

ΕN

DECLARATION OF PERFORMANCE

DoP 0342

for fischer injection system FIS VL (Bonded fastener for use in concrete)

1. Unique identification code of the product-type: DoP 0342

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially

annexes B1 - B9.

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative:

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330499-01-0601, Edition 04/2020

European Technical Assessment: ETA-10/0352; 2023-07-26

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading):

Resistance to steel failure: Annexes C1 - C3

Resistance to combined pull- out and concrete cone failure: Annexes C4 - C6

Resistance to concrete cone failure: Annex C4 Edge distance to prevent splitting under load: Annex C4

Robustness: Annexes C4 - C6

Maximum installation torque: Annexes B3, B4
Minimum edge distance and spacing: Annexes B3 - B5

Characteristic resistance to shear load (static and quasi-static loading):

Resistance to steel failure: Annexes C1 - C3 Resistance to pry-out failure: Annex C4 Resistance to concrete edge failure: Annex C4

Displacements under short-term and long-term loading:

Displacements under short-term and long-term loading: Annexes C7, C8

Characteristic resistance and displacements for seismic performance categories C1 and C2:

Resistance to tension load, displacements, category C1: NPD Resistance to tension load, displacements, category C2: NPD Resistance to shear load, displacements, category C1: NPD Resistance to shear load, displacements, category C2: NPD

Factor annular gap: NPD

Hygiene, health and the environment (BWR 3)

Content, emission and/or release of dangerous substances: NPD

Appropriate Technical Documentation and/or Specific Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering

Tumlingen, 2023-08-15

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V86.xlsm 1/1

Translation guidance Essential Characteristics and Performance Parameters for Annexes

Me	echanical resistance and stability (BWR 1)						
Ch	aracteristic resistance to tension load (static and quasi-static loading):						
1	Resistance to steel failure:		N _{Rk,s} [kN]				
2	Resistance to combined pull- out and concrete cone failure:		$\begin{aligned} &T_{Rk} \text{ and/or } T_{Rk,100} \left[\text{N/mm}^2\right], \psi^0_{\text{sus}} \left[\text{-}\right] (\text{BF}) \\ &N_{Rk,p} \text{ and/or } N_{Rk,p,100} \left[\text{kN}\right] (\text{BEF}) \end{aligned}$				
3	Resistance to concrete cone failure:		c _{cr,N} [mm], k _{cr,N} , k _{ucr,N} [-]				
4	Edge distance to prevent splitting under load:		c _{cr,sp} [mm]				
5	Robustness:		V _{inst} [-]				
6	Maximum installation torque:		max T _{inst} [Nm] (BF)				
	Installation torque:		T _{inst} [Nm] (BEF)				
7	Minimum edge distance and spacing:		c _{min} , s _{min} , h _{min} [mm]				
Ch	Characteristic resistance to shear load (static and quasi-static loading):						
8	Resistance to steel failure:		V ⁰ _{Rk,s} [kN], M ⁰ _{Rk,s} [Nm], k ₇ [-]				
9	Resistance to pry-out failure:		k ₈ [-]				
10	Resistance to concrete edge failure:		d _{nom} , I _f [mm]				
Dis	splacements under short-term and long-term loading:						
11	Displacements under short-term and long-term loading:		δ_0 , δ_{∞} [mm or mm/(N/mm ²)]				
Ch	aracteristic resistance and displacements for seismic performance categories C1 ar	nd C2:					
12	Resistance to tension load, displacements:						
		C1	$N_{Rk,s,C1}$ [kN] (all) $T_{Rk,C1}$ [N/mm ²] (BF) $N_{Rk,p,C1}$ [kN] (BEF)				
		C2	N _{Rk,s,C2} [kN] (all)				
			τ _{Rk,C2} [N/mm ²] (BF) N _{Rk,D,C2} [kN] (BEF)				
			δ _{N,C2} [mm] (all)				
13	Resistance to shear load, displacements:		<u> </u>				
		C1	V _{Rk,s,C1} [kN] (all)				
		C2	$V_{Rk,s,C2}$ [kN] (all) $\delta_{V,C2}$ [mm] (all)				
14	Factor annular gap:		α _{gap} [-]				
Ну	giene, health and the environment (BWR 3)						
15	Content, emission and/or release of dangerous substances:		-				

Fischer DATA DOP_ECs_V86.xlsm Appendix 0

Specific Part

1 Technical description of the product

The "fischer injection system FIS VL" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS VL, fischer FIS VL High Speed or fischer FIS VL Low Speed and a steel element according to Annex A4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

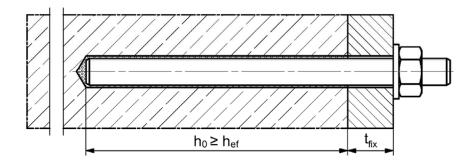
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 to B 5, C 1 to C 6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4
Displacements under short-term and long-term loading	See Annex C 7 and C 8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

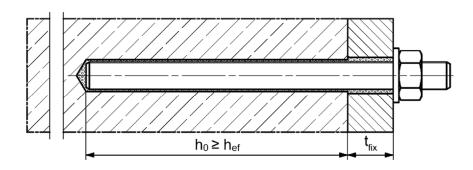
3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

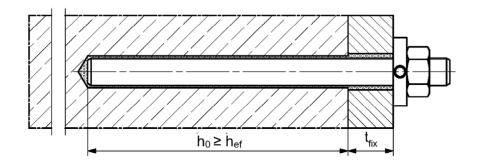
Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


