

DECLARATION OF PERFORMANCE

DoP 0362

for fischer injection system fischer RM II (Bonded fastener for use in concrete)

Unique identification code of the product-type:
 DoP 0362

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially

annexes B1 - B7.

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative:

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330499-01-0601, Edition 04/2020

European Technical Assessment: ETA-16/0340; 2024-04-16

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading):

Resistance to steel failure: Annexes C1, C2

Resistance to combined pull- out and concrete cone failure: Annexes C4, C5

Resistance to concrete cone failure: Annex C3 Edge distance to prevent splitting under load: Annex C3

Robustness: Annexes C3 - C5

Maximum installation torque: Annexes B3, B4 Minimum edge distance and spacing: Annexes B3, B4

Characteristic resistance to shear load (static and quasi-static loading):

Resistance to steel failure: Annexes C1, C2 Resistance to pry-out failure: Annex C3 Resistance to concrete edge failure: Annex C3

Displacements under short-term and long-term loading:

Displacements under short-term and long-term loading: Annex C6

Characteristic resistance and displacements for seismic performance categories C1 and C2:

Resistance to tension load, displacements, category C1: NPD Resistance to tension load, displacements, category C2: NPD Resistance to shear load, displacements, category C1: NPD Resistance to shear load, displacements, category C2: NPD

Factor annular gap: NPD

Hygiene, health and the environment (BWR 3)

Content, emission and/or release of dangerous substances: NPD

Appropriate Technical Documentation and/or Specific Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering

Tumlingen, 2024-05-06

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V96.xlsm 1/1

ΕN

Translation guidance Essential Characteristics and Performance Parameters for Annexes

Me	echanical resistance and stability (BWR 1)				
Ch	aracteristic resistance to tension load (static and quasi-static loading):				
1	Resistance to steel failure:		N _{Rk,s} [kN]		
2	Resistance to combined pull- out and concrete cone failure:		$\begin{split} &T_{Rk} \text{ and/or } T_{Rk,100} [\text{N/mm}^2], \psi^0_{\text{sus}} \left[\text{-}\right] (\text{BF}) \\ &N_{Rk,p} \text{ and/or } N_{Rk,p,100} [\text{kN}] (\text{BEF}) \end{split}$		
3	Resistance to concrete cone failure:		c _{cr,N} [mm], k _{cr,N} , k _{ucr,N} [-]		
4	Edge distance to prevent splitting under load:		c _{cr,sp} [mm]		
5	Robustness:		V _{inst} [-]		
6	Maximum installation torque:		max T _{inst} [Nm] (BF)		
	Installation torque:		T _{inst} [Nm] (BEF)		
7	Minimum edge distance and spacing:		c _{min} , s _{min} , h _{min} [mm]		
Ch	aracteristic resistance to shear load (static and quasi-static loading):		1		
8	Resistance to steel failure:		V ⁰ _{Rk,s} [kN], M ⁰ _{Rk,s} [Nm], k ₇ [-]		
9	Resistance to pry-out failure:		k ₈ [-]		
10	Resistance to concrete edge failure:		d _{nom} , I _f [mm]		
Dis	splacements under short-term and long-term loading:				
11	Displacements under short-term and long-term loading:		δ_0 , δ_∞ [mm or mm/(N/mm ²)]		
Ch	aracteristic resistance and displacements for seismic performance categories C1 ar	nd C2:			
12	Resistance to tension load, displacements:				
		C1	$N_{Rk,s,C1}$ [kN] (all) $T_{Rk,C1}$ [N/mm ²] (BF) $N_{Rk,p,C1}$ [kN] (BEF)		
		C2	N _{Rk,s,C2} [kN] (all)		
			τ _{Rk,C2} [N/mm ²] (BF) N _{Rk,D,C2} [kN] (BEF)		
			δ _{N,C2} [mm] (all)		
13	Resistance to shear load, displacements:		<u> </u>		
		C1	V _{Rk,s,C1} [kN] (all)		
		C2	$V_{Rk,s,C2}$ [kN] (all) $\delta_{V,C2}$ [mm] (all)		
14	Factor annular gap:		α _{gap} [-]		
Ну	giene, health and the environment (BWR 3)				
15	Content, emission and/or release of dangerous substances:		-		

Fischer DATA DOP_ECs_V96.xlsm Appendix 0

Specific Part

1 Technical description of the product

The fischer capsule system RM II is a bonded anchor for use in concrete consisting of a capsule RM II and a steel element according to Annex A2.

The capsule RM II is placed in the hole and the steel element is driven by machine with simultaneous hammering and turning.

