | 2,7      |         | 8,1    | 3,7    |          | 11,2       |
|                              | US TX        | $F_{Rk,s,fi}$                        | R90                              | -                     | 1,3                                | 2,9                        | 2,0      |         | 5,2    | 2,7    |          | 7,3        |
|                              | _            |                                      | R120                             | +                     | 1,0                                | 2,0                        | 1,6      |         | 3,8    | 2,2    |          | 5,3        |
|                              |              |                                      | R30                              | [kN]                  | 2,1                                | -,~                        | 3,0      |         |        | -,-    |          |            |
|                              |              |                                      | R60                              | -                     | 1,7                                |                            | 2,3      |         |        | -      |          |            |
|                              | SK           | $F_{Rk,s,fi}$                        | R90                              | -                     | 1,2                                |                            | 1,6      |         |        | No per | formance | e declared |
| Characteristic               |              |                                      | R120                             | -                     | 1,0                                |                            | 1,0      |         |        | -      |          |            |
| resistance for               |              |                                      | R30                              | +                     | 2,6                                | 7,2                        | 7,6      |         | 15,4   | 16,8   |          | 25,3       |
| the head shapes              | 110          |                                      | R60                              | -                     | 2,0                                | 5,2                        | 6,0      |         | 11,4   | 13,3   |          | 18,7       |
|                              | US,<br>US TX | $M^0_{\text{Rk},\text{s},\text{fi}}$ | R90                              | -                     | 1,5                                | 3,3                        | 4,4      |         | 7,3    | 9,8    |          | 12,1       |
|                              | 00 17.       |                                      | R90<br>R120                      | -                     | 1,5                                | 2,3                        | 3,6      |         | 5,3    | 8,0    |          | 8,8        |
|                              |              |                                      |                                  | [Nm]                  |                                    | ۷,٥                        |          |         | 5,3    | ,∪<br> |          | 0,0        |
|                              |              |                                      | R30                              |                       | 2,4                                |                            | 4,2      |         |        | -      |          |            |
|                              | SK           | $M^0_{Rk,s,fi}$                      | R60                              | -                     | 1,9                                |                            | 3,2      |         |        | No per | rformanc | e declared |
|                              |              |                                      | K90                              | -                     | 1,4                                |                            | 2,2      |         |        | -      |          |            |
| D. March failure             |              |                                      | R120                             |                       | 1,1                                |                            | 1,7      |         |        |        |          |            |
| Pullout failure              |              |                                      | 200                              |                       |                                    |                            |          |         |        |        |          |            |
|                              |              |                                      | R30                              | -                     |                                    |                            | 2.4      |         | 4.0    |        |          | 2.2        |
| Characteristic res           | istance      | $N_{Rk,p,fi}$                        | R60                              | [kN]                  | 1,7                                | 2,4                        | 2,1      | 3,5     | 4,3    | 2,5    | 3,0      | 6,3        |
|                              |              |                                      | R90                              |                       |                                    |                            | 1 7      | -       | -      |        |          |            |
|                              |              |                                      | R120                             |                       | 1,4                                | 1,9                        | 1,7      | 2,8     | 3,4    | 2,0    | 2,4      | 5,0        |
| Concrete cone fa             | ailure       |                                      | 700                              |                       |                                    |                            |          |         |        | 1      |          |            |
|                              |              |                                      | R30                              | -                     | 1.0                                | 2.4                        | 2.4      | 2.0     | 2.0    |        | 1.0      | 10.0       |
| Characteristic res           | istance      | $N_{Rk,c,fi}$                        | R60                              | [kN]                  | 1,6                                | 3,4                        | 2,1      | 3,2     | 6,6    | 2,6    | 4,8      | 10,2       |
|                              |              |                                      | R90                              | -                     |                                    |                            | 17       |         |        | -      |          |            |
|                              |              |                                      | R120                             |                       | 1,3                                | 2,7                        | 1,7      | 2,6     | 5,3    | 2,1    | 3,8      | 8,1        |
| Edge distance<br>R30 to R120 |              |                                      | 2 - e                            | [mm]                  | 2 h <sub>ef</sub>                  |                            |          |         |        |        |          |            |
| In case of fire atta         | -ck from     | more tha                             | C <sub>cr,fi</sub><br>In one sic |                       |                                    | edne dist                  | ance sha | ll he ≥ | 300 mr | n      |          |            |
| Spacing                      | OK II S      | more a.s                             | II One c.                        | 1 <del>0</del> , 1110 | III III III III III                | eugo a.c.                  | 21100 0  | 11 00 - | 300    | 1      |          |            |
| R30 to R120                  |              |                                      | S <sub>cr,fi</sub>               | [mm]                  | 2 c <sub>cr,fi</sub>               |                            |          |         |        |        |          |            |
| Concrete pryout              | failure      |                                      |                                  |                       |                                    |                            |          |         |        |        |          |            |
| R30 to R120                  |              |                                      | <b>k</b> 8                       | [-]                   | 1,0                                |                            |          |         | 2,0    | 1,0    | 2,0      |            |

