

DECLARATION OF PERFORMANCE

DoP 0380

for fischer-Zykon-panel anchor FZP II

1. <u>Unique identification code of the product-type:</u> **DoP 0380**

2. Intended use/es: Fastener for the rear fixing of façade panels made of selected natural stones according to EN 1469,

see appendix, especially annexes B1 - B7.

3. Manufacturer: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany

4. <u>Authorised representative:</u>

5. System/s of AVCP: 2+

6. European Assessment Document: EAD 330030-00-0601, Edition 10/2018

European Technical Assessment: ETA-11/0145; 2024-08-22

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to breakout or pull-out failure under tension load: Annex C1

 $\alpha_{\mathsf{TR}} = \mathsf{NPD}$

Characteristic resistance to breakout or pull-out failure under shear load: Annex C1
Characteristic resistance to breakout or pull-out failure under combined tension and shear load: Annex C1

 $Y=NPD; F_{Rk}=NPD$

Edge distance and spacing: Annexes B3, C1

Durability: Annex A3, ((CRC) III - EN 1993-1-4:2015)

Characteristic resistance to steel failure under tension and shear load: Annex C1

Safety in case of fire (BWR 2)

Reaction to fire: Class (A1)

8. Appropriate Technical Documentation and/or Specific -

Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr. Ronald Mihala, Head of Development and Production Management

Tumlingen, 2025-02-05

Dieter Pfaff, Head of International Production Federation and Quality Management

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Translation guidance Essential Characteristics and Performance Parameters for Annexes

Me	echanical resistance and stability (BWR 1)							
1	Characteristic resistance to breakout or pull-out failure under tension load:	N _{Rk} [kN],						
		For natural stone: α_{TR} [-]						
2	Characteristic resistance to breakout or pull-out failure under shear load:	V _{Rk} [kN]						
3	Characteristic resistance to breakout or pull-out failure under combined tension and shear load:	X [-], Y [-], F _{Rk} [kN], β						
4	Edge distance and spacing:	a _r [mm], a [mm]						
5	Durability:	CRC						
6	Characteristic resistance to steel failure under tension and shear load:	N _{Rk,s} [kN], V _{Rk,s} [kN]						
Sa	Safety in case of fire (BWR 2)							
7	Reaction to fire:	Class						

Specific Part

1 Technical description of the product

The fischer-Zykon-panel anchor FZP II is a special anchor of sizes M 6, M 8 and M 10 which consists of a cone bolt (with external thread or internal thread), an expansion part, a sleeve and, if need be, a nut. Cone bolt and expansion part are made of stainless steel. The sleeve is made of stainless steel or carbon. The nut is made of stainless steel or aluminium. The anchor is put into an undercut drill hole and by driving-in of the sleeve it is placed form-fit.

The product description is given in Annex A. The material values, dimensions and tolerances of the components of the fastener not indicated in the annexes shall correspond to the values laid down in the technical documentation.

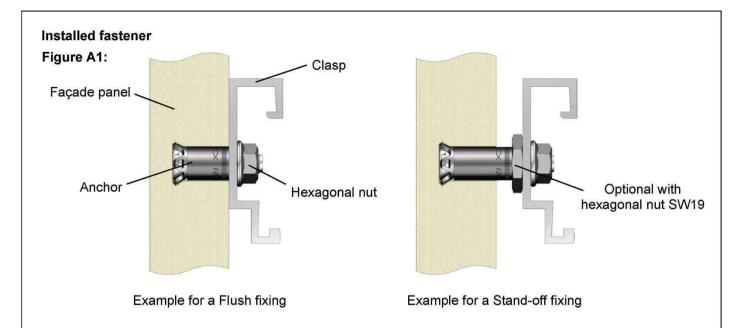
2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

