

DECLARATION OF PERFORMANCE

for fischer Zykon- Anchor FZA-Q (Mechanical anchor for use in concrete)

ΕN

E_S= 210 000 MPa

1. Unique identification code of the product-type: DoP 0166

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete. See appendix, especially annexes B1- B4

fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany 3. Manufacturer:

4. Authorised representative:

5. System/s of AVCP:

6. European Assessment Document: EAD 330232-01-0601, (Edition 12/ 2019)

ETA-16/0338; 2020-03-30 European Technical Assessment:

DIBt- Deutsches Institut für Bautechnik Technical Assessment Body: Notified body/ies: 1343 MPA Darmstadt / 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and Resistance to steel failure: quasi-static loading): Resistance to pull- out failure:

Resistance to concrete cone failure: Annex C1

Robustness: Annex C1

> Minimum edge distance and spacing: Annex C2 Edge distance to prevent splitting under load: Annex C1

Annex C1

Annex C1

Annex C4

Characteristic resistance to shear load (static and

quasi-static loading), Method A:

Resistance to steel failure (shear load): Annex C1

Resistance to pry-out failure: Annex C1

Characteristic resistance and displacements for

seismic performance categories C1 and C2:

Resistance to tension load, displacements, Annex C4

category C1:

Resistance to tension load, displacements, Annexes C4, C5 category C2:

Resistance to shear load, displacements, category

Annexes C3, C5

Resistance to shear load, displacements, category

Factor for annular gap:

Annex C4

Characteristic Resistance for simplified design: Method B: NPD

> NPD Method C:

Displacements and durability: Displacements under static and quasi-static Annex C5

loading:

Durability: Annexes A2, B1

Safety in case of fire (BWR 2)

Reaction to fire: Class (A1)

Resistance to fire: Fire resistance to steel failure (tension load): Annex C3 Fire resistance to pull-out failure (tension load): Annex C3

Fire resistance to steel failure (shear load): Annex C3

Fischer DATA DOP ECs V22.xlsm 1/2

 Appropriate Technical Documentation and/or Specific – Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Thilo Pregartner, Dr.-Ing.

ppa. The Mx

Peter Schillinger, Dipl.-Ing.

i.V. P. St

Tumlingen, 2020-04-20

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

Fischer DATA DOP_ECs_V22.xlsm 2/2

Specific Part

1 Technical description of the product

The fischer Zykon Anchor FZA-Q is an anchor made of hot-dipped galvanized steel which is placed into a drilled hole and anchored by torque controlled expansion and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

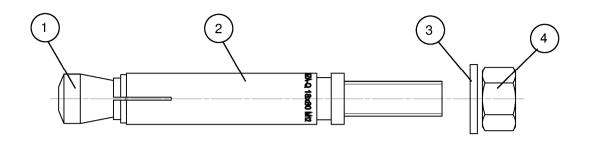
The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

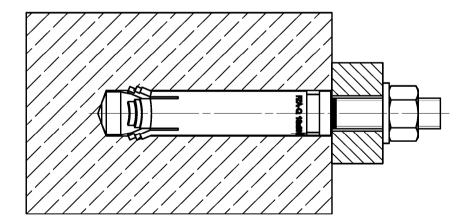
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1
Displacements (static and quasi-static loading)	See Annex C 5
Durability	See Annex B 1
Characteristic resistance and displacements for seismic performance category C1 and C2	See Annex C 4 and C 5


3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

- ① Cone bolt
- ② Expansion sleeve
- ③ Washer
- 4 Hexagon nut

Installed condition

(Fig. not to scale)

fischer Zykon Anchor FZA-Q	
Product description	Annex A 1
Installed condition	Appendix 2/ 13

Product marking and dimensions

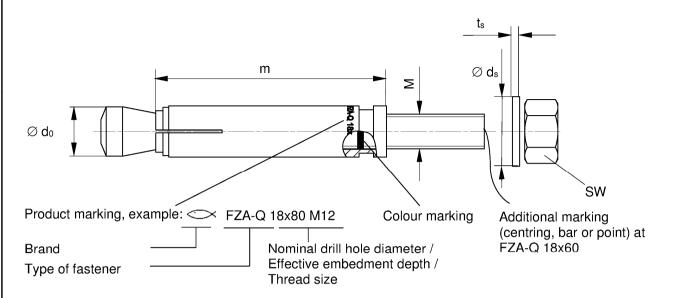


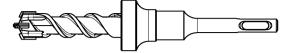
Table A2.1: Dimensions [mm]