The anchor rod is anchored via the bond between steel element, chemical mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

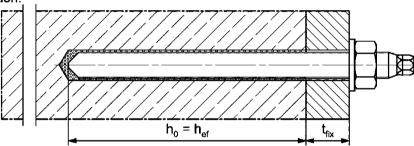
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 and B 4, C 1 to C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4
Displacements under short-term and long-term loading	See Annex C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

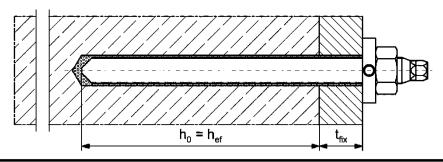
3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

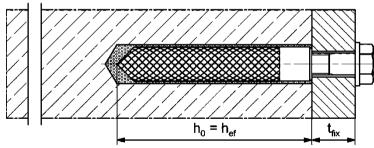

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

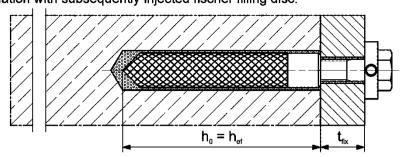

Installation conditions

fischer anchor rod RG M: installation in concrete

Pre-positioned installation:



Pre-positioned installation with subsequently injected fischer filling disc:



fischer internal threaded anchor RG M I; installation in concrete

Pre-positioned installation:

Pre-positioned installation with subsequently injected fischer filling disc:

Pictures not to scale

 h_0 = drill hole depth

t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

fischer RM II

Product description Installation conditions

Annex A 1

Appendix 3 / 18

Overview product components Capsule RM II Size: 8, 10, 12, 16, 16E, 20/22, 24 RM II ... fischer anchor rod RG M Size: M8, M10, M12, M16, M20, M24 fischer internal threaded anchor RG M I Size: M8, M10, M12, M16, M20 Screw / threaded rod / washer / hexagon nut fischer filling disc with injection adapter fischer RM II - RG M Connector Size: M8, M10, M12, M16, M20, M24 Pictures not to scale fischer RM II Annex A 2 **Product description** Overview product components Appendix 4 / 18

art	Designation		Material	
1	Capsule RM II		Mortar, hardener, filler	
		Steel	Stainless steel R	High corrosion resistant steel HCR
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015	acc. to EN 10088-1:201 Corrosion resistance cla CRC V acc. to EN 1993-1-4:2006+A1:20
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2022 or hot dip galvanised \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ²	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 wit f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 f_{uk} ≤ 1000 N/mm ²
			Fracture elongation A ₅ > 8 %	,
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, ISO 4042:2022 or hot dip galvanised ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 µm, ISO 4042:2022 or hot dip galvanised ≥ 40 µm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG M I	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2022	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG M I	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 µm, ISO 4042:2022 fracture elongation A₅ > 8 %	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 fracture elongation A ₅ > 8 %	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014 fracture elongation A ₅ > 8 %
7	fischer filling disc similar to DIN 6319-G	zinc plated ≥ 5 µm, ISO 4042:2022 or hot dip galvanised ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014

Product description Materials

Annex A 3

Appendix 5 / 18

Specifications of intended use part 1

Table B1.1: Overview use and performance categories

Anchorages su	ubject to		RM II with						
			fischer an RG		fischer internal threaded anchor RG M I				
Hammer drillin standard drill b		***********	Manu robotic-as: fischer E all si:	sisted by BauBot	Manual all sizes				
Hammer drillinwith hollow dril (fischer "FHD", "Duster Expert "Speed Clean" "TE-CD, TE-YI DreBo "D-Plus DreBo "D-Max"	ll bit , Heller ,"; Bosch ; Hilti D",		Nominal drill bit diameter (d₀) 12 mm to 28 mm		all sizes				
Static and qua	si static	uncracked concrete	all sizes		all sizes	Tables: C2.1, C3.1,			
load, in		cracked concrete	M10, M12, M16, M20, M24	Tables: C1.1, C3.1,	all sizes				
Use	I1	dry or wet concrete	all sizes	C4.1, C6.1	all sizes	C5.1, C6.2			
category	12	flooded hole	M12, M16, M20, M24		M8, M10, M16				
Installation dire	ection		D3 (downward and horizontal and upwards (e.g. overhead) installation)						
Installation temperature				T _{i,min} =-15 °C to	T _{i,max} = +40 °C				
		Temperature range	-40 °C to +40 °C		erm temperature +40 °C erm temperature +24 °C)				
In-service temperature		Temperature range	-40 °C to +80 °C		rm temperature +80 °C m temperature +50 °C)				
		Temperature range	-40 °C to +120 °C		rm temperature +120 °C m temperature +72 °C)				

fischer RM II

Specifications of intended use part 2

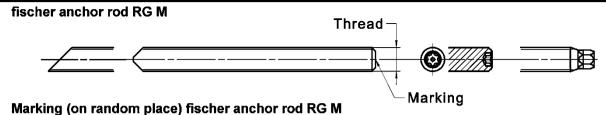
Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- For all other conditions according to EN1993-1-4:2006 + A1:2015 corresponding to corrosion resistance classes to Annex A 3 table A3.1.