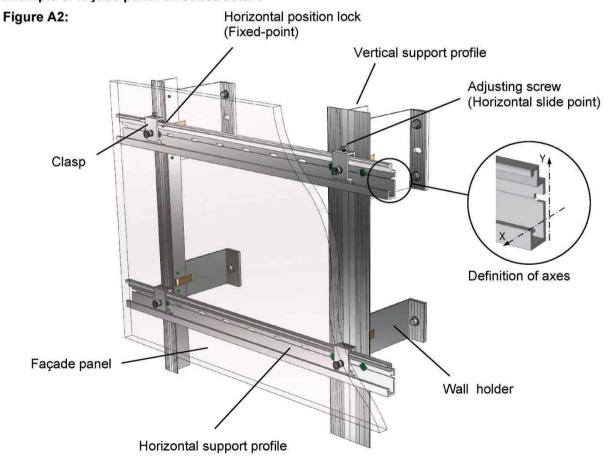
The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)


Essential characteristic	Performance
Characteristic resistance to breakout or pull-out failure under tension load	See Annex C 1
Characteristic resistance to breakout or pull-out failure under shear load	See Annex C 1
Characteristic resistance to breakout or pull-out failure under combined tension and shear load	See Annex C 1
Edge distance and spacing	See Annex B 3 and Annex C 1
Durability	Corrosion Resistance Class (CRC) III in accordance with EN 1993-1-4:2015
Characteristic resistance to steel failure under tension and shear loads	See Annex C 1

3.2 Safety in case of fire (BWR 2)


Essential characteristic	Performance	
Reaction to fire	Class A1	

4	Assessment and verification of constancy of performance (AVCP) system applied, with
	reference to its legal base

In accordance with EAD No. 330030-00-0601 the applicable European legal act is: [97/161/EG]. The system to be applied is: 2+

Example of façade panel on substructure

fischer Zykon panel anchor FZP

Product description

Installed anchoring and fixing example

Annex A 1

Type of anchor

Anchor with external thread

Figure A3:

With carbon fibre sleeve

With steel sleeve

Optionally with expansion part HP 1)

With carbon fibre sleeve and sleeve flange

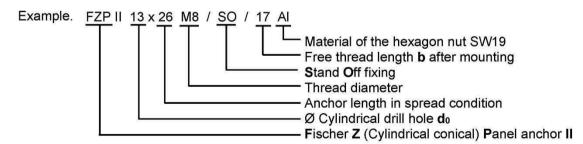
With Steel sleeve and hex nut SW19

With steel sleeve and hex nut ES 2)

Anchor with internal thread

Figure A4:

With carbon fibre sleeve



With steel sleeve

- 1) HP anchor (**H**igh **P**erformance anchor for applications in high-strength rock)
- 2) Hex nut ES for suspension systems

Identification system

fischer Zykon panel anchor FZP

Product description

Type of anchor and identification system

Annex A 2

Appendix 4 / 13

Parts of anchor and materials

Cone bolt

Figure A6:

Material identification

Nose or frontal profiling

Anti rotation lock

With external thread M6 / M8 / M10 Optional with UNC thread

Optional:

Identifying mark, drive, e.g.: Slot; polygonal (Outside; inside);

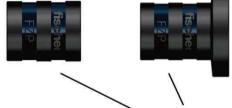
spanner flats

Expansion part

Figure A7:

Standard

Bent


Version HP

Sleeve

Optional:

Figure A8:

Type designation e.g.

Stainless steel Lathe machined

With internal thread

M6 / M8

Optional with UNC thread

FZP...

 FZP...

Supplementary components

Figure A9:

Hex nut SW 19

Identifying mark of producer <

Marking: Al = Aluminium Optional: R = stainless steel

Table A1: Material of anchor parts

Anchor parts	Material
Cone bolt	Stainless steel, EN 10088 :2014
Expansion part	Stainless steel, EN 10088 :2014
Sleeve	Stainless steel, EN 10088 :2014
Carbonsleeve	Polyamide 6.6 CF
Hexagonal nut SW19	Aluminium, EN 755 :2016, Stainless steel, EN 10088 :2014
Hexagonal nut ES	Aluminium, EN 755 :2016, Stainless steel, EN 10088 :2014

fischer Zykon panel anchor FZP

Product description

Parts of anchor and material

Annex A 3

Appendix 5 / 13

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads.

Anchorage ground:

- Natural stone facade panels according to EN 1469:2015.
- The used material is free of crevices and mechanically effective cracks and alterations.
- Natural stone classified in accordance with Table B1.
- Characteristic values of the panels correspond to Annex B 3, Table B2.