0:			FZA-Q		
Size		14 x 50 M10	18 x 60 M12	18 x 80 M12	
M = d		10	1	2	
$\emptyset d_0$		13,5	17		
m	=	50	60	80	
SW		17	1	9	
ts		1,8	2,3		
Ø ds	≥	19	23		

Table A2.2: Materials (hot-dip galvanised $\geq 50\mu m$, EN ISO 10684:2011¹⁾)

Part	Designation	Material	
1	Cone bolt ²⁾	Cold form steel or free cutting steel class 8.8 acc. to EN ISO 898-1:2013 Nominal steel tensile strength $f_{uk} \le 1000 \text{ N/mm}^2$	
2	Expansion sleeve2)	Steel	
3	Washer	Cold strip, EN 10139:2016	
4	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012	

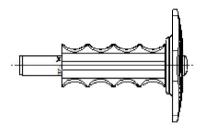
 $^{^{1)}}$ Alternative method: sherardised $\geq~50~\mu m,~EN~13811:2003$


(Fig. not to scale)

fischer Zykon Anchor FZA-Q	
Product description	Annex A 2
Product marking, dimensions and materials	Appendix 3/ 13

²⁾ Optional: clear paint

Tools


Drill bit FZBB

Standard drill bit

Setting tool FZE

Machine setting tool FZA-Q

Optional fischer filling disc FFD for e.g. seismic applications

fischer Zykon Anchor FZA-Q

Intended Use Tools

Annex A 3

Appendix 4/ 13

Specifications of intended use						
Ci-o	FZA-Q					
Size	14 x 50 M10	18 x 60 M12	18 x 80 M12			
Hot-dip galvanised						
Static and quasi-static loads						
Cracked and uncracked concrete		/				
C1		V				
Seismic action for performance category C2						
Fire exposure						

Base materials:

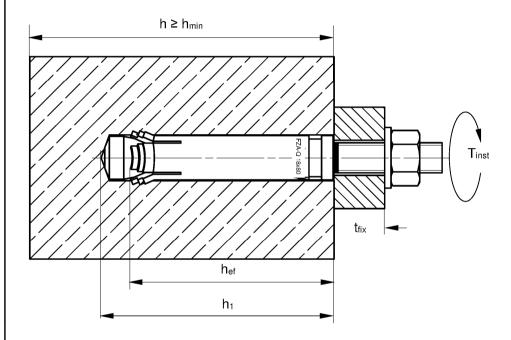
 Compacted reinforced or unreinforced normal weight concrete without fibers (cracked and uncracked) of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

· Structures subject to dry internal conditions

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018


fischer Zykon Anchor FZA-Q	
Intended Use	Annex B 1
Specifications	Appendix 5/ 13

Installation parameters

Table B2.1: Installation parameters

Size		FZA-Q				
		14 x 50 M10	18 x 60 M12	18 x 80 M12		
Nominal drill hole diameter	d₀			14	18	3
Depth of drill hole in concrete	h ₁	=	— [mm]	58	74	94
Cutting diameter of drill bit	d _{cut}			14,50	18,	50
Diameter of clearance hole in the fixture	df	\leq		12	14	4
Maximum installation torque1)	Tinst		[Nm]	20	4.	5