Installation conditions part 1

fischer anchor rod FIS A / RG and standard threaded rod


Pre-positioned installation

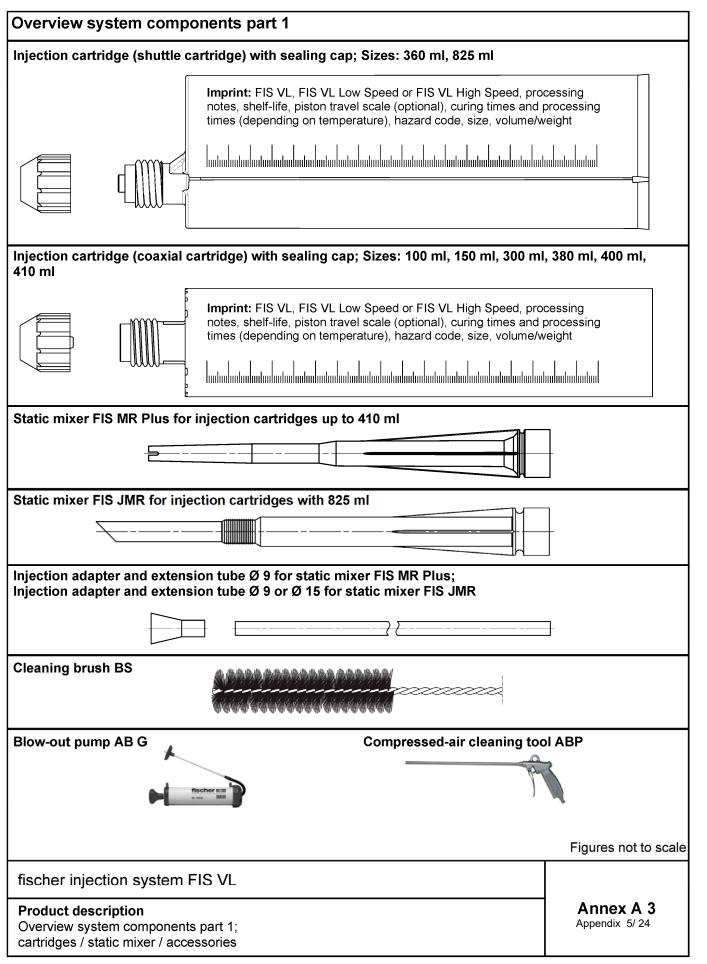
Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently injected fischer filling disc (annular gap filled with mortar)

Figures not to scale

 h_0 = drill hole depth

 t_{fix} = thickness of fixture


h_{ef} = effective embedment depth

fischer injection system FIS VL

Product description Installation conditions part 1 Annex A 1

Appendix 3/24

Installation conditions part 2 fischer internal threaded anchor RG M I Pre-positioned installation $h_0 \ge h_{ef}$ Pre-positioned installation with subsequently injected fischer filling disc (annular gap filled with mortar) $\mathsf{t}_{\mathsf{fix}}$ $h_0 \ge h_{ef}$ Reinforcing bar $h_0 \ge h_{ef}$ Figures not to scale h_0 = drill hole depth h_{ef} = effective embedment depth t_{fix} = thickness of fixture fischer injection system FIS VL Annex A 2 **Product description** Appendix 4/24 Installation conditions part 2

Overview system components part 2 fischer anchor rod Size: M6, M8, M10, M12, M16, M20, M24, M27, M30 fischer internal threaded anchor RG M I Size: M8, M10, M12, M16, M20 Screw / threaded rod / washer / hexagon nut fischer filling disc with injection adapter Reinforcing bar Nominal diameter: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$ Figures not to scale fischer injection system FIS VL Annex A 4 **Product description** Appendix 6/24 Overview system components part 2; metal parts, injection adapter

Part Designation Material 1 Injection cartridge Mortar hardener filler									
1	Injection cartridge	Mortar, hardener, filler							
		Steel	Stainless steel R	High corrosion resistant steel HCR					
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4: 2006+A1:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4: 2006+A1:201					
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 electroplated \geq 5 μ m, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 μ m EN ISO 10684:2004+AC:2009 fuk \leq 1000 N/mm ² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ A ₅ > 8% fracture elongation	Property class 50 or 80 EN ISO 3506-1:2020 or property class 70 with f_{yk} = 560 N/mm ^{2;} 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation					
3	Washer ISO 7089:2000	electroplated ≥ 5 µm, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 µm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014					
4	Hexagon nut	Property class 4, 5 or 8 acc. EN ISO 898-2:2012 electroplated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2014					
5	fischer internal threaded anchor RG M I	Property class 5.8 ISO 898-1:2013 electroplated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020; 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2014					
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG M I	Property class 5.8 or 8.8; EN ISO 898-1:2013 electroplated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K) A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2014 A₅ > 8 % fracture elongation					
7	fischer filling disc	electroplated \geq 5 µm, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 µm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014					
8	Reinforcing bar EN 1992-1- Bars and de-coiled rods, class B or C with 1:2004 and AC:2010, Annex C								

fischer injection system FIS VL

Product description Materials Annex A 5
Appendix 7/24

Specifications of intended use part 1 Table B1.1: Overview use and performance categories FIS VL with ... Anchor rod fischer internal threaded Reinforcing bar anchor RG M I **~~~~~** | Hammer drilling with standard drill all sizes bit Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Nominal drill bit diameter (d₀) 12 mm to 35 mm Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max" all uncracked all Tables: Tables: all Tables: concrete sizes C1.1 sizes C2.1 sizes C3.1 Static and quasi C4.1 C4.1 C4.1 static loading, in C5.1 C6.1 C6.2 cracked φ 10 to _1) M8 to M20 C7.1 C7.2 C8.1 concrete ф 20 C₁ Seismic _1) performance category C2 dry or wet 11 all sizes concrete Use category water filled _1) 12 M 12 to M 30 all sizes hole 2) D3 (downward and horizontal and upwards (e.g. overhead)) Installation direction $T_{i,min}$ = -10 °C to $T_{i,max}$ = +40 °C Installation temperature for the standard variation of temperature after installation (max. short term temperature +80 °C: Temperature -40 °C to +80 °C max. long term temperature +50 °C) range I Service temperature Temperature (max. short term temperature +120 °C; -40 °C to +120 °C range II max. long term temperature +72 °C) 1) Performance not assessed ²⁾ Valid for shuttle cartridges with 360 ml, 825 ml and coaxial cartridges with 380 ml, 400 ml, 410 ml fischer injection system FIS VL Annex B 1 Intended use Appendix 8/24 Specifications part 1

Specifications of intended use part 2

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
 (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 5 Table 5.1.

