

ΕN

DECLARATION OF PERFORMANCE

DoP 0328

for fischer Zykon-Hammerset Anchor FZEA II (Mechanical fastener for use in concrete)

TO	r fischer Zykon-Hammerset Anchor FZEA II (Mechanical	fastener for use in concrete)	EN
1.	Unique identification code of the product-type:	DoP 0328	
2.	Intended use/es:	Post-installed fastening in cracked or uncracked concrete, see appendix, especially annexes B1	- B3.
3.	Manufacturer:	fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany	
4.	Authorised representative:	-	
5.	System/s of AVCP:	1	
6.	European Assessment Document: European Technical Assessment: Technical Assessment Body: Notified body/ies:	EAD 330232-01-0601, Edition 05/2021 ETA-06/0271; 2023-03-23 DIBt- Deutsches Institut für Bautechnik 2873 TU Darmstadt	
7.	Declared performance/s:Mechanical resistance and stability (BWR 1)Characteristic resistance to tension load (static a Resistance to steel failure: Annex C1 Resistance to pull- out failure: Annex C1 Resistance to concrete cone failure: Annex C1 Robustness: Annexes C1, C2 Minimum edge distance and spacing: Annexes B2, C Edge distance to prevent splitting under load: AnnexCharacteristic resistance to shear load (static an Resistance to steel failure (shear load): Annex C2 Resistance to pry-out failure: Annex C2Characteristic Resistance for simplified design: Method B: NPD Method C: NPD	C1 : C1	
	Displacements: Displacements under static and quasi-static loading: Characteristic resistance and displacements for Resistance to tension load, displacements, category Resistance to tension load, displacements, category Resistance to shear load, displacements, category Resistance to shear load, displacements, category Resistance to shear load, displacements, category Factor for annular gap: NPD	seismic performance categories C1 and C2: 7 C1: NPD 7 C2: NPD C1: NPD C1: NPD	

Safety in case of fire (BWR 2)

Reaction to fire: Class (A1) Resistance to fire:

Fire resistance to steel failure (tension load): Annex C3 Fire resistance to pull-out failure (tension load): Annex C3 Fire resistance to steel failure (shear load): Annex C3

Durability:

Durability: Annexes A2, B1

8. <u>Appropriate Technical Documentation and/or Specific</u> – <u>Technical Documentation:</u>

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

(Liki

· Y ·

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering Tumlingen, 2023-03-31

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The fischer Zykon-Hammerset anchor FZEA II is an anchor made of galvanised or stainless or high corrosion resistant steel which is placed in an undercut hole and anchored by mechanical interlock with displacement-controlled installation.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi static loading) Method A	See Annex B2 and C1
Characteristic resistance to shear load (static and quasi static loading)	See Annex C2
Displacements	See Annex C4
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C3

3.3 Aspects of durability

Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

- ① Expansion sleeve
- ② Expansion pin
- ③ Plastic cap
- ④ Safety disk

(Fig. not to scale)

fischer Zykon-Hammerset anchor FZEA II

Product description Installed condition Annex A 1

Appendix 3 / 11

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads
- Fire exposure

Base materials:

Compacted reinforced or unreinforced normal weight concrete without fibres (cracked and uncracked) of strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: FZEA II
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - CRC III
 - CRC V
 - CRC V
 - CRC V
 - CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018

Installation:

- . Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Correct installation is ensured when front face of sleeve is approximately 1 mm below the concrete surface and the control mark on the sleeve is visible as illustrated in Annex B2

fischer Zykon-Hammerset anchor FZEA II

Intended Use Specifications Annex B 1

Appendix 5 / 11

Description installation control plan view A-A

- h_{ef} = Effecitve anchorage depth
- = Screw-in depth s
- $h_1 = Drill hole depth$

Tinst

~1mm

 $T_{inst} = Max$. installation torque

¹⁾ By setting the anchor with the machine setting tool stop the rotation, otherwise a round flange is formed instead of the notch