| FBS II R                           |                      |      | 8   |     | 10  | 10  |      | 12   |      |      |
|------------------------------------|----------------------|------|-----|-----|-----|-----|------|------|------|------|
| Nominal embedment depth            | $h_{nom}$            | [mm] | 50  | 65  | 55  | 65  | 85   | 60   | 75   | 100  |
| Tension load in uncracked concrete | N                    | [kN] | 3,5 | 7,1 | 4,2 | 7,0 | 11,9 | 5,0  | 6,0  | 17,1 |
| Displacement in uncracked concrete | $\delta_{\text{N0}}$ | [mm] | 0,5 | 0,7 | 0,4 | 0,6 | 0,8  | 1,0  | 0,9  | 1,25 |
|                                    | $\delta_{N\infty}$   | [mm] | 0,7 | 0,7 | 0,8 | 0,8 | 0,8  | 1,25 | 1,25 | 1,25 |
| Tension load in cracked concrete   | N                    | [kN] | 3,5 | 4,5 | 4,2 | 7,0 | 8,1  | 5,0  | 6,0  | 12,0 |
| Displacement in cracked concrete   | δνο                  | [mm] | 0,6 | 0,4 | 0,4 | 0,6 | 0,7  | 0,9  | 0,9  | 1,4  |
|                                    | δ <sub>N∞</sub>      | [mm] | 1,5 | 1,1 | 1,0 | 1,8 | 1,8  | 1,4  | 1,7  | 1,9  |

#### Table C4.2: Displacements due to shear loads (static and quasi-static)

| FBS II R                                             |                  |      |      | 8    |      | 10   |      |      | 12   |      |  |
|------------------------------------------------------|------------------|------|------|------|------|------|------|------|------|------|--|
| Nominal embedment depth                              | h <sub>nom</sub> | [mm] | 50   | 65   | 55   | 65   | 85   | 60   | 75   | 100  |  |
| Shear load<br>in cracked and<br>uncracked concrete   | V                | [kN] | 11,0 | 15,9 | 10,4 | 11,9 | 20,9 | 12,7 | 24,9 | 26,2 |  |
| Displacement (the gap between factories              | δνο              | [mm] | 4,1  | 2,7  | 1,2  | 1,2  | 3,5  | 1,1  | 2,5  | 2,9  |  |
| (the gap between fastener and fixture is subtracted) | δv∞              | [mm] | 6,2  | 4,1  | 1,8  | 1,8  | 5,3  | 1,7  | 3,8  | 4,4  |  |

# **Table C4.3:** Displacements due to tension loads (Seismic Performance Category C2)

| FBS II R                |                  |      | 8   | 10  | 12  |
|-------------------------|------------------|------|-----|-----|-----|
| Nominal embedment depth | h <sub>nom</sub> |      | 65  | 85  | 100 |
| Displacement DLS        | δN,C2 (DLS)      | [mm] | 0,9 | 0,9 | 1,1 |
| Displacement ULS        | δn,c2 (ULS)      |      | 2,5 | 2,7 | 3,2 |

## **Table C4.4:** Displacements due to shear loads (Seismic Performance Category C2)

| FBS II R                |                            |      | 8   | 10  | 12  |
|-------------------------|----------------------------|------|-----|-----|-----|
| Nominal embedment depth | h <sub>nom</sub>           |      | 65  | 85  | 100 |
| Displacement DLS        | $\delta \text{V,C2 (DLS)}$ | [mm] | 1,6 | 1,7 | 2,6 |
| Displacement ULS        | $\delta$ V,C2 (ULS)        |      | 5,0 | 3,8 | 6,6 |

| fischer concrete screw UltraCut FBS II R     | Annex C4 of European                |  |  |  |
|----------------------------------------------|-------------------------------------|--|--|--|
| Displacements due to tension and shear loads | Technical Assessment<br>ETA-17/0740 |  |  |  |