

DECLARATION OF PERFORMANCE

DoP 0321

for fischer Strong Undercut Anchor FSU (Mechanical fastener for use in concrete)

EN

F₀= 210 000 MPa

1. Unique identification code of the product-type: DoP 0321

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially annexes B1 -

B5.

3. Manufacturer: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany

Authorised representative:
 —

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330232-01-0601-v02, Edition 06/2023

European Technical Assessment: ETA-22/0674; 2023-07-26

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading) Method A:

Resistance to steel failure: see appendix, especially annex C1
Resistance to pull- out failure: see appendix, especially annex C1
Resistance to concrete cone failure: see appendix, especially annex C1

Robustness: see appendix, especially annex C1

Minimum edge distance and spacing: see appendix, especially annex C3 Edge distance to prevent splitting under load: see appendix, especially annex C1

Characteristic resistance to shear load (static and quasi-static loading), Method A:

Resistance to steel failure under shear load: see appendix, especially annex C2

Resistance to pry-out failure: see appendix, especially annex C2

Characteristic Resistance for simplified design:

Method B: NPD Method C: NPD

Displacements:

Displacements under static and quasi-static loading: see appendix, especially annex C6

Characteristic resistance and displacements for seismic performance categories C1 and C2:

Resistance to tension load, displacements, category C1: see appendix, especially annex C5
Resistance to tension load, displacements, category C2: see appendix, especially annexes C5, C6
Resistance to shear load, displacements, category C1: see appendix, especially annex C5
Resistance to shear load, displacements, category C2: see appendix, especially annexes C5, C6
Factor for applier gap: see appendix, especially annex C5

Factor for annular gap: see appendix, especially annex C5

Safety in case of fire (BWR 2)

Reaction to fire: Class (A1)

Resistance to fire:

Fire resistance to steel failure (tension load): see appendix, especially annex C4 Fire resistance to pull-out failure (tension load): see appendix, especially annex C4 Fire resistance to steel failure (shear load): see appendix, especially annex C4

Durability:

Durability: see appendix, especially annexes A2, B1

Fischer DATA DOP_ECs_V89.xlsm 1/2

Appropriate Technical Documentation and/or Specific
 Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering

Jürgen Grün, Managing Director Chemistry & Quality

Tumlingen, 2023-09-01

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Translation guidance Essential Characteristics and Performance Parameters for Annexes

-	chanical resistance and stability (BWR 1)	
Ch	aracteristic resistance under static and quasi-static loading, Method A	
1	Resistance to steel failure:	N _{Rk,s} [kN], E _s [N/mm ²]
2	Resistance to pull- out failure:	$N_{Rk,p}$ [kN], ψ_c
3	Resistance to concrete cone failure:	$k_{cr,N}$, $k_{ucr,N}$ [-], h_{ef} , $c_{cr,N}$ [mm]
4	Robustness:	Y _{inst} [-]
5	Minimum edge distance and spacing:	c _{min} , s _{min} , h _{min} [mm]
6	Edge distance to prevent splitting under load:	N ⁰ _{Rk,sp} [kN], c _{cr,sp} [mm]
Ch	aracteristic resistance to shear load (static and quasi-static loading), Method A	<u> </u>
7	Resistance to steel failure under shear load:	V ⁰ _{Rk,s} [kN], M ⁰ _{Rk,s} [Nm], k ₇ [-]
8	Resistance to pry-out failure:	k ₈ [-]
Ch	aracteristic Resistance for simplified design	<u>'</u>
9	Method B:	F_{Rk}^{0} [kN], c_{cr} , s_{cr} [mm]
10	Method C:	F _{Rk} [kN]
Dis	placements	-
11	Displacements under static and quasi-static loading:	$\delta_{N0},\delta_{N^{\infty},}\delta_{V0,}\delta_{V^{\infty}}[mm]$
Ch	aracteristic resistance and displacements for seismic performance categories C1 ar	nd C2
12	Resistance to tension load, displacements, category C1:	N _{Rk,s,C1} [kN], N _{Rk,p,C1} [kN]
	Resistance to tension load, displacements, category C2:	$N_{Rk,s,C2} \left[kN\right], N_{Rk,p,C2} \left[kN\right], \delta_{N,C2} \left[mm\right]$
13	Resistance to shear load, displacements, category C1:	V _{Rk,s,C1} [kN]
	Resistance to shear load, displacements, category C2:	$V_{Rk,s,C2}$ [kN], $\delta_{V,C2}$ [mm]
14	Factor for annular gap	α _{gap} [-]
Sa	fety in case of fire (BWR 2)	-
15	Reaction to fire:	Class
Re	I sistance to fire:	<u> </u>
16	Fire resistance to steel failure (tension load):	N _{Rk,s,fi} [kN]
17	Fire resistance to pull-out failure (tension load):	N _{Rk,p,fi} [kN]
40	Fire resistance to steel failure (shear load):	$V_{Rk,s,fi}$ [kN], $M^0_{Rk,s,fi}$ [Nm]
18		
	Legistry decision of durability	