¹⁾ Minimum installation torque = hand - tightening

h_{ef} = Effective embedment depth

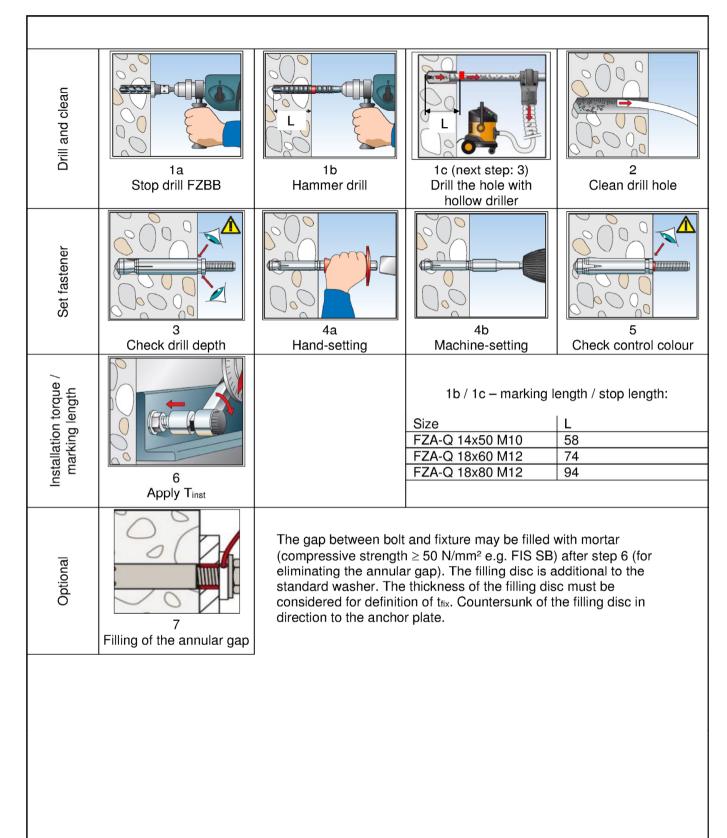
t_{fix} = Thickness of the fixture
 h₁ = Depth of drill hole to deepest point
 h = Thickness of the concrete member

 h_{min} = Minimum thickness of concrete member

 $T_{inst} \leq Maximum installation torque$

fischer Zykon Anchor FZA-Q	
Intended Use	Annex B 2
Installation parameters	Appendix 6/ 13

Installation instructions


- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Checking before placing the fastener to ensure that the strength class of the concrete in which the fastener
 is to be placed is in the range given and is not lower than that of the concrete to which the characteristic
 loads apply
- · Check of concrete being well compacted, e.g. without significant voids
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load is not in the direction of load application

fischer Zykon Anchor FZA-Q

Installation instructions

Annex B 3

Appendix 7/13

(Fig. not to scale)

fischer Zykon Anchor FZA-Q

Intended Use
Installation instructions

Appendix 8/ 13

 Table C1.1:
 Characteristic tension resistance under static and quasi-static action

Size			FZA-Q		
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12
Steel failure					
Characteristic resistance	$N_{Rk,s}$	[kN]	40,7 60,1		
Partial factor for steel failure	γMs	[-]		1,5	
Modulus of elasticity	Es	[N/mm ²]		210.000	
Pullout failure					
Characteristic cracked concrete resistance in	NI	[IAN]]	10,0	16,0	22,2
C20/25 uncracked concrete	— N _{Rk,р}	[kN]	17,4	22,9	35,2
Increasing factor for N _{Rk,p}	Ψc	[-]	(f _{ck} / 20) ^{0,5}		
Installation safety factor	γinst	[-]	1,0		
Concrete cone and splitting failure					
Effective embedment depth	h _{ef}	[mm]	50	60	80
Factor for cracked concrete	k _{cr,N}	r 1		7,7	
Factor for uncracked concrete	k ucr,N	— [-] 		11,0	
Characteristic spacing	Scr,N		3 h _{ef}		
Characteristic edge distance	C _{cr,N}	[mm]	1,5 h _{ef}		
Characteristic spacing	Scr,sp	— [mm] -	3,5 h _{ef}		
Characteristic edge distance	Ccr,sp		1,75 h _{ef}		
Characteristic resistance to splitting	N ⁰ Rk,sp	[kN]	r	min $\{N^0_{Rk,c}; N_{Rk,p}\}^{1}$	

¹⁾ N⁰Rk,c according to EN 1992-4:2018

Table C1.2: Characteristic shear resistance under static and quasi-static action

Size		FZA-Q			
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12
Steel failure without lever arm					
Characteristic resistance	$V^0_{Rk,s}$	[kN]	20,4	33	,7
Partial factor for steel failure	γMs	[]		1,25	
Factor for ductility	k ₇	- [-]		1,0	
Steel failure with lever arm and cor	ncrete pryout	failure			
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	60,0	10:	5,0
Partial factor for steel failure	γMs			1,25	
Factor for ductility	k ₇	[-]		1,0	
Factor for pryout failure	k ₈	_	1,0 2,0		0
Concrete edge failure					
Effective length in concrete	lf	[mm]	50 60		80
Effective diameter of fastener	d _{nom}	[]	14 18		

fischer Zykon Anchor FZA-Q	
Performances	

Characteristic tension resistance under static and quasi-static action Characteristic shear resistance under static and quasi-static action Annex C 1