Design:

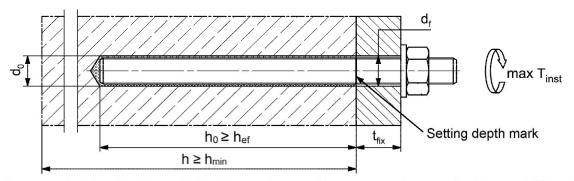
- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

Installation:

- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening depth should be marked and adhered to installation
- Overhead installation is allowed (necessary equipment see installation instruction)

fischer	injection	system	FIS	VL
---------	-----------	--------	-----	----

Table B3.1: Installation parameters for anchor rods												
Anchor rods			Thread	М6	M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole	diameter	d ₀		8	10	12	14	18	24	28	30	35
Drill hole depth		h ₀		h ₀ ≥ h _{ef}								
Effective		$h_{\text{ef, min}}$		50	60	60	70	80	90	96	108	120
embedment depth Minimum spacing and minimum edge distance		h _{ef, max}	[mm]	72	160	200	240	320	400	480	540	600
		S _{min} = C _{min}		40	40	45	55	65	85	105	125	140
Diameter of the	pre-positioned installation	df		7	9	12	14	18	22	26	30	33
the fixture	arance hole of fixture push through installation	df		9	12	14	16	20	26	30	33	40
Minimum thickness of concrete member		h _{min}		l	h _{ef} + 30) (≥100)		ŀ	n _{ef} + 2d	0	
Maximum installat	ion torque	max T _{inst}	[Nm]	5	10	20	40	60	120	150	200	300

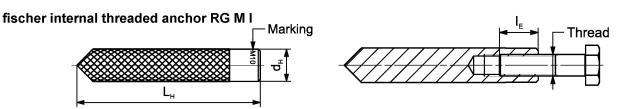

Marking (on random place) fischer anchor rod:

warking (on random place) inscriet anchor	rou.		
Steel zinc plated PC ¹⁾ 8.8	• or +	Steel hot-dip PC1) 8.8	•
High corrosion resistant steel HCR PC1) 50	•	High corrosion resistant steel HCR PC ¹⁾ 70	1
High corrosion resistant steel HCR PC1) 80	(Stainless steel R property class 501)	~
Stainless steel R property class 801)	*		

Alternatively: Colour coding according to DIN 976-1: 2016

1) PC = property class

Installation conditions:

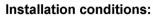

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

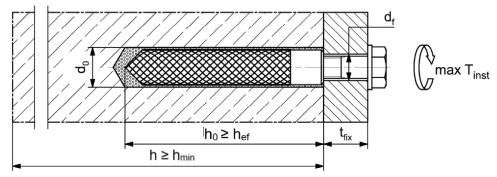
- · Materials, dimensions and mechanical properties according to Annex A 5, Table A5.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked

Figures not to scale

fischer injection system FIS VL	
Intended use Installation parameters anchor rods	Annex B 3 Appendix 10/24

Table B4.1: Installation parameters for fischer internal threaded anchors RG M I							
Internal threaded anchors F	RG M I	Thread	М8	M10	M12	M16	M20
Diameter of anchor	$d_{nom} = d_H$		12	16	18	22	28
Nominal drill hole diameter	d 0		14	18	20	24	32
Drill hole depth				$h_0 \ge h_{ef} = L_H$			
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120


Marking:


Anchor size e. g.: M10

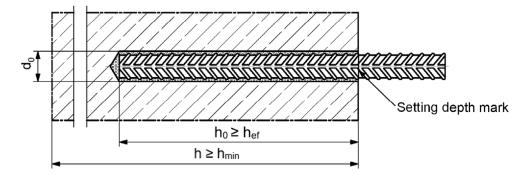
Stainless steel → additional R; e.g.: M10 R

High corrosion resistant steel → additional HCR; e.g.: M10 HCR

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 5, Table A5.1

	Figures not to scale
fischer injection system FIS VL	
Intended use Installation parameters internal threaded anchors RG M I	Annex B 4 Appendix 11/24

d_0					1)	14	16	20
		10 12	12 14	14	16	18	20	25
pth $h_0 \ge h_{ef}$								
h _{ef,min}		60	60	7	0	75	80	90
h _{ef,max}	160		200	240		280	320	400
= -	[mm]	40	45	5	5	60	65	85
	h _{ef,min} h _{ef,max}	h _{ef,min} h _{ef,max} S _{min} = [mm]	hef,min 60 hef,max 160 smin = cmin 40	hef,min 60 60 hef,max 160 200 smin 40 45	hef,min hef,max Smin = Cmin 60 60 7 160 200 24 40 45 5	hef,min hef,max Smin = Cmin 60 60 70 160 200 240 45 55	hef,min 60 60 70 75 hef,max 160 200 240 280 Smin = 40 45 55 60 Cmin 60 60 70 75 75 60	hef,min hef,max Smin = Cmin 60 60 70 75 80


¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

Figures not to scale

fischer injection system FIS VL	
Intended use Installation parameters reinforcing bars	Annex B 5 Appendix 12/24

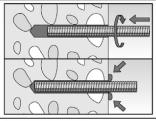
Table B6.1:	Parameters of the cleaning brush BS (steel brush with steel bristles)
The size of the cl	eaning brush refers to the drill hole diameter