Fischer DATA DOP_ECs_V89.xlsm Appendix 0

Specific Part

1 Technical description of the product

The fischer Strong Undercut Anchor is an anchor made of galvanized steel which is placed in a cylindrical hole and anchored by displacement-controlled, self-undercutted mechanical interlock. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

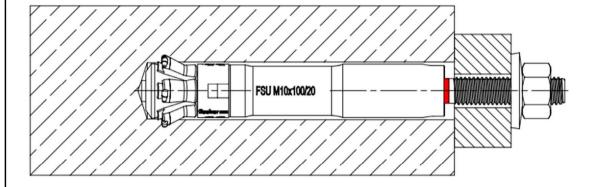
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading), Method A	See Annex C 1 and C 3
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements	See Annex C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 5 and C 6

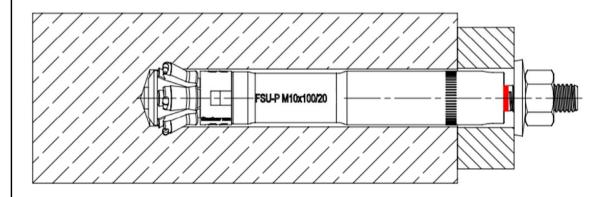
3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		
Resistance to fire	See Annex C 4		

3.3 Aspects of Durability

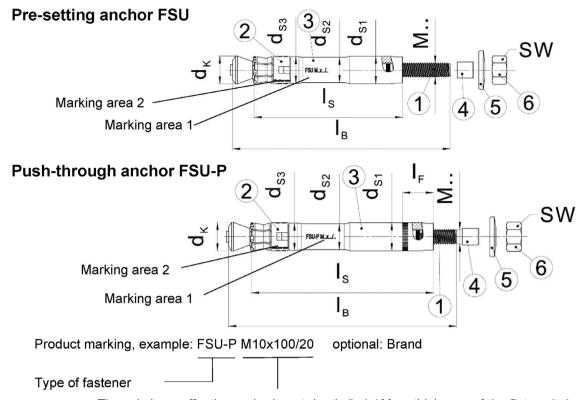

Essential characteristic	Performance		
Durability	See Annex B 1		

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with the European Assessment Document EAD 330232-01-0601-v02 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Pre-setting anchor FSU


Push-through anchor FSU-P

(Fig. not to scale)

Froduct description
Installed condition

Annex A 1
Appendix 3 / 16

Thread size x effective embedment depth (h_{ef}) / Max. thickness of the fixture (t_{fix})

Table A2.1: Dimensions [mm]