Table B2.1: Installation tools

Anchor type	FZEA II 10x40 M8	FZEA II 12x40 M10	FZEA II 14x40 M12
Zykon-Universal drill	FZUB 10x40	FZUB 12x40	FZUB 14x40
Zykon Impact thorn	FZED 10 plus	FZED 12 plus	FZED 14 plus
Machine setting tool	FZEM 10x40	FZEM 12x40	FZEM 14x40

Table B2.2: Installation parameters

Anchor type	Drill hole	Anchorage		stening screw or			
	depth h₁ [mm]	depth h _{ef} [mm]	Max. installation torque T _{inst.} [Nm]				
	[]	[]	FZEA II	FZEA II R FZEA II HCR	max	min	
FZEA II 10 x 40 M8	43	40	≤ 10	≤ 15	17	11	
FZEA II 12 x 40 M10	43	40	≤ 15	≤ 20	19	13	
FZEA II 14 x 40 M12	43	40	≤ 20	≤ 4 0	21	15	

Table B2.3: Minimum thickness of concrete members, minimum spacing and minimum edge distance

Anchor type and size			FZEA II 10x40 M8	FZEA II 12x40 M10	FZEA II 14x40 M12
Minimum thickness of concrete member	\mathbf{h}_{min}		80	80	80
Minimum spacing	Smin	[mm]	40	45	50
Minimum edge distance	Cmin		40	45	50

(Fig. not to scale)

fischer Zykon-Hammerset anchor FZEA II

Intended Use

Installation tools, Installation and anchor parameters Minimum thickness of concrete members, minimum spacing and minimum edge distance Annex B 2

Appendix 6 / 11

Installation instructions

fischer Zykon-Hammerset anchor FZEA II

Intended Use Installation instructions Annex B 3

Appendix 7 / 11

Table C1.1: Characteristic values of **tension** resistance under static and quasi-static action

Type of anchor			FZEA II 10x40 M8	FZEA II 12x40 M10	FZEA II 14x40 M12	
Steel failure - decisive values of sleev	ve and screw	/ threaded	rod			
Characteristic resistance FZEA II Strength class ≥ 5.8 ¹⁾	NRk,s	[kN]	9,6	17,0	19,7	
Partial factor	γMs	[-]		1,5		
Characteristic resistance FZEA II R, FZEA II HCR Strength class 50 ¹⁾	NRk,s	[kN]	18,3	29,0	42,2	
Partial factor	γMs	[-]		2,86		
Characteristic resistance FZEA II R, FZEA II HCR Strength class ≥ 70 ⁻¹⁾	NRk,s	[kN]	12,2	21,6	25,0	
Partial factor	γMs	[-]		1,5		
Pullout failure				1		
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	— [kN]	4,0	7,5	9,0	
Characteristic resistance in uncracked concrete C20/25	$\mathbf{N}_{Rk,p}$	[((1)]	9,0	9,0	9,0	
		C25/30		1,12		
		C30/37	1,22 1,32			
Increasing factors for N _{Rk,p}		C35/45				
N _{Rk,p} = ψ _c * N _{Rk,p} (C20/25)	ψc [-]	C40/50	1,41			
		C45/55	1,50			
		C50/60	1,58			
Installation safety factor	γinst	[-]		1,2		
Concrete cone failure		1				
Effective anchorage depth	h _{ef}	[mm]	40	40	40	
Factor for uncracked concrete	k ucr	r 1		11,0		
Factor for cracked concrete	k cr	- [-]		7,7	-	
Minimal member thickness	\mathbf{h}_{min}		80	80	80	
Spacing	S cr,N	[120	120	120	
Edge distance	C cr,N	[mm]	60	60	60	
Spacing (splitting)	S cr,sp		170	170	170	
Edge distance (splitting)	C _{cr,sp}		85	85	85	
Characteristic resistance to splitting	$N^0_{Rk,sp}$	[kN]	n	nin {N ⁰ _{Rk,c} ; N _{Rk,p} } 2)	