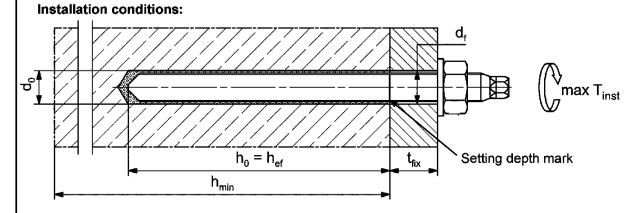
Design:


- Anchorages have to designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

Installation:

- Anchor installation has to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- For manual installation the anchorage depth should be marked and adhered to on installation.
- For robot-assisted installation using fischer BauBot, maintain the effective anchoring depth by selecting the appropriate installation program.
- · Overhead installation is allowed.

fisc	ner	RM I	ı


Table B3.1: Installation parameters for fischer anchor rods RG M										
Anchor rods RG M		thread	M8	M10	M12	M16	M20	M24		
Nominal drill bit diameter	d ₀		10	12	14	18	25	28		
Drill hole depth	h₀				h ₀ =	h _{ef}				
Effective embedment depth	h _{ef}		80	90	110	125	170	210		
Minimum spacing and sm minimum edge distance cm		[mm]	40	45	55	65	85	105		
Diameter of pre- clearance hole in the positioned fixture anchorage	d _f		9	12	14	18	22	26		
Minimum thickness of concrete member	h _{min}			h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀	,		
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	60	120	150		

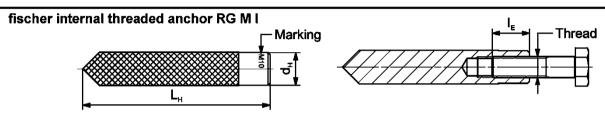
Steel zinc plated PC1) 8.8	• or +	Steel hot-dip PC1) 8.8	•
High corrosion resistant steel HCR PC1) 50	•	High corrosion resistant steel HCR PC1) 70	_
High corrosion resistant steel HCR PC1) 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		

Alternatively: Colour coding according to DIN 976-1:2016

1) PC = property class

Pictures not to scale

fischer R	М	Ш
-----------	---	---

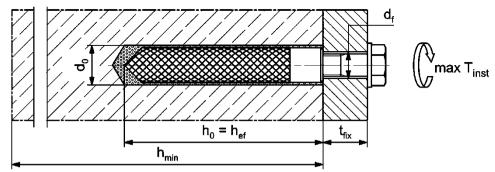

Intended Use

Installation parameters anchor rods RG M

Annex B 3

Appendix 8 / 18

Table B4.1: Installation parameters for fischer internal threaded anchors RG M I									
Internal threaded anchors Ro	ЭМІ	thread	M8	M10	M12	M16	M20		
Diameter of anchor	$d = d_H$		12	16	18	22	28		
Nominal drill bit diameter			14	18	20	24	32		
Drill hole depth	h ₀] [$h_0 = h_{\text{ef}} = L_{\text{H}}$				
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200		
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125		
Diameter of clearance hole in the fixture	df		9	12	14	18	22		
Minimum thickness of concrete member	h _{min}		120	125	165	205	260		
Maximum screw-in depth	I _{E,max}] [18	23	26	35	45		
Minimum screw-in depth	I _{E,min}] [8	10	12	16	20		
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120		


Marking: Anchor size e. g.: M10

Stainless steel → additional R; e.g.: M10 R

High corrosion resistant steel → additional HCR; e.g.: M10 HCR

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A3.1.

Installation conditions:

Pictures not to scale

fischer RM II

Intended Use

Installation parameters fischer internal threaded anchors RG M I

Annex B 4

Appendix 9 / 18

Table B5.1: Dimensions of resin capsule RM II									
Capsule RM	1 11		8	10	12	16	16 E	20/22	24
Capsule diameter	d₽	[mana]	9,0	10,5	12,5	16	6,5	23	,0
Capsule length	L _P	[mm]	85	90	97	95	123	160	190

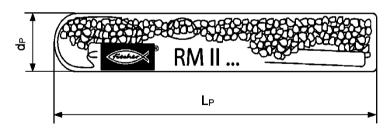


Table B5.2: Assignment of resin capsule RM II to fischer anchor rod RG M

Anchor rod RG M		М8	M10	M12	M16	M20	M24	
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210
Related capsule RM II		[-]	8	10	12	16	20/22	24

Table B5.3: Assignment of resin capsule RM II to the fischer internal threaded anchor RG M I

Internal threaded anchor RG M I			М8	M10	M12	M16	M20
Effective anchorage depth	h _{ef}	[mm]	90	90	125	160	200
Related capsule RM II		[-]	10	12	16	16E	24

Table B5.4: Minimum curing time

(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature -15 °C)

Temperature in the ancoring base [°C]	Minimum curing time t _{cure}
-15 to -10	30 h
> -10 to -5	16 h
> -5 to 0	10 h
> 0 to +5	45 min
> +5 to +10	30 min
> +10 to +20	20 min
> +20 to +30	5 min
> +30 to +40	3 min

fischer RM II

Intended Use

Dimensions of the capsules, Assignment of the capsule to the anchor rod and internal threaded anchor, Minimum curing time