Type of anchor	t fix	dк	d s1	d _{S2}	d s3	М	ls	lΒ	l _F	SW
FSU M10x100/20	≤ 20	19,3	19	17,5	18,5	10	100	148	-	17
FSU M12x125/30	≤ 30	21,5	21	19,3	20,5	12	125	188	_	19
FSU M12x125/50	≤ 50	21,5	21	19,3	20,5	12	125	208	_	19
FSU-P M10x100/20	≥ 10 ≤ 20	19,3	19	17,5	18,5	10	120	148	20	17
FSU-P M12x125/30	≥ 12 ≤ 30	21,5	21	19,3	20,5	12	155	188	30	19
FSU-P M12x125/50	≥ 12 ≤ 50	21,5	21	19,3	20,5	12	175	208	50	19

Table A2.2: Materials FSU

Part	Designation	Material
Part	Designation	FSU, FSU-P
1	Cone bolt	Steel, zinc plated ≥ 5 µm according to EN ISO 4042:2018
2 Plastic sleeve 3 Sleeve 4 Protective cap		Plastic
		Steel, zinc plated ≥ 5 µm according to EN ISO 4042:2018
		Plastic
5	Washer	Steel, zinc plated ≥ 5 µm according to EN ISO 4042:2018
6	Hexagon nut	Steel, zinc plated ≥ 5 µm according to EN ISO 4042:2018

(Fig. not to scale)

fischer Strong Undercut Anchor FSU	
Product description	Annex A 2
Product marking, dimensions and materials	Appendix 4 / 16

Stop drill bit FSU-SD

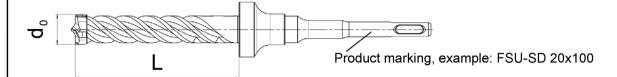


Table A3.1: Required stop drill bits for FSU

Type of anchor	Type of stop drill bit	d ₀ [mm]	L [mm]	
FSU M10x100/20	FSU-SD 20x100	20	107	
FSU M12x125/30	FSU-SD 22x125	22	107 132 127 162	
FSU M12x125/50	F30-3D 22X123	22	132	
FSU-P M10x100/20	FSU-SD 20x120	20	127	
FSU-P M12x125/30	FSU-SD 22x155	22	162	
FSU-P M12x125/50	FSU-SD 22x175	22	182	

Machine setting tool FSU-ST

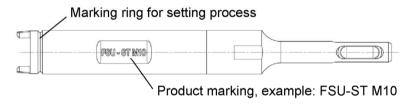


Table A3.2: Required setting tools for FSU

Type of anchor	Type of setting tool
FSU M10x100/20	FSU-ST M10
FSU M12x125/30	- FSU-ST M12
FSU M12x125/50	F30-31 W12
FSU-P M10x100/20	FSU-ST M10
FSU-P M12x125/30	FSU-ST M12
FSU-P M12x125/50	7 F30-31 W12

Table A3.3: Recommendations for hammer drills used with FSU-ST

Technical feature		Recommendation
Drill chuck [-]		SDS plus
Hammer drilling RPM	[rpm]	600 - 1800
Hammer impact energy	[J]	2 - 5

(Fig. not to scale)

fischer Strong Undercut Anchor FSU	
Product description Setting tools	Annex A 3 Appendix 5 / 16

Specifications of intended use

Fastenings subject to:

		FSU			FSU-P			
Size	M10x100 /20	M12x125 /30	M12x125 /50	M10x100 /20	M12x125 /30	M12x125 /50		
Static and quasi-static load	ds							
Cracked and uncracked concrete			,					
Seismic performance C1	1		✓					
category	2							
Fire exposure								

Base materials:

- Compacted reinforced and unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206:2013+A2:2021
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021