¹⁾ Strength class of the screw / threaded rod

²⁾ N⁰_{Rk,c} acc. to EN 1992-4:2018

fischer Zykon-Hammerset anchor FZEA II

Performances

Characteristic values of tension resistance

eve and V ^o _{Rk,s}	l screw /	threaded rod		
V ⁰ Rks				
- Tuqo	[kN]	8,3	13,6	19,1
γMs	[-]	I	1,25	<u></u>
V ⁰ Rk,s	[kN]	9,2	14,5	21,1
γMs	[-]		2,38	
V ⁰ Rk,s	[kN]	10,0	15,0	20,6
γMs	[-]		1,25	
K 7	[-]		1,0	
and sc	rew / thr	eaded rod		
M ⁰ Rk,s	[Nm]	15,0	23,0	31,0
γMs	[-]		1,25	
M⁰ _{Rk,s}	[Nm]	18,7	37,4	65,5
γMs	[-]		2,38	
M ⁰ Rk,s	[Nm]	19,0	29,0	39,0
γMs	[-]		1,25	
k 7	[-]		1,0	
K 8	[-]		1,3	
		40	40	40
	[mm]			40 14
	ſ_1	10		17
			-,-	
	M ⁰ Rk,s	$V^{0}_{Rk,s}$ [kN] γ_{Ms} [-] $V^{0}_{Rk,s}$ [kN] γ_{Ms} [-] k_7 [-] and screw / thr $M^{0}_{Rk,s}$ [Nm] γ_{Ms} [-] $M^{0}_{Rk,s}$ [Nm] γ_{Ms} [-] $M^{0}_{Rk,s}$ [Nm] γ_{Ms} [-] K_7 [-] k_7 [-] k_7 [-] k_8 [-] k_8 [-] k_{0} [-] <td>$\begin{array}{c c c c c c c c } & V^{0}_{Rk,s} & [kN] & 9,2 \\ \hline & & & & & & & & \\ \hline & & & & & & & &$</td> <td>$V^{0}_{Rk,s}$ [kN] 9,2 14,5 γ_{Ms} [-] 2,38 $V^{0}_{Rk,s}$ [kN] 10,0 15,0 γ_{Ms} [-] 1,25 k_7 [-] 1,0 and screw / threaded rod 10,0 23,0 γ_{Ms} [-] 1,25 $M^{0}_{Rk,s}$ [Nm] 15,0 23,0 γ_{Ms} [-] 1,25 $M^{0}_{Rk,s}$ [Nm] 18,7 37,4 γ_{Ms} [-] 2,38 $M^{0}_{Rk,s}$ [Nm] 19,0 29,0 γ_{Ms} [-] 1,25 k_7 [-] 1,25 k_7 [-] 1,25 k_7 [-] 1,0 k8 [-] I_f 40 40 d_{nom} [mm] 10 12</td>	$\begin{array}{c c c c c c c c } & V^{0}_{Rk,s} & [kN] & 9,2 \\ \hline & & & & & & & & \\ \hline & & & & & & & &$	$V^{0}_{Rk,s}$ [kN] 9,2 14,5 γ_{Ms} [-] 2,38 $V^{0}_{Rk,s}$ [kN] 10,0 15,0 γ_{Ms} [-] 1,25 k_7 [-] 1,0 and screw / threaded rod 10,0 23,0 γ_{Ms} [-] 1,25 $M^{0}_{Rk,s}$ [Nm] 15,0 23,0 γ_{Ms} [-] 1,25 $M^{0}_{Rk,s}$ [Nm] 18,7 37,4 γ_{Ms} [-] 2,38 $M^{0}_{Rk,s}$ [Nm] 19,0 29,0 γ_{Ms} [-] 1,25 k_7 [-] 1,25 k_7 [-] 1,25 k_7 [-] 1,0 k8 [-] I_f 40 40 d_{nom} [mm] 10 12