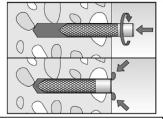
Nominal drill hole diameter	d₀	[mana]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter BS	d♭	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

Maximum processing time of the mortar and minimum curing time Table B6.2 (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Temperature at	Maxir	num processing t _{work}	g time	Minimum curing time 1) t _{cure}				
anchoring base [°C]	FIS VL High Speed	FIS VL	FIS VL Low Speed	FIS VL High Speed	FIS VL	FIS VL Low Speed		
-10 to -5 ²⁾	>5 min	-	-	12 h	-	-		
> -5 to 0 ²⁾	5 min	>13 min	-	3 h	24 h	-		
> 0 to 5 ²⁾	5 min	13 min	>20 min	3 h	3 h	6 h		
> 5 to 10	3 min	9 min	20 min	50 min	90 min	3 h		
> 10 to 20	1 min	5 min	10 min	30 min	60 min	2 h		
> 20 to 30	-	4 min	6 min	-	45 min	60 min		
> 30 to 40	-	2 min	4 min	-	35 min	30 min		

¹⁾ In wet concrete or water filled holes the curing times must be doubled 2) Minimal cartridge temperature +5°C

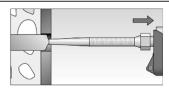

Installation instructions part 1 Drilling and cleaning the hole (hammer drilling with standard drill bit) Drill the hole. 1 Nominal drill hole diameter do and drill hole depth ho see tables B3.1, B4.1, B5.1 Clean the drill hole: For h_{ef} > 12d and / or For h_{ef} ≤ 12d and $d_0 \ge 18 \text{ mm blow out}$ 2 $d_0 < 18 \text{ mm}$ the hole four times with blow out the hole four oil-free compressed air times by hand (p ≥ 6 bar) 4x Brush the drill hole four times. For drill hole diameter ≥ 30 mm use a power 3 drill. For deep holes use an extension. Corresponding brushes see table B6.1 For hef > 12d and / or Clean the drill hole: 4x 。 4x For h_{ef} ≤ 12d and $d_0 \ge 18$ mm blow out the $d_0 < 18 \text{ mm}$ hole four times with 4 blow out the hole four oil-free compressed air times by hand (p ≥ 6 bar) Go to step 5 Drilling and cleaning the hole (hammer drilling with hollow drill bit) Check a suitable hollow drill (see table B1.1) 1 for correct operation of the dust extraction Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data 2 Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter do and drill hole depth ho see tables B3.1, B4.1, B5.1 Go to step 5 fischer injection system FIS VL Annex B 7 Intended use Appendix 14/24 Installation instructions part 1


Installation instructions part 2 Preparing the cartridge Mark the setting depth. 5 Remove the sealing cap 6 Screw on the static mixer (the spiral in the static mixer must be clearly visible) 7 Place the cartridge into the dispenser Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use 8 mortar that is not uniformly grey Go to step 9 Injection of the mortar 9 For $h_0 = h_{ef}$ fill approximately 2/3 of the drill hole with mortar. For For overhead installation, deep For drill hole depth ≥ 150 mm $h_0 > h_{ef}$ more mortar is needed. holes ($h_0 > 250 \text{ mm}$) use an use an extension tube Always begin from the bottom of injection adapter the hole and avoid bubbles Go to step 10 fischer injection system FIS VL Annex B 8 Intended use Appendix 15/24 Installation instructions part 2

Installation instructions part 3

Installation of anchor rods or fischer internal threaded anchors RG M I

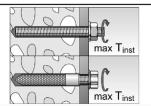
10



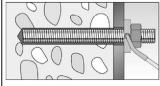
Only use clean and oil-free metal parts.
Push the anchor rod or fischer internal threaded
RG M I anchor down to the bottom of the hole,
turning it slightly while doing so.

After inserting the metal parts, excess mortar must be emerged around the anchor element.

For overhead installations support the metal part with wedges (e.g. fischer centering wedges) or fischer overhead clips.


For push through installation fill the annular gap with mortar

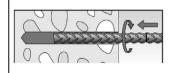
11


Wait for the specified curing time t_{cure} see **table B6.2**

12

Mounting the fixture max T_{inst} see tables B3.1 and B4.1

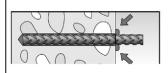
Option



After the minimum curing time is reached, the gap between metal part and fixture (annular clearance) may be filled with mortar via the fischer filling disc. Compressive strength \geq 50 N/mm² (e.g. fischer injection mortars FIS VL, FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus).

ATTENTION: Using fischer filling disc reduces t_{fix} (usable length of the anchor)

Installation reinforcing bars


40

Only use clean and oil-free reinforcing bars. Push the reinforcement bar with the setting depth mark into the filled hole up to the setting depth mark. Recommendation:

Rotation back and forth of the reinforcement bar or the fischer rebar anchor makes pushing easy