Annex B 5

Appendix 10 / 18

Installation instructions part 1 Manual or robotic-assisted, (by fischer BauBot), drilling and cleaning the hole (hammer drilling with standard drill bit) Specified drill hole depth h₀ should be adhered to (manual e.g. mark on the drill bit, with BauBot by selecting the appropriate drilling program). Drill the hole Drill hole diameter do and drill hole depth ho see Tables B3.1. B4.1. When reaching the drill hole depth ho pull out the drill bit whilst power drill is switched on. To reduce the drill dust in the drill hole repeat this step minimum three times, beginning from the drill hole bottom (discharging the bore hole). 2 Trickling of the bore dust into the drill hole has to be avoided. (e.g. with exhausting the drill dust) Blowing out or brushing the drill hole is not necessary. Go to step 3 Manual drilling and cleaning the hole (hammer drilling with hollow drill bit) Check a suitable hollow drill (see Table B1.1) 1 for correct operation of the dust extraction. Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data. 2 Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Diameter of drill hole d₀ and drill hole depth h₀ see Tables B3.1, B4.1. Go to step 3

fischer RM II

Intended use

Installation instructions part 1

Annex B 6

Appendix 11 / 18

Installation instructions part 2 Installation of capsule RM II with fischer anchor rods RG M or fischer internal threaded anchors RG M I Depending on the anchor Push the capsule RM II being installed, use a suitable 3 into the drill hole setting tool (e.g. RA-SDS). Only use clean and oil-free metal parts. Using a suitable adapter, drive the RG M or fischer internal threaded anchor RG M I into the capsule using a hammer drill set on rotary hammer action. Stop when the metal part reaches the bottom of the hole and is set to the correct embedment depth. Option Combined setting method with fischer BauBot, capsule RM II and fischer 3+4 anchor rod RG M When reaching the correct embedment depth, excess mortar must be emerged from the mouth 5 of the drill hole. Wait for the specified curing time, tcure see Table B5.4. 6 Mounting the fixture max Tinst see Table B3.1, B4.1. After the minimum curing time is reached, the gap between metal part and fixture (annular clearance) may be filled with mortar via the fischer filling disc. Option compressive strength ≥ 50 N/mm² (e.g. fischer injection mortars FIS HB, FIS SB, FIS V Plus, FIS EM Plus).

fischer RM II

Intended use

Installation instructions part 2

Annex B 7

Appendix 12 / 18

Tab	le C1.1: Characte fischer a					lure unde	r tension	/ shear lo	ad of				
Anch	or rod RG M				M8	M10	M12	M16	M20	M24			
Beari	ng capacity under tens	ion load	l, ste	el fail	lure 3)								
O S	si di		4.8		15(13)	23(21)	33	63	98	141			
istic N _R k	Steel zinc plated	>	5.8 8.8		19(17)	29(27)	43	79	123	177			
Characteristic resistance N _{RK,s}		Property class	8.8	[kN]	29(27)	47(43)	68	126	196	282			
arac stan	Stainless steel R and	5 S	50	[KIN]	19	29	43	79	123	177			
Che esis	high corrosion	ш	70		26	41	59	110	172	247			
	Tesistant steer from	2	80		30	47	68	126	196	282			
Partia	al factors 1)												
			4.8				1,	50					
Partial factor	Steel zinc plated	≥	5.8				1,	50					
ial fa		Property class	8.8 50	[-]			1,						
lrtia ∑∧	Stairliess steel R and	0 8	(C	.,		2,86							
Ра	high corrosion		70		1,50 ²⁾ / 1,87								
	resistant steel HCR		80				1,6	30					
	ng capacity under shea	r load,	steel	failu	re ³⁾								
personal and account	ut lever arm												
ပ နွဲ	Steel zinc plated Stainless steel R and high corrosion resistant steel HCR		4.8		9(8)	14(13)	20	38	59	85			
risti V _o	Steel zinc plated	£	5.8	, ,	11(10)	17(16)	25	47	74	106			
Characteristic	-	Property class	8.8	[kN]	15(13)	23(21)	34	63	98	141			
ara	Stainless steel R and	2 6 8	50	[]	9	15	21	39	61	89			
Ch esis	high corrosion	_	70		13	20	30	55	86	124			
			80		15	23	34	63	98	141			
	ity factor		k 7	[-]			1,	,0					
with I	ever arm				2 2								
RK,s			4.8		15(13)	30(27)	52	133	259	448			
ct. M ^o rk,s	Steel zinc plated	≱	5.8		19(16)	37(33)	65	166	324	560			
Charac stance		Propert class	8.8	[Nm]	30(26)	60(53)	105	266	519	896			
Star	Stainless steel R and	Pro Cl	50		19	37	65	166	324	560			
esis	high corrosion resistant steel HCR	and American	70		26	52	92	232	454	784			
- "			80		30	60	105	266	519	896			
Partia	al factors 1)		4.0	1			(a)	<u> </u>					
<u></u>	Ota al mina minta d		4.8					25					
ctor	Steel zinc plated	≱ .	5.8				1,2	25					

resistant steel HCR	80	
1) In absence of other nation	al regulations	

Stainless steel R and

high corrosion

fischer RM II

Performances

Characteristic values for steel failure under tension / shear load of fischer anchor rods RG M