Table B1: Stone groups for façade panels made of natural stone

	Stone group	Natural stone type	Boundary conditions	
High quality intrusive rocks (plutonic rocks)		Granite, granitite, tonalite, diorite, monzonite, gabbro, other magmatic plutonic rocks	None	
Ш	Metamorphic rocks with "hard stone characteristics"	Quartzite, granulite, gneiss, migmatite, slate ²⁾	None	
III	High quality extrusive rocks (volcanic rocks)	Basalt and basaltic lava without harmful ingredients (like sun burner basalt)	Minimum density p: basalt: 2,7 kg/dm³ basaltic lava: 2,2 kg/dm³	
IV	Sedimentary rocks with "hard stone characteristics" 1)	Sandstone, limestone and marble	Minimum density ρ: sandstone: 2.1 kg/dm³	

¹⁾ For façade panels made of natural stones with planes of anisotropies, the difference between the flexural strength determined parallel to the planes of anisotropy and perpendicular to the edges of the planes of anisotropy shall not be more than 50 %.

Use conditions (Environmental conditions):

In accordance with EN 1993-1-4:2015 dependent on Corrosion Resistancy Class (CRC) (ETA Section 3.1)

fischer	Zykon	panel	anchor FZ	ZP
---------	-------	-------	-----------	----

²⁾ Slate is only covered by EAD if the mean value of tensile bond strength is larger than 0,5 N/mm² and the minimum value of tensile bond strength is larger than 0,25 N/mm²

Design:

- The design of anchorages under static and quasistatic load is carried out in accordance with: EOTA Technical Report TR 062:2024 "Design of fasteners for façade panels made of natural stone".
- The façade panels, their fixings as well as the substructure including its connection to wall brackets and their connection to the construction works are designed for the respective case of application under the responsibility of an engineer skilled in the field of façade construction.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the
 nature and strength of the base materials and the dimensions of the anchorage members as well as of the
 relevant tolerances. The position of the anchor is indicated on the design drawings.

Installation:

- The drillings are done at the factory or on site under workshop conditions; when drilling on site the execution is supervised by the responsible project supervisor or a skilled representative of the project supervisor.
- Making of the undercut drilling is done with a special drill bit or a special CNC drill bit according to Annex B 4
 and a special drilling device in accordance with the information deposited with Deutsches Institut für Bautechnik.
- The drilling residues are removed from the drill hole.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole.
- The geometry of the drill hole is checked on 1 % of all drillings. The following dimensions shall be checked and documented according to manufacturer's information and testing instructions by means of a control aids according to Annex B 5, Figure B5, B6 and B7.
 - Diameter of the cylindrical drill hole.
 - · Diameter of the undercut.
 - Remaining panel thickness (drill hole depth and panel thickness respectively).
- If the tolerance given in Annex B 4, Table B3 is exceeded, the geometry of the drill hole shall be checked on 25 % of the drillings performed. No further drill hole should exceed the tolerances otherwise all the drill holes have to be controlled. Drill holes falling below or exceeding the tolerances shall be rejected.
 - Note: Checking the geometry of drill hole on 1 % of all drillings means that on one of 25 panels (this corresponds to 100 drillings for panels with 4 undercut anchors) one drilling shall be checked. If the tolerances given in Annex B 4, Table B3 are exceeded, the control shall be increased to 25 % of the drillings, i.e. one drilling shall be checked on all the 25 panels.
- The anchors are installed in a deformation controlled manner. For this purpose suitable installation tools per Annex B 5, Figure B4 shall be used. The anchor is set correctly if the bolt projection "b" in accordance to Annex A 2 (designation system) according to Annex B 6 Figure B10 and B11 is observed. For flush mounting, the sleeve must not project beyond the plate surface. Internal thread anchors are mounted flush or recessed according to Annex B 6. The dimension "b" is indicated in the anchor designation.
- During transport and storage on site the façade panels are protected from damages; the façade panels are not to be hung up jerkily (if need be lifters shall be used for hanging up the façade panels); façade panels and reveal panels respectively with incipient cracks are not be installed.
- The façade panels are arranged in a "reclined" or "upright" position.
- Overhead installation is allowed (e.g.: fastening cladding of ceilings)
- The façade are installed by skilled specialists and the laying instructions of the manufacturer shall be paid attention to.
- The façade panels must not be used for the transmission of scheduled impact loads and for the protection against falling.