Appendix 9/13

Table C2.1: Minimum thickness of concrete members, minimum spacings and edge distances

				FZA-Q				
Size			14 x 50 M10	14 x 50 M10 18 x 60 M12	14 x 50 M10 18 x 60 M12 18 x 80 M12			
Minimum thickness of concrete member		h _{min}	[mm]	100	120	160		
Cracked c	oncrete							
Minimum	spacing	Smin	[mm]	120	120	75		
IVIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	edge distance	C _{min}	נוווווו	100	100	75		
Uncracked	d concrete							
Minimum	nacina	Smin	[mama]	120	100	75		
Minimum s	pacing	for c≥	[mm]	120	120	90		
Minimum	udaa diatanaa	C _{min}	[mm]	100	100	90		
Minimum edge distance		for s≥	[mm]	180	160	75		

Intermediate values for smin and cmin by linear interpolation

fischer Zykon Anchor FZA-Q	
Performances Minimum thickness of concrete member, minimum spacings and edge distances	Annex C 2
willing the kiless of concrete member, milling spacings and edge distances	Appendix 10/ 13

			R30			R60	
FZA-Q		$N_{Rk,s,fi}$	N _{Rk,p,fi}	N _{Rk,c,fi}	N _{Rk,s,fi}	N _{Rk,p,fi}	1
14 x 50 M10		2,6	2,7	3,0	1,4	2,7	3,0
18 x 60 M12	[kN]	8,4	4,0	4,8		4,0	4,8
18 x 80 M12		0,4	5,5	9,9	4,2	5,5	9,9
FZA-Q		NI	R90	l N	NI=	R120	1
14 x 50 M10		N _{Rk,s,fi}	N _{Rk,p,fi}	N _{Rk,c,fi}	N _{Rk,s,fi}	N _{Rk,p,fi}	N _{Rk,0}
18 x 60 M12	[kN]	1,0	4,0	4,8	0,0	2,1 3,2	3,8
18 x 80 M12	. [[[[]]	2,5	5,5	9,9	1,7	4,4	7,9
ZA-Q		$V_{Rk,s,fi}$	R30 [kN] N	∕I ⁰ Rk,s,fi [Nm]	V _{Rk,s,fi}	R60 [kN]	M ⁰ Rk,s,fi [N
1 ZA-Q		$V_{Rk,s,fi}$	[kN] N	∕I ⁰ Rk,s,fi [Nm]	V _{Rk,s,fi}	[kN]	M ⁰ Rk,s,fi [N
14 x 50 M10		2,6	5	3,4	1,4		1,8
18 x 60 M12 18 x 80 M12		8,4	4	13,1	4,2 6,5		
10 X 00 W112							
			R90			R120	
		\ /	LFVIJ V	∕I ⁰ Rk,s,fi [Nm]	V _{Rk,s,fi}	IKNII	$M^0_{Rk,s,fi}$ [N
FZA-Q		$V_{Rk,s,fi}$	[KIA]		• 1111,5,11	[KIN]	IVI*RK,S,fi [IN
14 x 50 M10		V _{Rk,s,fi}		1,3	0,8		1,0
14 x 50 M10 18 x 60 M12)		+		
14 x 50 M10 18 x 60 M12		1,0)	1,3	0,8		1,0
14 x 50 M10 18 x 60 M12 18 x 80 M12	Minimum spacir exposure for ten	1,0 2,5 ngs and r	ninimum e	1,3 3,9 dge dista	0,8 1,7		1,0
14 x 50 M10 18 x 60 M12 18 x 80 M12 Table C3.3:		1,0 2,5 ngs and r	ninimum e shear load	1,3 3,9 dge dista	0,8 1,7 nces unde	r fire	1,0 2,6
14 x 50 M10 18 x 60 M12 18 x 80 M12 Table C3.3:	exposure for ten	1,0 2,5 ngs and r	ninimum e	1,3 3,9 dge dista	0,8 1,7 nces unde FZA-Q 3 x 60 M12	r fire	1,0
FZA-Q 14 x 50 M10 18 x 60 M12 18 x 80 M12 Table C3.3: Size Spacing		1,0 2,5 ngs and r	ninimum e shear load	1,3 3,9 dge dista	0,8 1,7 nces unde	r fire	1,0 2,6