[-]

50

70

Annex C 1

1,25

2,38

1,252) / 1,56

1,33

Appendix 13 / 18

²⁾ Only for fischer RG M made of high corrosion-resistant steel HCR

³⁾ Values in brackets are valid for undersized fischer anchor rods RG M with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009

Table C2.1: Characteristic values for steel failure under tension / shear load of fischer internal threaded anchors RG M I

M8

M10

M12

M16

M20

								200000			
Bearing capacity	y unde	r tension lo	oad, ste	el fail	ure						
		Property	5.8		19	29	43	79	123		
Characteristic	NI	class	8.8	FLAIT	29	47	68	108	179		
bearing capacity with screw	$N_{Rk,s}$	Property	R	[kN]	26	41	59	110	172		
With Colow		class 70	HCR		26	41	59	110	172		
Partial safety fac	ctors1)										
		Property	5.8				1,50				
Partial safety	tial safety	class	8.8	r,			1,50				
factor	γMs,N	Property	R	[-]			1,87				
		class 70	HCR				1,87				
Bearing capacity	unde	r shear loa	d, stee	failur	e						
without lever arr	n										
		Property	5.8		9,2	14,5	21,1	39,2	62,0		
Characteristic bearing capacity	\/0	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0		
with screw	V ⁰ Rk,s	Property class 70	_R	ן נאוזן	12,8	20,3	29,5	54,8	86,0		
			HCR		12,8	20,3	29,5	54,8	86,0		
Ductility factor			k ₇	[-]			1,0				
with lever arm							<u> </u>				
Ob		Property	5.8		20	39	68	173	337		
Characteristic bending moment	M ⁰ DL a	class	8.8	[Nm]	30	60	105	266	519		
with screw	IVI KK,S	Property	R		26	52	92	232	454		
		class 70	HCR		26	52	92	232	454		
Partial safety fac	ctors1)										
		Property 5.8	5.8		1,25						
Partial safety	2/84-37	class	8.8	[-]		1,25					
factor	γMs,V	Property class 70	_R		1,56						
			HCR				1,56				
1) In absence of	other	national rec	ulations								

¹⁾ In absence of other national regulations

Internal threaded anchor RG M I

fischer RM II

Performances

Characteristic values for steel failure under tension / shear load of fischer internal threaded anchor RG MI

Annex C 2

Appendix 14 / 18

Table C3.1:	Characteristic	value	es for	concrete	failure ur	ider tensi	on / shea	r load		
Size						Alls	izes			
Tension load										
Installation facto	or	γinst	[-]			See annex	C 4 to C 5			
Factors for the	compressive strer	igth of	concr	ete > C20/	25					
	C25/30			1,02						
Increasing	C30/37			1,04						
factor for τ _{Rk}	C35/45)Tf	Ψ _c [-]			1,	07			
$\tau_{Rk}(X/Y) = $	C40/50	Ψ _c [-]	[-]			1,	08			
Ψc · TRk (C20/25)	C45/55					1,	09			
φο •πκ (020/20)	C50/60					1,	10			
Splitting failure	е									
	h / h _{ef} ≥ 2,0					1,0	h _{ef}			
Edge distance	$2,0 > h / h_{ef} > 1,3$	C _{cr,sp}	[mm]	4,6 h _{ef} - 1,8 h						
	h / h _{ef} ≤ 1,3		[mm]	2,26 h _{ef}						
Spacing		Scr,sp				2 c	cr,sp			
Concrete cone	failure									
Uncracked cond	crete	k ucr,N	[]			11	,0			
Cracked concre	te	k cr,N	[-]	7,7						
Edge distance		Ccr,N	[mm]			1,5	h _{ef}			
Spacing		S _{cr,N}	[mm]	2 C _{cr,N}						
Factors for su	stained tension load	t								
Factor		Ψ^0_{sus}	[-]	_1)						
Shear load										
All installation c	onditions	γinst	[-]	2		1	,0			
Concrete pry-c	out failure									
Factor for pry-o		k ₈	[-]			2	,0			
Concrete edge										
Effective length shear loading	of fastener in	lf	[mm]	for c	I _{nom} ≤ 24 mr	m: min (h _{ef} ;	12 d _{nom})			
Calculation dia	meters									
Size				M8	M10	M12	M16	M20	M24	
fischer anchor r	ods	d		8	10	12	16	20	24	
fischer internal threade	d anchors RG M I	d _{nom}	[mm]	12	16	18	22	28	_2)	

¹⁾ No performance assessed

fischer RM II

Performances

Characteristic values for concrete failure under tensile / shear load

Annex C 3

Appendix 15 / 18

²⁾ Anchor type not part of the assessment

Table C4.1: Characteristic values for combined pull-out and concrete failure for fischer anchor rods RG M in hammer drilled holes; uncracked or cracked concrete