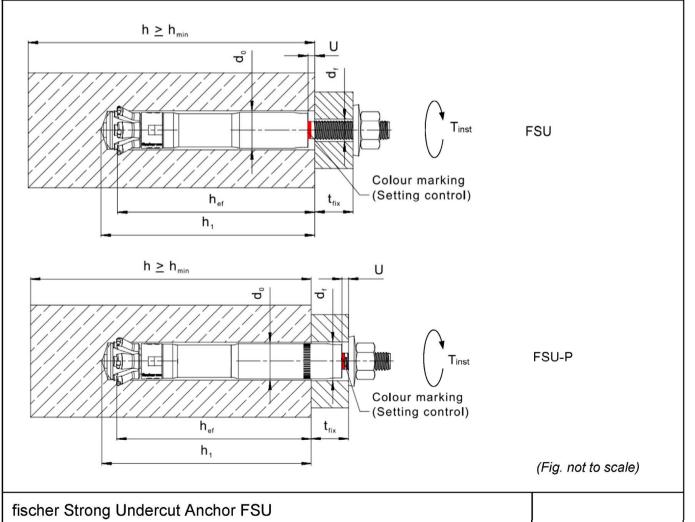
Use conditions (Environmental conditions):

· Structures subject to dry internal conditions

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055:2018.
- · For requirements to resistance to fire local spalling of the concrete cover must be avoided

fischer Strong Undercut Anchor FSU	
Intended Use	Annex B 1
Specifications	Appendix 6 / 16