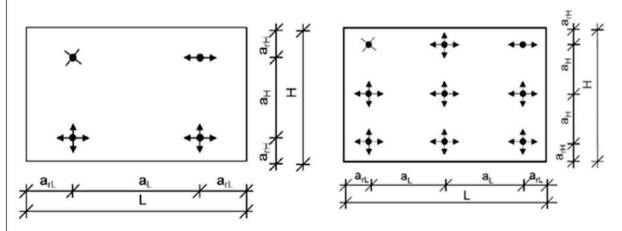

tischer	Zykon	panei	ancnor	FZP

Table B2: Characteristic values of façade panels made of nature stones

Façade panels							
Nominal panel thickness	nal panel thickness		[mm]	20 (30) ¹) ≤ h _{nom}			
Number of anchors (rectangular arra	nber of anchors (rectangular arrangement) 5)		[-]	≥ 4			
Embedment depth ²⁾		hs	[mm]	$12 \le h_s \le 38$			
Minimum edge distance 3)	a _{rL} bzw. a _{rH}	[mm]	50				
Minimum spacing 3)		a∟ bzw. ан	[mm]	8 h _s			
Minimum residual panel thickness 4)		hr	[mm]	≥ 8			
Minimum characteristic flexural st	rength in accorda	nce with EN 123	72:2007				
Padang Cristallo G603, China	Stone group I	σ _{5%} ≥	[N/mm²]	13,4			
Jura Limestone (yellow), Germany	Stone group IV	σ _{5%} ≥	[N/mm²]	12,4			

For sandstone, limestone and basaltlava: panel thickness h ≥ 30 mm, if the bending strength of the material σ5% < 8 N/mm².</p>

Figure B1: Definition of edge distances and spacing

Legend:

Н

a_{rL}, a_{rH} = edge distance – distance of an fastener to the panel edge

a_L, a_H = spacing – distance between fasteners L = greater length of the façade panel

= smaller length of the façade panel

= fixed point (fixed bearing)

← ⇒ = horizontal slide (loose bearing)

= horizontal and vertical slide (loose bearing)

fischer Zykon panel anchor FZP

Intended use

Requirements of façade panels

Annex B 3

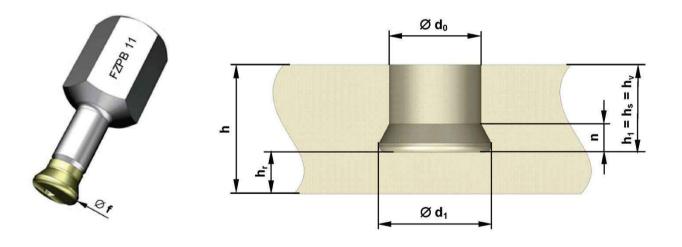
Appendix 8 / 13

²⁾ h_s = h₁ = h_v in 1 mm steps only (12, 13, 14 mm ... 38 mm) - tolerances see Annex B 4, Table B3, footnote ³⁾

³⁾ For small fitting, differential or fill in pieces, the minimum edge distance or spacing shall be chosen constructively. In case of design under static loading using FEM, smaller edge distances and spacings are allowed.

Only for stand-off fixing. For h_r less than 0,85 • h₁, the permissible pressure load must be reduced in accordance with TR 062:2024.

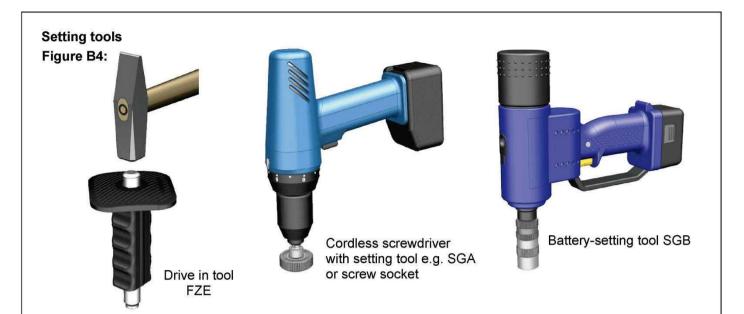
⁵⁾ In accordance with TR 062:2024 3.2.1, fewer anchor points are also possible.