10

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

11

Wait for the specified curing time tcure see table B6.2

fischer injection system FIS VL

Intended use

Installation instructions part 3

Annex B 9
Appendix 16/24

Tabl	e C1.1: Characte									ı / she	ar loa	ding o	of
	fischer a	anchor	rod	s and	d star	dard	thread	led ro	ds				
Anch	or rod / standard threa	ded rod	Ī		M6	M8	M10	M12	M16	M20	M24	M27	M30
Char	acteristic resistance to	steel fa	ilure	unde	r tensi	on load	ding ³⁾						
σ ₀			4.8		8	15(13)	23(21)	33	63	98	141	184	224
istic N _{RK,s}	Steel zinc plated	_	5.8		10	19(17)	29(27)	43	79	123	177	230	281
Characteristic		Property class	8.8	FLANII	16	29(27)	47(43)	68	126	196	282	368	449
Character resistance	Stainless steel R and	ropert	8.8 50	[kN]	10	19	29	43	79	123	177	230	281
Cha Sisis	high corrosion	<u> </u>	70		14	26	41	59	110	172	247	322	393
ا ا	resistant steel HCR		80		16	30	47	68	126	196	282	368	449
Parti	al factors ¹⁾												
4.8 1,50													
호	Steel zinc plated	>	5.8						1,50				
ial fac ™s,N		Property class	8.8	r 1					1,50				
Partial factor	Stainless steel R and	g g	50	[-]					2,86				
Pal	high corrosion	Щ	70					1,	50 ²⁾ /1,	87			
	resistant steel HCR		80						1,60				
Char	acteristic resistance to	steel fa	ilure	unde	er shea	r loadi	ng ³⁾						
with	out lever arm												
ا کم کر			4.8		4	9(8)	14(13)	20	38	59	85	110	135
istic V°R	Steel zinc plated		5.8		6		17(16)	25	47	74	106	138	168
l je s		ropert	8.8	[kN]	8	15(13)	23(21)	34	63	98	141	184	225
ara(tan	Stainless steel R and	Property class	50	[IXIA]	5	9	15	21	39	61	89	115	141
Characteristic resistance V ⁰ _{Rk,s}	high corrosion		_70		7	13	20	30	55	86	124	161	197
	resistant steel HCR		80		8	15	23	34	63	98	141	184	225
Ducti	ity factor		k 7	[-]					1,0				
with	lever arm	Т				ı	1				1		
			4.8		6	15(13)	30(27)	52	133	259	448	665	899

Characteristic Stainless steel R and high corrosion

Partial factors 1)

Partial factor

Steel zinc plated

resistant steel HCR

Stainless steel R and

resistant steel HCR

high corrosion

Steel zinc plated

Property class

70 80 4.8 5.8

5.8

8.8

50

10 12 [-]

[Nm]

7

12

7

19(16) 37(33)

30(26) 60(53)

37

52

60

19

26

30

65

105

65

92

105

324

519

324

454

519

560

896

560

784

896

833

1333

833

1167

1333

166

266

166

232

266

1,33

1,25 1,25 1,25 2,38 1,25²⁾ / 1,56

1) In absence of other national regulations

²⁾ Only admissible for high corrosion resist. steel HCR, with f_{yk} / f_{uk} ≥ 0,8 and A₅ > 12 % (e.g. fischer anchor rods)

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanized threaded rods according to EN ISO 10684:2004+AC:2009

fischer injection system FIS VL

Performances

Characteristic resistance to steel failure under tension / shear loading of fischer anchor rods and standard threaded rods

Annex C 1 Appendix 17/24

1123

1797

1123

1573

1797

Table C2.1:						ailure unde	r tension / s	shear loadii	ng of
	tisc	ner interi	nai thr	eade	ed anchors	SRGMI			
fischer internal	thread	ed anchore	RG M	I	M8	M10	M12	M16	M20
Characteristic	resista	nce to steel	failure	unde	er tension lo	ading		-	
		Property	5.8		19	29	43	79	123
Charact.	NI	class	8.8	[[LNI]	29	47	68	108	179
resistance with screw	$N_{Rk,s}$	Property	R	[kN]	26	41	59	110	172
		class 70	HCR		26	41	59	110	172
Partial factors ¹⁾)								
		Property	5.8				1,50		
Partial factors		class	8.8	 , ,			1,50		
Partial factors	γMs,N	Property	R	[-]			1,87		
		class 70	HCR				1,87		
Characteristic	resista	nce to stee	failure	unde	er shear load	ding			
Without lever a	rm								
		Property	5.8		9,2	14,5	21.1	39,2	62,0

Partial factors	46.	class	8.8	, , ,			1,50						
Partial factors	γMs,N	Property	R	[-]			1,87						
		class 70	HCR		1,87								
Characteristic i	resista	nce to steel	failure	unde	er shear load	ling							
Without lever a	rm												
		Property	5.8		9,2	14,5	21,1	39,2	62,0				
Charact. resistance with	V^0 Rk,s	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0				
screw	V Rk,s	Property	R	נגואן	12,8	20,3	29,5	54,8	86,0				
		class 70	HCR		12,8	20,3	29,5	54,8	86,0				
Ductility factor			k 7	[-]			1,0						
With lever arm													
		Property	5.8		20	39	68	173	337				
Charact. resistance with	$M^0_{Rk,s}$	class	8.8	[Nm]	30	60	105	266	519				
screw	IVI*RK,S	Property	R	ן נייייון 	26	52	92	232	454				
		class 70	HCR		26	52	92	232	454				
Partial factors ¹													
		Property	5.8				1,25						
Partial factors	264. 14	class	8.8	[-]			1,25						
Partial factors ¹⁾	γMs,V	Property	R	[-]			1,56						
		class 70	HCR				1,56						

					L
4)					
1)	In absence	of other	national	regulations	

fischer	injection	evetem	FIS VI
lischei	IIIJection	System	LIO AF

Performances

Characteristic resistance to steel failure under shear loading of fischer internal threaded anchor RG M I

Annex C 2
Appendix 18/24

Table C3.1: Characteris	stic restistan g bars	ce to	stee	l failure	under tens	sion / she	ear loadin	g of		
Nominal diameter of the bar	ф		8	10	12	14	16	20		
Characteristic resistance to st	eel failure un	der te	nsion	loading						
Characteristic resistance	N _{Rk,s} [kN	1]			A _s ·	$f_{uk}^{2)}$				
Characteristic resistance to st	eel failure un	der sl	hear lo	oading						
Without lever arm										
Characteristic resistance	V ⁰ _{Rk,s} [kN]			k 6 ¹⁾ ⋅ A	$\mathbf{h}_{s}\cdot\mathbf{f}_{uk^{2)}$				
Ductility factor	k ₇ [-]				1	,0				
With lever arm										
Characteristic resistance	M ⁰ _{Rk,s} [Nn	ո]			1,2 · W	$J_{\rm el} \cdot f_{\rm uk}^{2)}$				
fischer injection system FI	S VL									
Performances Characteristic resistance to stee	el failure unde	⁻ tensi	on / sł	near loading	of reinforci	ing	Anne Appendix	-		