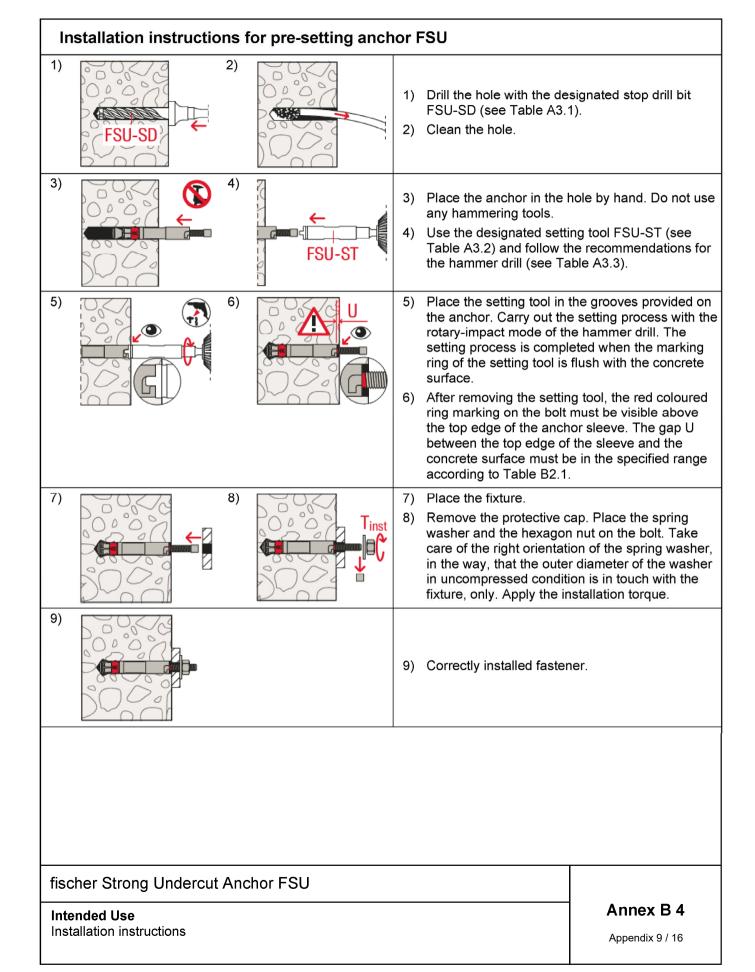

Installation parameters

Intended Use

Installation parameters

Table B2.1: Installation parameters

Size				FSU		FSU-P		
			M10x100 /20	M12x125 /30	M12x125 /50	M10x100 /20	M12x125 /30	M12x125 /50
Nominal drill hole diameter	d ₀		20	22	22	20	22	22
Cutting diameter of drill bits	d _{cut} ≤		20,5	22,5	22,5	20,5	22,5	22,5
Depth of drill hole to deepest point	h₁≥		107	132	132	127-t _{fix}	162-t _{fix}	182-t _{fix}
Effective embedment depth	h _{ef} ≥	[mm]	100	125	125	100	125	125
Diameter of clearance hole in the fixture	$d_{f} \leq$		12	14	14	21	23	23
Thickness of the fixture	t fix		≤ 20	≤ 30	≤ 50	≥ 10 ≤ 20	≥ 12 ≤ 30	≥ 12 ≤ 50
Gap after setting	U		2 - 5	3 - 6	3 - 6	2 - 5	3 - 6	3 - 6
Required setting torque	T _{inst}	[Nm]	40	80	80	40	80	80


Annex B 2

Appendix 7 / 16

Installation instructions

- Fastener installation carried out by appropriately qualified personnel according to the design drawings and under the supervision of the person responsible for technical matters on the site.
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener.
- Fastener installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools (machine setting tool FSU-ST, stop drill bit FSU-SD).
- Drill hole created perpendicular (tolerance +/- 5°) to concrete surface.
- · Cleaning the hole of drilling dust.
- Fastener installation ensuring complete expansion of the sleeve with checking that the coloured ring marking on the bolt is visible above the top edge of the anchor sleeve, therefore it is required using the setting tool FSU-ST, that is the appropriate depth ring marking of the setting tool at least flush with the concrete surface (pre-setting) respecting with the fixture surface (Push-through-setting).
- Fastener installation ensuring complete shear load capacity, after setting the gap between the top edge of the sleeve and the concrete surface (pre-setting) or with surface of the fixture (Push-through-setting) has to be in the specified range according to Annex B 2, Table B2.1.
- · Positioning of the drill holes and the undercut without damaging the reinforcement.
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance, if the aborted drill hole is filled with high strength mortar and, if under shear or oblique tension load, it is not in the direction of load application.
- · Application of the torque moment given in Annex B 2, Table B2.1 using a calibrated torque wrench.

fischer Strong Undercut Anchor FSU	
Intended Use Installation instructions	Annex B 3 Appendix 8 / 16