Anchor r	od F	RG M			M8	M10	M12	M16	M20	M24
Combine	d pu	Illout and concr	ete cone	failure				3.		
Calculation	n di	ameter	d	[mm]	8	10	12	16	20	24
Uncrack	ed co	oncrete				.			-	
Characte	risti	c bond resistan	ce in un	cracked c	oncrete C	20/25				
<u>Hammer-</u>	drillir	ng with standard	drill bit or	hollow dr	ill bit (dry a	nd wet cor	icrete)			
Tem-	l:	24 °C / 40 °C			12,5	12,5	12,5	12,5	12,5	12,5
perature	II:	50 °C / 80 °C	τRk,ucr -	[N/mm ²]	12,0	12,0	12,0	12,0	12,0	12,0
range	III:	72 °C / 120 °C			10,5	10,5	10,5	10,5	10,5	10,5
Hammer-	drillir	ng with standard	drill bit o	hollow dr	ill bit (flood	ed hole)				
Tem-	I:	24 °C / 40 °C			_1)	_1)	12,5	12,5	12,5	12,5
Tem- perature range	II:	50 °C / 80 °C	τ _{Rk,ucr}	[N/mm ²]	_1)	_1)	12,0	12,0	12,0	12,0
	III:	72 °C / 120 °C			_1)	_1)	10,5	10,5	10,5	10,5
Installati	on fa	actors								
Dry and v	vet c	oncrete	. 26:	[-]			1	,2		
Flooded I	nole		γinst	[-]	_1)	_1)		1	,4	
Cracked	con	crete	2.5							
		c bond resistand				2000-201				
<u>Hammer-</u>	drillir	ng with standard	drill bit or	hollow dr	ill bit (dry a	nd wet cor	icrete)			
Tem-	I:	24 °C / 40 °C			_1)	4,5	4,5	4,5	4,5	4,5
perature	II:	50 °C / 80 °C	TRk,cr	[N/mm ²]	_1)	4,0	4,0	4,0	4,0	4,0
range	III:	72 °C / 120 °C			_1)	3,5	3,5	3,5	3,5	3,5
Hammer-	drillir	ng with standard	drill bit o	hollow dr	ill bit (flood	ed hole)				
Tem-	I:	24 °C / 40 °C			_1)	_1)	4,5	4,5	4,5	4,5
perature	11:	50 °C / 80 °C	TRk,cr	[N/mm ²]	_1)	_1)	4,0	4,0	4,0	4,0
range	111:	72 °C / 120 °C	-		_1)	_1)	3,5	3,5	3,5	3,5
Installati	on fa	actors								
Dry and v	vet c	oncrete	V:+	[-]	_1)			1,2		
Flooded I	nole		γinst	[-]	_1)	_1)		1	,4	

¹⁾ No performance assessed

fischer RM II

Performances

Characteristic values for combined pull-out and concrete failure for fischer anchor rod RG M

Annex C 4

Appendix 16 / 18

Table C5.1: Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchors RG M I in hammer drilled holes; uncracked or cracked concrete

Internal t	hrea	ded anchors Ro	3 M I		M8	M10	M12	M16	M20
Combine	d pu	llout and concr	ete cone	failure				. . .	
Calculation	on dia	ameter	d	[mm]	12	16	18	22	28
Uncrack	ed co	oncrete		2 2		\$			
Characte	eristi	c bond resistan	ce in un	cracked c	oncrete C20)/25			
<u> Hammer-</u>	drillir	ng with standard	<u>drill bit o</u>	r hollow dri	ll bit (dry an	d wet concrete	<u>e)</u>		ı
Tem-	l:	24 °C / 40 °C	_		11	11	11	11	11
perature	II:	50 °C / 80 °C	τRk,ucr	[N/mm ²]	10,5	10,5	10,5	10,5	10,5
range	III:	72 °C / 120 °C			9,5	9,5	9,5	9,5	9,5
Hammer-	drillir	ng with standard	drill bit o	r hollow dri	Il bit (floode	d hole)			
Tem- perature range	I:	24 °C / 40 °C			11	11	_1)	11	_1)
	II:	50 °C / 80 °C	τRk,ucr	[N/mm ²]	10,5	10,5	_1)	10,5	_1)
	III:	72 °C / 120 °C	-		9,5	9,5	_1)	9,5	_1)
Installati	on fa	ictors		0: 0:		•			
Dry and v	vet c	oncrete	- 27:1	[-]			1,2		
Flooded I	nole		- γinst	[-]	1,4		_1)	1,4	_1)
Cracked	cond	rete							
		bond resistan							
<u>Hammer-</u>		ng with standard	<u>drill bit o</u>	r hollow dri	2000				
Tem-	l:	24 °C / 40 °C			4,5	4,5	4,5	4,5	4,5
perature	II:	50 °C / 80 °C	τ _{Rk,cr}	[N/mm ²]	4,0	4,0	4,0	4,0	4,0
range	III:	72 °C / 120 °C			3,5	3,5	3,5	3,5	3,5
Hammer-	drillir	ng with standard	drill bit o	r hollow dri	Il bit (floode	d hole)			
Tem-	I:	24 °C / 40 °C			4,5	4,5	_1)	4,5	_1)
perature	II:	50 °C / 80 °C	τrk,cr	[N/mm ²]	4,0	4,0	_1)	4,0	_1)
range	III:	72 °C / 120 °C	-		3,5	3,5	_1)	3,5	_1)
						<u> </u>			
Installati	on fa	ictors							
Installati Dry and v			- γinst	[-]			1,2 _1)		