Table C4.1: Characteris	tic resis	tance	to co	ncret	e tallu	r e una	er ten	ision /	snea	' ioad	ing
Size						-	All size	s			
Characteristic resistance to co	ncrete fa	ilure u	nder te	ension	loading	9					
Installation factor	γinst	[-]				See an	nex C	5 to C 6			
Factors for the compressive st	rength o	f conc	rete > (C20/25	,						
	C25/30						1,05				
Increasing factor ψ _c for	C30/37						1,10				
cracked or uncracked	C35/45	[-]					1,15				
concrete	C40/50						1,19				
$\tau_{Rk(X,Y)} = \psi_c \cdot \tau_{Rk(C20/25)}$	C45/55	-					1,22				
	C50/60						1,26				
Splitting failure											
Edge $\frac{h / h_{ef} \ge 2}{2.0 > h / h > 1}$							1,0 h _{ef}				
distance $\frac{2,0 > 11 / \log 7}{2}$		[mm]					h _{ef} - 1,				
h / h _{ef} ≤ 1,	•						2,26 h _e	f			
Spacing	S cr,sp						2 C _{cr,sp}				
Concrete failure		1					44.0				
Uncracked concrete	k _{ucr,N}	[-]					11,0				
Cracked concrete	k _{cr,N}						7,7				
Edge distance	C _{cr,N}	[mm]					1,5 h _{ef}				
Spacing	Scr,N						2 C _{cr,N}				
Factors for sustained tension I	oading	I 1001							70 / 4		
Temperature range		[°C]			0 / 80				72 / 1		
Factor	ψ^0 sus	[-]			0,74				0,87		
Characteristic resistance to co	ncrete fa		ınder s	hear lo	oading						
Installation factor	γinst	[-]					1,0				
Concrete pry-out failure											
Factor for pry-out failure	k ₈	[-]					2,0				
Concrete edge failure											
Effective length of fastener in shear loading	lf	[mm]			ո≤ 24 m։ ո> 24 m։				mm)		
Calculation diameters											
Size			M6	M8	M10	M12	M16	M20	M24	M27	M30
fischer anchor rods and standard threaded rods	d _{nom}	[mm]	6	8	10	12	16	20	24	27	30
fischer internal threaded anchors RG M	l d _{nom}	[mm]	_1)	12	16	18	22	28	_1)	_1)	_1)
Size (nominal diameter of the bai	r) ф	[]	8		10	12		14	16		20
Reinforcing bar	d_{nom}	[mm]	8		10	12		14	16		20
1) Anchor type not part of this as	sessmer	nt									
fischer injection system FIS	3 VL										
Performances Characteristic resistance to cond	crete failu	ire und	er tensi	on / sh	near Ioad	ding				nex C	

Table C5.1:	Characteristic resistance to combined pull-out and concrete failure for fischer anchor rods and standard threaded rods in hammer drilled holes; uncracked or cracked concrete											
Anchor rod / sta	ndard threa	ded rod		М6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pull-	out and cond	rete co	ne failure									
Calculation diam	eter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked cond	rete											
Characteristic b	ond resistar	nce in u	ncracked	concr	ete C20	/25						
Hammer-drilling v	with standard	drill bit	or hollow	drill bit	(dry or v	vet con	crete)					
	°C / 80 °C		27	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature ——— range II: 72	°C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling v		drill bit	or hollow					<u> </u>	1 ′	<u> </u>	<u>'</u>	
-	°C / 80 °C			_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
perature ——— range II: 72	°C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
Installation factor	ors						<u> </u>					
Dry or wet concre								1,0				
Water filled hole		γ inst	[-]	_2)	_2)	_2)			1,2	2 1)		
Cracked concre	te											
Characteristic b	ond resistar	nce in c	racked co	ncrete	C20/25	5						
Hammer-drilling v	with standard	drill bit	or hollow	drill bit	(dry or v	wet con	crete)					
	°C / 80 °C		27	_2)	5,5	6,0	6,0	6,0	5,5	_2)	_2)	_2)
perature II: 72	°C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	4,5	5,0	6,0	6,0	5,0	_2)	_2)	_2)
Hammer-drilling w	ith standard	drill bit c	r hollow c	Irill bit (water fi	lled hole	<u> </u>					
	°C / 80 °C		_	_2)	_2)	_2)	5,0	5,0	4,5	_2)	_2)	_2)
perature II: 72	°C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	_2)	_2)	4,0	4,0	4,0	_2)	_2)	_2)
Installation factor	ors				l	l						
Dry or wet concre	te			_2)			1,0			_2)	_2)	_2)
Water filled hole		γinst	[-]	_2)	_2)	_2)		1,2 ¹⁾		_2)	_2)	_2)
	uttle cartridge e not assess		360 ml, 82	5 ml an	d coaxi	al cartri	dges w	th 380	ml, 400	ml, 410	ml	

fischer injection system FIS VL

Performances

Characteristic resistance to combined pull-out and concrete failure for fischer anchor rod and standard threaded rods