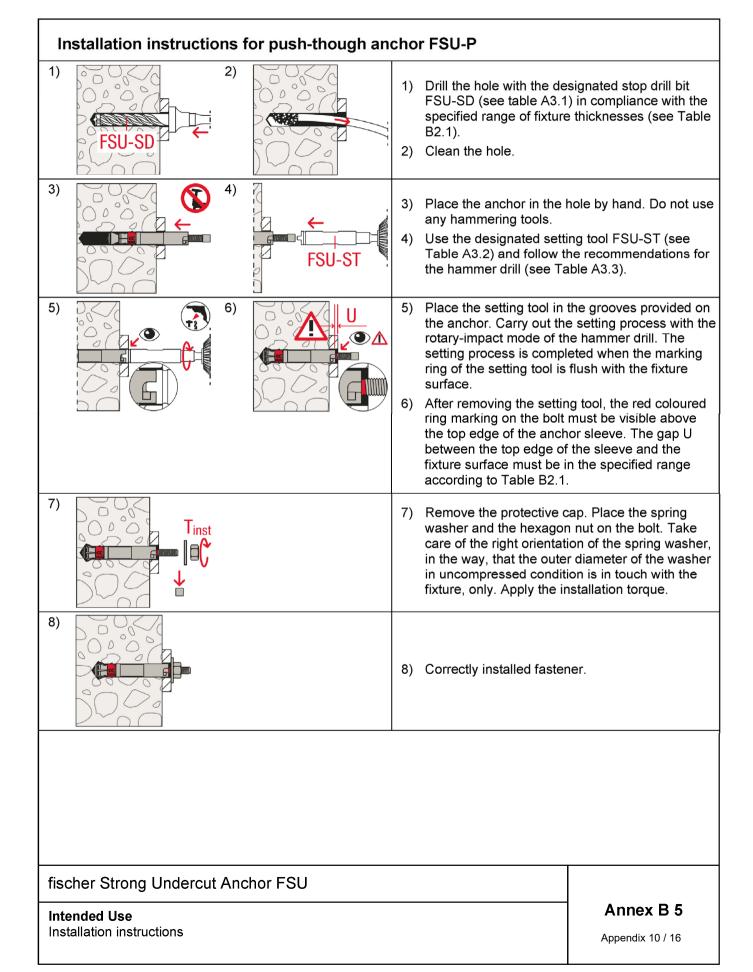


Table C1.1: Characteristic tension resistance under static and quasi-static action

Ci-a			FSU, FSU-P		
Size				M10x100	M12x125
Steel failure					
Characteristic resistanc	е	N _{Rk,s}	[kN]	44,2	65,9
Partial factor for steel fa	ilure	γMs	[-]	1,5	
Pullout failure					
Characteristic	cracked concrete	— N _{Rk,p}	[kN]	30,0	40,0
resistance in C20/25	uncracked concrete	I N RK,p	[KIN]	44,2	65,9
			C25/30	1,12	2
		ψο[-]	C30/37	1,22	
Increasing factor for N _{RI}	ς,p		C35/45	1,32	
$N_{Rk,p} = \psi_c * N_{Rk,p} (C20/25)$	5)		C40/50	1,41	
			C45/55	1,50	
			C50/60	1,58	
Installation sensitivity fa	ctor	γinst	[-]	1,0	
Concrete cone and sp	litting failure				
Effective embedment de	epth	h _{ef}	[mm]	100	125
Factor for cracked conc	rete	$\mathbf{k}_{cr,N}$		8,9	
Factor for uncracked concrete Characteristic spacing Characteristic edge distance Characteristic spacing		k ucr,N	— [-] <u> </u>	12,7	7
		Scr,N		3 x h	ef
		C _{cr,N}	[mm]	1,5 x h _{ef}	
		S cr,sp		3 x h _{ef}	
Characteristic edge dist	ance	C cr,sp		1,5 x	h _{ef}
Characteristic resistanc	e to splitting	N^0 Rk,sp	[kN]	min {N ⁰ _{Rk,c} ;	$N_{Rk,p}$ ¹⁾

 $^{^{1)}}$ $N^0_{Rk,c}$ according to EN 1992-4:2018

fischer Strong Undercut Anchor FSU	
Performances	Annex C 1
Characteristic tension resistance under static and quasi-static action	Appendix 11 / 16

 Table C2.1:
 Characteristic shear resistance under static and quasi-static action FSU

Si-a			FSU	J		
Size		M10x100	M12x125			
Steel failure without lever arm						
Characteristic resistance	$V^0_{Rk,s}$	[kN]	26,8	38,2		
Partial factor for steel failure	γMs		1,25	5		
Factor for ductility	k ₇	[-]	1,0			
Steel failure with lever arm						
Characteristic bending resistance	M^0 Rk,s	[Nm]	59,8	104,8		
Partial factor for steel failure	γMs	[-]	1,25			
Concrete pryout failure						
Factor for pryout failure	k 8	[-]	2,0			
Concrete edge failure						
Effective length in	l f		100	125		
concrete	"	[mm]	100	120		
Effective diameter of fastener	\mathbf{d}_{nom}		19	21		

Table C2.2: Characteristic shear resistance under static and quasi-static action FSU-P