Appendix 11/13

Table C4.1: Characteristic values of tension and shear resistance under seismic performance category C1

Cina		FZA-Q				
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12	
Steel failure						
Characteristic resistance tension load C1	$N_{\text{Rk,s,C1}}$	[kN]	40,7	40,7 60,1		
Partial factor for steel failure	γMs,C1	[-]	1,5			
Pullout failure						
Characteristic resistance tension load in cracked concrete C1	$N_{\text{Rk},p,C1}$	[kN]	10,0	16,0	22,0	
Installation sensitivity factor	γ2,C1	[-]	1,0			
Steel failure without lever arm						
Characteristic resistance shear load C1	$V_{Rk,s,C1}$	[kN]	15,9 30,3			
Partial factor for steel failure	γMs,C1	[-]		1,25		

Table C4.2: Characteristic values of tension and shear resistance under seismic performance category C2

Cinc	FZA-Q					
Size	14 x 50 M10	18 x 60 M12	18 x 80 M12			
Steel failure						
Characteristic resistance tension load C2	$N_{\text{Rk,s,C2}}$	[kN]	40,7	40,7 60,1		
Partial factor for steel failure	γ Ms,C2	[-]	1,5			
Pullout failure						
Characteristic resistance tension load in cracked concrete C2	$N_{\text{Rk},p,C2}$	[kN]	4,0	4,7	6,5	
Installation safety factor	γ2,C2	[-]	1,0			
Steel failure without lever arm						
Characteristic resistance shear load C2	V _{Rk,s,C2}	[kN]	11,8 23,3			
Partial factor for steel failure	γMs,C2	[-]	1,25			

Table C4.3: Annular gap for seismic performance categories C1 and C2

Δ_{gap}								
$\Delta_{gap} = d_f - d$	[mm]	0,001)	0,25	0,50	0,75	1,00	1,25	≥ 1,50
$\alpha_{\sf gap}$		1,00	0,86	0,75	0,66	0,60	0,54	0,50

 $^{^{\}text{1})}$ Filling of the Δ_{gap} according Annex B4

fischer Zykon Anchor FZA-Q	
Performances	Annex C 4
Characteristic resistance under seismic performance categories C1 and C2	Appendix 12/ 13

Table C5.1:	Displacements under static and quasi-static tension loads
-------------	---

Size	FZA-Q				
Size		14 x 50 M10	18 x 60 M12	18 x 80 M12	
Tension load in cracked concrete C20/25	Ν	[kN]	5,1	10,	5
Diaplacements	δ_{N0}	[]	0,4	0,8	
Displacements	δn∞	- [mm]	0,9	1,7	
Tension load in uncracked concrete C20/25	N	[kN]	12,2	16,2	
Displacements	δνο	- [mm]	0,9	1,0	
Displacements	δ _{N∞}	- [mm]	1,5	1,	7

Table C5.2: Displacements under static and quasi-static shear loads

Size		FZA-Q			
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12
Shear load in cracked and uncracked concrete C20/25	٧	[kN]	9,5	19,	3
Displacements	δνο	- [mm]	0,9	2,	1
	${\delta_{V_{\infty}}}$ [mm]	1,6	3,	1	

Table C5.3: Displacements under tension loads for seismic performance category C2

Size			FZA-Q			
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12	
Disalessant	DLS	δN,C2	3,2	4,0		
Displacement	ULS	$\frac{\delta_{N,C2}}{\delta_{N,C2}}$ [mm]	13,3	12,9		

Table C5.4: Displacements under shear loads for seismic performance category C2

Size			FZA-Q		
Size			14 x 50 M10 18 x 60 M12 18 x 80 M12		
Displacement	DLS	δv,c2	3,6	4,6	4,6
	ULS	$\delta_{V,C2}$ [mm]	6,8	6,8	6,6

fischer Zyl	kon Anchor	FZA-Q

Performances

Displacement under tension and shear loads

Annex C 5

Appendix 13/13