Performances

Characteristic values of resistance under shear loads

Annex C 2 Appendix 9 / 11

Table C3.1: Characteristic values of tension resistance under fire exposure

	Fire re	R30 Fire resistance 30 minutes			R60 Fire resistance 60 minute		
	N _{Rk,s,fi,30} [kN]	N _{Rk,p,fi,30} [kN]	N ⁰ Rk,c,fi,30 [kN]	N _{Rk,s,fi,60} [kN]	N _{Rk,p,fi,60} [kN]	N ⁰ Rk,c,fi,60 [kN]	
FZEA II 10x40 M8, R, HCR	1,1	1,0	1,8	0,9	1,0	1,8	
FZEA II 12x40 M10, R, HCR	3,2	1,9	1,8	2,4	1,9	1,8	
FZEA II 14x40 M12, R, HCR	4,7				2,3	1,8	

	Fire re	R90 Fire resistance 90 minutes			R120 Fire resistance 120 minutes		
	N _{Rk,s,fi,90} [kN]				N _{Rk,p,fi} ,120 [kN]	N ⁰ Rk,c,fi,120 [kN]	
FZEA II 10x40 M8, R, HCR	0,8	1,0	1,8	0,7	0,8	1,5	
FZEA II 12x40 M10, R, HCR	1,6	1,9	1,8	1,2	1,5	1,5	
FZEA II 14x40 M12, R, HCR	2,3	2,3	1,8	1,8	1,8	1,5	

Table C3.2: Characteristic values of shear resistance under fire exposure

	Fire re	R30 sistance 30 minutes	R60 Fire resistance 60 minute		
	V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	V _{Rk,s,fi,60} [k N]	M ⁰ _{Rk,s,fi,60} [Nm]	
FZEA II 10x40 M8, R, HCR	0,9	1,1	0,8	0,9	
FZEA II 12x40 M10, R, HCR	2,3	4,1	1,7	3,1	
FZEA II 14x40 M12, R, HCR	2,8	7,3	2,1	5,4	

	Fire re	R90 sistance 90 minutes	R120 Fire resistance 120 minutes		
	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	V _{Rk,s,fi,120} [k N]	M ⁰ _{Rk,s,fi,120} [Nm]	
FZEA II 10x40 M8, R, HCR	0,7	0,8	0,6	0,7	
FZEA II 12x40 M10, R, HCR	1,1	2,1	0,9	1,5	
FZEA II 14x40 M12, R, HCR	1,4	3,6	1,0	2,7	

Concrete pryout failure according to EN 1992-4:2018

Table C3.3: Minimum spacings and minimum edge distances under fire exposure

Type of anchor			FZEA II 10x40 M8	FZEA II 12x40 M10	FZEA II 14x40 M12
Edge distance ¹⁾	C cr,fi			2 h _{ef}	
Edge distance ¹⁾ $-\frac{c_c}{c_m}$	C min,fi	[mm]	40	45	50
Spacing —	S cr,fi			2 C _{cr,fi}	•
	Smin,fi		40	45	50

fischer Zykon-Hammerset anchor FZEA II

Performances

Characteristic values of resistance under tension and shear loads under fire exposure

Annex C 3

Appendix 10 / 11

Table C4.1: Displacements under tension load

Type of anchor			FZEA II 10x40 M8	FZEA II 12x40 M10	FZEA II 14x40 M12
Tension load in cracked concrete	Ν	[kN]	1,56	2,93	3,50
Dianlocoment	$\delta_{ m N0}$	[mm]	1,3		
Displacement	δ _{N∞}	– [mm] -	1,4		
Tension load in uncracked concrete	Ν	[kN]	3,52		
Displacement	δΝΟ	_ [mm]	1,3		
	δ_{N^∞}	– [mm] -		1,4	

Table C4.2: Displacements under shear load

Type of anchor			FZEA II 10x40 M8	FZEA II 12x40 M10	FZEA II 14x40 M12
Shear load in cracked an uncracked concrete, FZEA II	V	[kN]	4,7	7,6	10,7
Dianlacement	δvo	[100,000]	1,3	1,8	2,0
Displacement	δv∞	- [mm]	1,9	2,6	3,0
Shear load in cracked an uncracked concrete, FZEA II R, FZEA II HCR	V	[kN]	5,6	8,4	11,6
Displacement	δ _{V0}	[]	1,8	2,0	2,0
Displacement	δ _{V∞}	- [mm]	2,7	3,0	3,0

fischer Zykon-Hammerset anchor FZEA II