Size			FSU-P				
Size			M10x100		M12x125		
Steel failure without lever arm							
Charactaristic registers	for t _{fix}	[mm]	10 ≤ t _{fix} < 15	15 ≤ t _{fix} ≤ 20	$12 \le t_{\text{fix}} < 20$	$20 \le t_{fix} \le 50$	
Characteristic resistance	$V^0_{Rk,s}$	[kN]	66,1	69,6	86,4	96,7	
Partial factor for steel failure	γMs	r 1	1,25				
Factor for ductility	k 7	[-]	1,0				
Steel failure with lever arm							
Characteristic bending resistance	M^0 Rk,s	[Nm]	59,8 104		4,8		
Partial factor for steel failure	γMs	[-]	1,25				
Concrete pryout failure							
Factor for pryout failure	k 8		2,0				
Concrete edge failure							
Effective length in concrete	lf	[mm]	100		125		
Effective diameter of fastener	d_{nom}		19	9	2	1	

fischer Strong Undercut Anchor FSU	
Performances	Annex C 2
Characteristic shear resistance under static and quasi-static action	Appendix 12 / 16

Table C3.1: Minimum thickness of concrete members FSU

Size			FSU				
Size			M10x100/20	M12x125/30	M12x125/50		
Minimum thickness of concrete member	h _{min}	[mm]	170	2	15		

Table C3.2: Minimum thickness of concrete members FSU-P

Sizo	ize			FSU-P			
Size				M12x125/30	M12x125/50		
Maximum thickness of the fixture	t _{fix,max}	[mm]	20	30	50		
Minimum thickness of concrete member	h_{min}	[mm]	190-t _{fix} 1)	245-t _{fix} 1)	265-t _{fix} 1)		

 $^{^{1)}}$ t_{fix} = actual thickness of the fixture

Table C3.3: Minimum spacings and edge distances

Size			FSU, FSU-P				
Size		M10x100/20	M12x125/30	M12x125/50			
Minimum spacing	S _{min}	[mm]	80	90			
Minimum edge distance	C _{min}	- [mm]	80	90			

fischer Strong Undercut Anchor FSU	
Performances	Annex C 3
Minimum thickness of concrete member, minimum spacings and edge distances	Appendix 13 / 16

 Table C4.1:
 Characteristic tension resistance under fire exposure

C:				FSU, FSU-P			
Size				M10x100	M12x125		
		R30		3,7	4,5		
Characteristic resistance steel failure	$N_{\text{Rk},\text{s},\text{fi}}$	R60	F1 A 17	2,2	3,2		
		R90		1,7	2,8		
		R120		1,5	2,6		
Characteristic resistance	NI	R30-R90	[kN]	19,9	34,8		
Concrete cone failure	$N_{Rk,c,fi}$	R120		15,9	27,7		
Characteristic resistance	Na. s	R30-R90		7,5	10,0		
pullout failure	$N_{Rk,p,fi}$	R120		6,0	8,0		

 Table C4.2:
 Characteristic shear resistance under fire exposure

0:		FSU, FSU-P			
Size		M10x100	M12x125		
	R30_	3,7	4,4		
Characteristic resistance steel failure without lever arm	R60 ILNII	2,2	3,0		
	$V_{Rk,s,fi}$ $\frac{100}{R90}$ [kN]	1,7	2,6		
	R120	1,5	2,3		
	R30_	4,8	6,9		
Characteristic bending	R60	2,9	5,0		
resistance steel failure	$M^{0}_{Rk,s,fi}$ $R90$ [Nm]	2,2	4,4		
with lever arm	R120	1,9	4,0		

Concrete pryout failure according to EN 1992-4:2018

Table C4.3: Minimum spacings and **minimum edge distances** under **fire exposure** for **tension** and **shear** load

Size			FSU, FSU-P		
Size			All sizes		
Spacing	S _{min,fi}		4∙h _{ef}		
Edge distance	C _{min,fi}	[mm]	$c_{\text{min,fi}} = 2 \cdot h_{\text{ef}},$ for fire exposure from more than one side $c_{\text{min,fi}} \ge 300 \text{ mm}$		

fischer Strong Undercut Anchor FSU

Performances

Characteristic resistance under fire exposure

Annex C 4

Appendix 14 / 16

Table C5.1: Characteristic values of tension and shear resistance under seismic performance category C1