fischer RM II

Performances

Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchors RG MI

Annex C 5

Appendix 17 / 18

Anchor r	od RG M	M8	M10	M12	M16	M20	M24	
Displace	ment-Factors	for tension loa	ıd¹)					
Jncrack	ed or cracked	concrete; Tem	perature range	ı, II, III				
δ _{N0-Factor}	[mm/(N/mm ²)]	0,07	0,08	0,09	0,10	0,11	0,12	
δN∞-Factor	[[[]]]]	0,13	0,14	0,15	0,17	0,17	0,18	
Displacement-Factors for shear load ²⁾								
Jncrack	ed or cracked	concrete; Tem	perature range	e I, II, III				
δv0-Factor	[mm/kN]	0,18	0,15	0,12	0,09	0,07	0,06	
ŠV∞-Factor	[IIIII/KIN]	0,27	0,22	0,18	0,14	0,11	0,09	
1) Calcu	lation of effective	ve displacemen	t:	2) Calculation	on of effective	displacement:		
δ _{N0} =	δ N0-Factor \cdot $ au$			$\delta_{V0} = \delta_{V0}$	-Factor · V			
$\delta_{N\infty}$ =	$\delta_{\text{N}\infty\text{-Factor}} \cdot \tau$			$\delta_{V\infty} = \delta_{V\infty}$	-Factor · V			
(τ: ac	ting bond stren	gth under tensi	on load)	(V: acting	g shear load)			
			for fischer in					
nternal t	hreaded	placements M8	for fischer in		aded anch	ors RG M I	M20	
Internal t anchor R Displace	threaded RG M I ment-Factors	M8 for tension loa	M10	М			M20	
anchor R Displace	threaded RG M I ment-Factors	M8 for tension loa concrete; Tem	M10 nd ¹⁾ perature range	M • I, II, III	12	M16		
Internal t anchor R Displace Uncrack	threaded RG M I ment-Factors ed or cracked	M8 for tension loa concrete; Tem 0,09	M10 perature range 0,10	M • I, II, III 0,	10	M16	0,19	
nternal tanchor R Displace Uncracko ŠNO-Factor	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)]	M8 for tension loa concrete; Tem 0,09 0,13	M10 perature range 0,10 0,15	M • I, II, III 0,	12	M16		
Internal tanchor R Displace Uncrack δΝο-Factor δΝο-Factor Displace	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors	M8 for tension loa concrete; Tem 0,09 0,13 for shear load	M10 nd ¹⁾ perature range 0,10 0,15	M 0, 0,	10	M16	0,19	
Internal tanchor For Displace Uncracket δN0-Factor Displace Uncracket	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors	M8 for tension loa concrete; Tem 0,09 0,13 for shear load concrete; Tem	M10 perature range 0,10 0,15 perature range	M 1, II, III 0, 0, 0,	10 15	0,11 0,17	0,19	
Internal tanchor R Displace Uncracke Nov-Factor Displace Uncracke	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors	M8 for tension loa concrete; Tem 0,09 0,13 for shear load concrete; Tem 0,12	M10 perature range 0,10 0,15 perature range 0,09	M 1, , 0, 0, 1, , 0,	10 15 08	0,11 0,17	0,19 0,19 0,05	
Internal tanchor Financhor Financho	chreaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors ed or cracked [mm/kN]	M8 for tension loa concrete; Tem 0,09 0,13 for shear load concrete; Tem 0,12 0,18	M10 perature range	M 2 I, II, III 0, 0, 2 I, II, III 0, 0,	10 15 08 12	0,11 0,17 0,07 0,07	0,19 0,19 0,05 0,08	
Internal 1 anchor R Displace Uncracke δN0-Factor Displace Uncracke δV0-Factor δV∞-Factor	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors ed or cracked [mm/kN]	M8 for tension loa concrete; Tem 0,09 0,13 for shear load concrete; Tem 0,12	M10 perature range	M 2 I, II, III 0, 0, 2) Calcu	10 15 08 12 lation of effect	0,11 0,17	0,19 0,19 0,05 0,08	
Internal 1 anchor F Displace Uncracko δNo-Factor Displace Uncracko δνο-Factor 1) Calcu δNo =	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors ed or cracked [mm/kN] lation of effective δN0-Factor · τ	M8 for tension loa concrete; Tem 0,09 0,13 for shear load concrete; Tem 0,12 0,18	M10 perature range	M 2 I, II, III 0, 0, 0, 2) Calcu δv0 =	10 15 08 12 lation of effector · V	0,11 0,17 0,07 0,07	0,19 0,19 0,05 0,08	