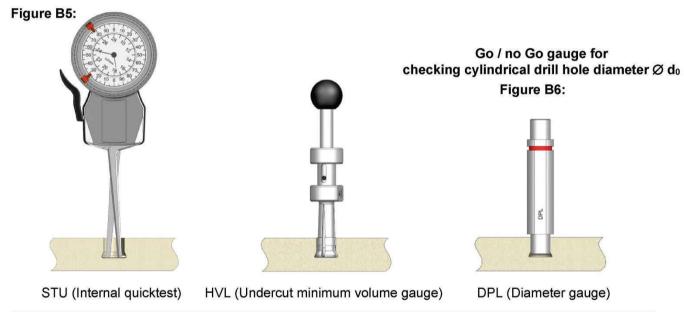

Table B3: Drill hole dimensions

Drill hole								
Drill bit Ø f ¹)	Ø d ₀ [mm] ²⁾	\varnothing d ₁ [mm] ²⁾	FZPII	n	h ₁ [mm] ^{2) 3)}	h _r [mm] 4)		
FZPB 9	+0,4	13,5 ±0,3	M6		40 ch c20			
FZPB 11	-0,2	13,5 ±0,3	IVIO					
FZPB 11	+0,4	15.5.00	MO / MC:	4		. 0		
FZPB 13	-0,2	15,5 ±0,3	M8 / M6i	≈ 4	$12 \le h_1 \le 38$	≥ 8		
FZPB 13	+0,4	17.5	17,5 ±0,3 M10 / M8i					
FZPB 15	- 15 -0,2	17,5 ±0,3						

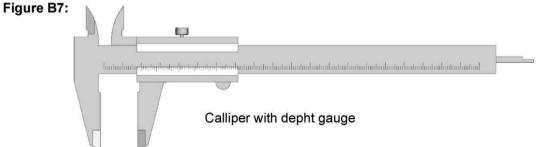
- Drill bits for various drilling methods.
- 2) Dimensions can be checked with the appropriate control equipment in accordance with (Annex B 5).
- Tolerances flush mounting: $h_1 = h_v^{+0.4}_{-0.1}$
- 4) Only for stand off fixing. For h_r less than 0,85 h₁, the permissible pressure load must be reduced in accordance with TR 062:2024.

Figure B2: Drill bit example


Figure B3: Drill hole geometry


fischer Zykon panel a	ncl	hor	FZP
-----------------------	-----	-----	-----

Intended use


Drill bit, geometry of the drill hole and installation parameters

Means for measuring borehole depth h_{1} and borehole diameter $d_{0}\,$

fischer Zykon panel anchor FZP

Intended useSetting devices and testing equipment

Annex B 5

Type of mounting and dimensional definition

Mesured recess

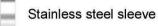
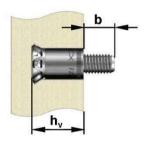

Recessed fixing

Figure B8:

Example of an adaptation for stand off fixing Figure B9:

Adapter sleeve

Mesured excess

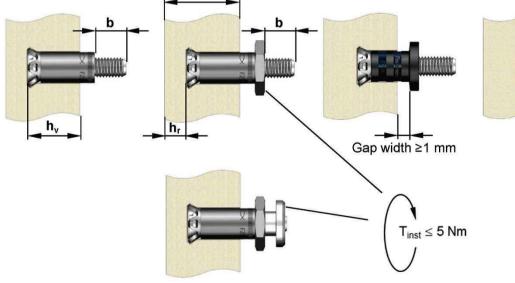


Threaded pin with hexagonal nut A4

Flush fixing

h

Figure B10:



Stand off fixing

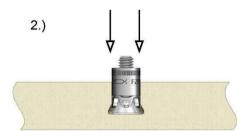
Figure B11:

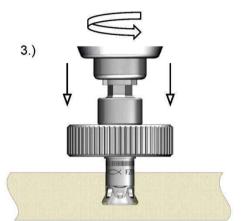
fischer Zykon panel anchor FZP

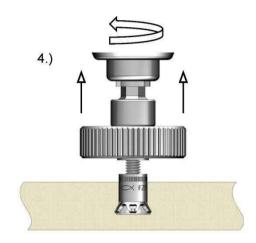
Intended use

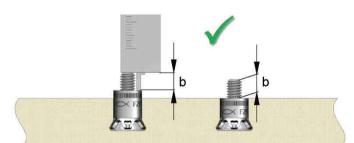
Mounting types and dimension definitions

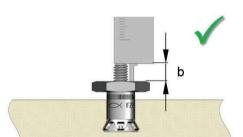
Annex B 6


Appendix 11 / 13


Istallation instructions


Example: Anchor installation with SGA





5.1)

5.2)

fischer Zykon panel anchor FZP

Table C1: Characteristic resistance

Diameter of drill hole	Ø d ₀	[mm]	11 (FZP M6)		13 (FZP M8 / M6i)	
Designation of natural stone			Padang Cristallo G603	Jura Limestone (yellow)	Padang Cristallo G603	Jura Limestone (yellow)
Country of origin			China	Germany	China	Germany
Petrographic description			Granite	Limestone	Granite	Limestone
Panel thickness	h	[mm]	30	40	30	40
Edge distance	ar	[mm]	100	100	100	100
Embedment depth	hs	[mm]	15	17	17	25
Characteristic resistance						
Tension load	$N_{\text{Rk}^{1)}}$	[kN]	6,2	4,8	7,8	8,0
Shear load	$V_{Rk}^{1)}$	[kN]	7,8	7,9	7,0	9,1
Partial safety factor γ_{M} [-]			1,8			
Combined tension and shear load						
Trilinear limit value	Х	[-]	1,2			

Stone group	Ĺ	II	Ш	IV			
α_{TR} [-]	1,0						

¹⁾ For other natural stones according to Table B1, the resistance is determined in accordance with Technical Report 062:2024 "Design of fasteners for façade panels made of natural stone".

Table C2: Characteristic resistance for steel failure

							9	
Diameter of drill hole and Anchor	Ø do	[mm]	11 FZP M6	13 FZP M8	15 FZP M10	13 ²⁾ FZP M6i	15 ²⁾ FZP M8i	
Characteristic resistance under tension load	N _{Rk,s}	[kN]	14,1	25,6	40,6	14,1	19,7	
Partial safety factor	γ _{Ms} 1)	[-]	1,87					
Characteristic resistance under shear load	$V_{Rk,s}$	[kN]	7,0	12,8	20,3	7,0	9,8	
Partial safety factor	γ _{Ms} 1)	[-]	1,56					
Cone bolt with UNC thread	UNC	[Inch]	FZP 1/4	FZP 5/16	FZP 3/8	FZP 1/4i	FZP 5/16i	
Characteristic resistance under tension load	$N_{\text{Rk,s}}$	[kN]	14,3	23,6	35,0	13,0	20,3	
Partial safety factor	γ _{Ms} 1)	[-]	1,87					
Characteristic resistance under shear load	$V_{Rk,s}$	[kN]	7,1	11,8	17,5	6,5	10,1	
Partial safety factor	γ _{Ms} 1)	[-]			1,56			

¹⁾ In absence of national regulations

fischer Zykon panel anchor FZP

Performances

Characteristic resistance in natural stone and steel resistance

Annex C 1

Appendix 13 / 13

²⁾ For the anchor with internal thread only a fixing screw of size M6, UNC1/4 or M8, UNC5/16 made of stainless steel 1.4401 or 1.4571 EN ISO 10088-3:2014 with a minimum strength class 70 in accordance with EN ISO 3506-1:2009 (fuk = 700 N/mm², fyk = 450 N/mm²) can be used. The screw-in depth of the fastening screw is at least 6 mm from the back of the panel.