Annex C 5
Appendix 21/24

Table C6.1: Characteris fischer into uncracked	ernal th	reade		_				for	
Internal threaded anchor RG N	M8	M10	М	12	M16	M20			
Combined pull-out and concre		failure							
Calculation diameter		mm]	12	16	1	8	22	28	
Uncracked concrete	<u> </u>			_					
Characteristic bond resistance	in uncr	acked	concrete (220/25					
Hammer-drilling with standard dr	rill bit or h	ollow c	drill bit (dry	or wet cond	crete)				
Tem- I: 50 °C / 80 °C	5.1	[N/mm ²]	10,5	10,0	9	,5	9,0	8,5	
perature	Rk,ucr [N		9,0	8,0	8	,0	7,5	7,0	
Hammer-drilling with standard dr	rill bit or h	nollow d	drill bit (wat	er filled hole	<u>e)</u>				
Tem- I: 50 °C / 80 °C			10,0	9,0	9	,0	8,5	8,0	
perature range II: 72 °C / 120 °C	Rk,ucr N	/mm ²]	7,5	6,5	6	,5	6,0	6,0	
Installation factors			<u> </u>			<u>′ </u>	,		
Dry or wet concrete 1.0									
Water filled hole γ_{inst}		[-]	1,2 1)						
1) Valid for shuttle cartridges w	ith 360 m	าไ, 825	ml and coa	xial cartrido	ges with 38	0 ml, 400	ml, 410 ml		
Table C6.2: Characteristic resistance to combined pull-out and concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete									
Nominal diameter of the bar		ф	8	10	12	14	16	20	
Combined pull-out and concre	te cone	failure				•			
Calculation diameter	d [mm]	8	10	12	14	16	20	
Uncracked concrete						•			
Characteristic bond resistance	e in uncr	acked	concrete (C20/25					
Hammer-drilling with standard dr	rill bit or h	nollow c	drill bit (dry	or wet cond	crete)				
Tem- I: 50 °C / 80 °C	.	[N/mm ²]	11,0	11,0	11,0	10,0	10,0	9,5	
perature range II: 72 °C / 120 °C τ	Rk,ucr [N		9,5	9,5	9,0	8,5	8,5	8,0	
Installation factor	l				I		l	l	
Dry or wet concrete	γinst	[-]							
Cracked concrete		,							
Characteristic bond resistance	e in cracl	ked co	ncrete C20)/25					
Hammer-drilling with standard dr	rill bit or h	ollow c	drill bit (dry	or wet cond	crete)				
Tem- I: 50 °C / 80 °C	_ FNI	/21	_1)	3,0	5,0	5,0	5,0	4,5	
perature II: 72 °C / 120 °C	C _{Rk,cr} [N	/mm ²]	_1)	3,0	4,5	4,5	4,5	4,0	
Installation factor							•		
Dry or wet concrete	γinst	[-]	_1)			1,0			
1) Performance not assessed									
fischer injection system FIS VL									
Performances Characteristic resistance to combined pull-out and concrete failure for fischer internal threaded anchors RG M I and reinforcing bars						Annex C 6 Appendix 22/24			