Internal tanchor R Displace Uncracke \[\delta \nu-Factor \] \[\delta \nu-Factor \] Displace Uncracke \[\delta \nu-Factor \] \[\delta \nu-Factor \nu-Factor \] \[\delta \nu-Factor \n-	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors ed or cracked [mm/kN] lation of effectiv δN0-Factor · τ δΝ∞-Factor · τ	M8 for tension load concrete; Tem 0,09 0,13 for shear load concrete; Tem 0,12 0,18 ve displacement	M10 perature range 0,10 0,15 perature range 0,09 0,14 t:	M O, O, O, O, O, O, O, O,	10 15 08 12 lation of effect δνο-Factor · V δνω-Factor · V	0,11 0,17 0,07 0,10 etive displaceme	0,19 0,19 0,05 0,08	
Internal tanchor R Displace Uncracke \[\delta \nu-Factor \] \[\delta \nu-Factor \] Displace Uncracke \[\delta \nu-Factor \] \[\delta \nu-Factor \nu-Factor \] \[\delta \nu-Factor \n-	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors ed or cracked [mm/kN] lation of effectiv δN0-Factor · τ δΝ∞-Factor · τ	M8 for tension loa concrete; Tem 0,09 0,13 for shear load concrete; Tem 0,12 0,18	M10 perature range 0,10 0,15 perature range 0,09 0,14 t:	M O, O, O, O, O, O, O, O,	10 15 08 12 lation of effector · V	0,11 0,17 0,07 0,10 etive displaceme	0,19 0,19 0,05 0,08	
Internal 1 anchor R Displace Uncracke δN0-Factor Displace Uncracke δV0-Factor 1) Calcu δN0 = δN∞ =	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors ed or cracked [mm/kN] lation of effectiv δN0-Factor · τ δΝ∞-Factor · τ	M8 for tension load concrete; Tem 0,09 0,13 for shear load concrete; Tem 0,12 0,18 ve displacement	M10 perature range 0,10 0,15 perature range 0,09 0,14 t:	M O, O, O, O, O, O, O, O,	10 15 08 12 lation of effect δνο-Factor · V δνω-Factor · V	0,11 0,17 0,07 0,10 etive displaceme	0,19 0,19 0,05 0,08	
Internal 1 anchor R Displace Uncracke δN0-Factor Displace Uncracke δV0-Factor 1) Calcu δN0 = δN∞ =	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors ed or cracked [mm/kN] lation of effectiv δN0-Factor · τ δΝ∞-Factor · τ	M8 for tension load concrete; Tem 0,09 0,13 for shear load concrete; Tem 0,12 0,18 ve displacement	M10 perature range 0,10 0,15 perature range 0,09 0,14 t:	M O, O, O, O, O, O, O, O,	10 15 08 12 lation of effect δνο-Factor · V δνω-Factor · V	0,11 0,17 0,07 0,10 etive displaceme	0,19 0,19 0,05 0,08	
Internal 1 anchor R Displace Uncracke δN0-Factor Displace Uncracke δV0-Factor 1) Calcu δN0 = δN∞ =	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors ed or cracked [mm/kN] lation of effectiv δN0-Factor · τ δΝ∞-Factor · τ	M8 for tension load concrete; Tem 0,09 0,13 for shear load concrete; Tem 0,12 0,18 ve displacement	M10 perature range 0,10 0,15 perature range 0,09 0,14 t:	M O, O, O, O, O, O, O, O,	10 15 08 12 lation of effect δνο-Factor · V δνω-Factor · V	0,11 0,17 0,07 0,10 etive displaceme	0,19 0,19 0,05 0,08	
Internal 1 anchor R Displace Uncracke δN0-Factor Displace Uncracke δV0-Factor 1) Calcu δN0 = δN∞ =	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors ed or cracked [mm/kN] lation of effectiv δN0-Factor · τ δΝ∞-Factor · τ	M8 for tension load concrete; Tem 0,09 0,13 for shear load concrete; Tem 0,12 0,18 ve displacement	M10 perature range 0,10 0,15 perature range 0,09 0,14 t:	M O, O, O, O, O, O, O, O,	10 15 08 12 lation of effect δνο-Factor · V δνω-Factor · V	0,11 0,17 0,07 0,10 etive displaceme	0,19 0,19 0,05 0,08	
Internal 1 anchor R Displace Uncracke δN0-Factor Displace Uncracke δV0-Factor 1) Calcu δN0 = δN∞ =	threaded RG M I ment-Factors ed or cracked [mm/(N/mm²)] ment-Factors ed or cracked [mm/kN] lation of effectiv δN0-Factor · τ δΝ∞-Factor · τ	M8 for tension load concrete; Tem 0,09 0,13 for shear load concrete; Tem 0,12 0,18 ve displacement	M10 perature range 0,10 0,15 perature range 0,09 0,14 t:	M O, O, O, O, O, O, O, O,	10 15 08 12 lation of effect δνο-Factor · V δνω-Factor · V	0,11 0,17 0,07 0,10 etive displaceme	0,19 0,19 0,05 0,08	

fischer	RMII
11301101	I ZIVI II

Performances

Displacements for anchor rods RGM and fischer internal threaded anchors RG M I

Annex C 6

Appendix 18 / 18