Ci	Size				FSU, FSU-P		
Size				M10x	100	M12	x125
Factor for annular gap α_{gap} [-]				0,5			
Steel failure							
Characteristic resistance tension	load C1	N _{Rk,s,C1}	[kN]	44,	,2	65	5,9
Pullout failure							
Characteristic resistance tension load in cracked concrete C1			[kN]	30,0		40,0	
Steel failure without lever arm							
	for t _{fix}		[mm]	10 ≤ t _{fix} < 15	$15 \le t_{fix} \le 20$	$12 \le t_{\text{fix}} < 20$	$20 \le t_{fix} \le 50$
Characteristic resistance shear load C1	V _{Rk,s,C1} FSU V _{Rk,s,C1} FSU-P		- [kN]	18,8		26,8	
				46,3	48,7	60,5	67,7

Table C5.2: Characteristic values of tension and shear resistance under seismic performance category C2

Size				FSU, FSU-P				
Size	OIZE .				100	M12	M12x125	
Factor for annular gap α_{gap} [-]				0,5				
Steel failure								
Characteristic resistance tension	load C2	$N_{\text{Rk,s,C2}}$	[kN]	44,	2	65	5,9	
Pullout failure								
Characteristic resistance tension load in cracked concrete C2 [kN]			[kN]	30,0		40,0		
Steel failure without lever arm								
	for t _{fix}		[mm]	10 ≤ t _{fix} < 15	15 ≤ t _{fix} ≤ 20	12 ≤ t _{fix} < 20	$20 \le t_{fix} \le 50$	
Characteristic resistance shear load C2	V _{Rk,s,C2} FSU V _{Rk,s,C2} FSU-P		- [kN]	20,1		24,5		
1000				39,6	41,8	51,8	62,9	

fischer Strong Undercut Anchor FSU	
Performances	Annex C 5
Characteristic resistance under seismic performance categories C1 and C2	Appendix 15 / 16

Table C6.1: Displacements under static and quasi-static tension loads

Size		FSU, FSU-P		
Size			M10x100	M12x125
Tension load in cracked concrete C20/25	N	[kN]	22,1	32,1
Displacements	δηο	[mm]	1,1	1,3
Displacements	$\frac{\delta_{N_{\infty}}}{\delta_{N_{\infty}}}$ [mm]		2,8	3,0
Tension load in uncracked concrete C20/25	N	[kN]	22,1	32,1
Diaplacements	δηο	[mm]	1,1	1,3
Displacements	$\delta_{N^{\infty}}$	[mm]	2,3	2,3

Table C6.2: Displacements under static and quasi-static shear loads

Size	FSU, FSU-P			
Size			M10x100	M12x125
Shear load in cracked and uncracked concrete C20/25	V	[kN]	13,8	21,3
Picala comenta FOLI		[mm]	5,4	6,7
Displacements FSU	δν∞	- [mm]	8,0	10,0
Shear load in cracked and uncracked concrete C20/25	V	[kN]	36,3	52,2
Displacements FSU-P		[mm]	5,9	7,2
		- [mm]	8,8	10,7

Table C6.3: Displacements under tension loads for seismic performance category C2

Ci-o				FSU	, FSU-P
Size				M10x100	M12x125
Dianlessment	DLS		[mm]	4,6	4,6
Displacement	ULS	— δ _{N,C2}	[mm]	11,4	10,4

Table C6.4: Displacements under shear loads for seismic performance category C2

Size				FSU	, FSU-P
Size				M10x100	M12x125
Dienlessment ESU	DLS	S	[mm]	5,2	5,0
Displacement FSU	ULS	δ V,C2	[mm]	7,3	6,7
Displacement FSU-P	DLS	S	[mm]	4,8	5,0
Displacement F30-F	ULS	<u>δ</u> v,c2	[mm]	10,7	18,5

fischer Strong Undercut Anchor FSU	
Performances	Annex C 6
Displacement under tension and shear loads	Appendix 16 / 16