Table C7.1: Displacements for anchor rods											
Anchor	rod	M6	M8	M10	M12	M16	M20	M24	M27	M30	
Displac	ement-Factors	for tension	on loadin	g ¹⁾							
Uncracked concrete; Temperature range I, II											
δ N0-Factor	[mm/(N/mm²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12	
δ _{N∞-Factor}	[[11111]/(14/111111)]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14	
Cracked concrete; Temperature range I, II											
$\delta_{\text{N0-Factor}}$	[mm/(N/mm ²)]	_3)	0,12	0,12	0,12	0,13	0,13	_3)	_3)	_3)	
$\delta_{\text{N0-Factor}}$	[[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_3)	0,25	0,27	0,30	0,30	0,30	_3)	_3)	_3)	
-	ement-Factors										
	ked or cracked					T	•			Γ	
δv0-Factor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07	
δ∨∞-Factor	[0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09	
1) Calcu	ulation of effecti	ve displac	ement:		²⁾ Cald	culation of	effective o	lisplacem	ent:		
δ _{N0} =	$\delta_{\text{N0-Factor}} \cdot \tau$				δ_{V0}	= $\delta_{\text{V0-Factor}}$	· V				
δ _{N∞} =	÷ δ _{N∞-Factor} · τ				$\delta_{\text{V}^{\infty}}$	= δ _{V∞-Factor}	· V				
$\tau =$	acting bond st	renath und	ler tensio	n loading	V =	acting she	ear loading	I			
³⁾ Performance not assessed Table C7.2: Displacements for fischer internal threaded anchors RG M I											
Internal threaded anchor RG M I M8 M10 M12 M16 M20											
		M8	3	M10		M12		M16	N	/I20	
anchor						M12		M16	N	/120	
anchor Displac	RG M I	for tension	on loadin	g ¹⁾		M12		M16	N	/ 120	
anchor Displac	RG M I ement-Factors ked concrete;	for tension	on loadin ure range	g ¹⁾		M12		M16		//20	
anchor Displac Uncrack	RG M I ement-Factors	for tension	on loadin ure range	g ¹⁾ e I, II					C		
anchor Displac Uncracl $\delta_{\text{N0-Factor}}$	RG M I ement-Factors ked concrete;	for tension for te	on loadin ure range	g ¹⁾ • I, II 0,11 0,14		0,12		0,13	C	,14	
anchor Displac Uncracl $\delta_{\text{N0-Factor}}$ $\delta_{\text{No-Factor}}$	RG M I ement-Factors ked concrete; - [mm/(N/mm²)]	for tension of tension of the for the tension of th	on loadin ure range 0 3	g ¹⁾ 9 I, II 0,11 0,14		0,12		0,13	C	,14	
anchor Displac Uncracl $\delta_{\text{N0-Factor}}$ $\delta_{\text{No-Factor}}$	RG M I ement-Factors ked concrete; [mm/(N/mm²)] ement-Factors ked concrete;	for tension of tension of the for the tension of th	on loadin ure range 0 3 r loading ² ure range	g ¹⁾ 9 I, II 0,11 0,14		0,12		0,13	0	1,14 1,18	
anchor Displac Uncracl $\delta_{\text{No-Factor}}$ $\delta_{\text{No-Factor}}$ Displac Uncracl	RG M I ement-Factors ked concrete; [mm/(N/mm²)] ement-Factors	for tension Temperate 0,1 0,1 for shear Temperate	on loadin ure range 0 3 r loading ² ure range	g ¹⁾ 0,11 0,14 2)		0,12 0,15		0,13	0),14),18	
anchor Displac Uncracl $\delta_{N0\text{-Factor}}$ $\delta_{N\infty\text{-Factor}}$ Displac Uncracl $\delta_{V0\text{-Factor}}$ $\delta_{V0\text{-Factor}}$	RG M I ement-Factors ked concrete; [mm/(N/mm²)] ement-Factors ked concrete;	for tension of tension of the formula of the formul	on loadin ure range 0 3 r loading² ure range 2	9 ¹⁾ 0,11 0,14 2) 1, II 0,12	2) (0,12 0,15 0,12	n of effectiv	0,13 0,16 0,12 0,14		1,14 1,18	
anchor Displac Uncracl δNo-Factor Displac Uncracl δνo-Factor δνο-Factor	RG M I ement-Factors ked concrete; [mm/(N/mm²)] ement-Factors ked concrete; [mm/kN]	for tension of tension of the formula of the formul	on loadin ure range 0 3 r loading² ure range 2	9 ¹⁾ 0,11 0,14 2) 1, II 0,12		0,12 0,15 0,12 0,14		0,13 0,16 0,12 0,14		1,14 1,18	
anchor Displac Uncracl δN0-Factor Displac Uncracl δν0-Factor δνο-Factor 1) Calcu δN0 =	RG M I ement-Factors ked concrete; [mm/(N/mm²)] ement-Factors ked concrete; [mm/kN]	for tension of tension of the formula of the formul	on loadin ure range 0 3 r loading² ure range 2	9 ¹⁾ 0,11 0,14 2) 1, II 0,12	į	0,12 0,15 0,12 0,14 Calculation	_{ictor} · V	0,13 0,16 0,12 0,14		1,14 1,18	
anchor Displac Uncracl δNo-Factor δNo-Factor Displac Uncracl δνo-Factor δνο-Factor 1) Calcu δNo = δNo =	RG M I ement-Factors ked concrete; [mm/(N/mm²)] ement-Factors ked concrete; [mm/kN] ulation of effectiv δNo-Factor · τ	for tension 0,1 0,1 for shear 0,1 0,1 0,1 ve displace	on loadin ure range 0 3 r loading² ure range 2 4	9 ¹⁾ 0,11 0,14 2) 6 I, II 0,12 0,14	;	0,12 0,15 0,12 0,14 Calculation $\delta_{V0} = \delta_{V0\text{-Fa}}$	_{actor} · V	0,13 0,16 0,12 0,14 /e displac		1,14 1,18	
anchor Displac Uncracl δN0-Factor Displac Uncracl δν0-Factor δν-Factor 1) Calcu δN0 = δN0 =	RG M I ement-Factors ked concrete; [mm/(N/mm²)] ement-Factors ked concrete; [mm/kN] ulation of effective δNO-Factor · τ	for tension 0,1 0,1 for shear 0,1 0,1 0,1 ve displace	on loadin ure range 0 3 r loading² ure range 2 4	9 ¹⁾ 0,11 0,14 2) 6 I, II 0,12 0,14	;	$0,12$ $0,15$ $0,12$ $0,14$ Calculation $\delta_{V0} = \delta_{V0-Fa}$ $\delta_{V\infty} = \delta_{V\infty-Fa}$	_{actor} · V	0,13 0,16 0,12 0,14 /e displac		1,14 1,18	
anchor Displac Uncracl δN0-Factor Displac Uncracl δV0-Factor 1) Calcu δN∞ = τ =	RG M I ement-Factors ked concrete; [mm/(N/mm²)] ement-Factors ked concrete; [mm/kN] ulation of effectiv δNo-Factor · τ	for tension of temperate of tem	on loadin ure range 0 3 r loading ² ure range 2 4 ement:	9 ¹⁾ 0,11 0,14 2) 6 I, II 0,12 0,14	;	$0,12$ $0,15$ $0,12$ $0,14$ Calculation $\delta_{V0} = \delta_{V0-Fa}$ $\delta_{V\infty} = \delta_{V\infty-Fa}$	_{actor} · V	0,13 0,16 0,12 0,14 /e displac		1,14 1,18	

Table C8.1: Displacements for reinforcing bars										
Nominal dia	ameter ф	8	10	12	14	16	20			
Displaceme	ent-Factors	for tension lo	ading ¹⁾							
Uncracked	concrete;	Temperature ra	ange I, II							
δ _{N0-Factor}	[mm/(N/mm ²)]	0,09	0,09	0,10	0,10	0,10	0,10			
δN∞-Factor	, , , ,	0,10	0,10	0,12	0,12	0,12	0,12			
Cracked co	oncrete; Ter	mperature ran	ge I, II							
δ _{N0-Factor}	m/(N/mm²)]	_3)	0,12	0,13	0,13	0,13	0,13			
δN∞-Factor		_3)	0,27	0,30	0,30	0,30	0,30			
<u> </u>		for shear load								
	or cracked	concrete; Ten				1				
δv0-Factor	[mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09			
δ∨∞-Factor		0,12	0,12	0,11	0,11	0,11	0,10			
1) Calculation	on of effecti	ve displacemer	it:	²⁾ Calculation	on of effective of	lisplacement:				
$\delta_{N0} = \delta_{N0\text{-Factor}} \cdot \tau$ $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$										
$\delta_{N\infty} = \delta_{N\infty}$	$\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau$				$\delta_{V^{\infty}} = \delta_{V^{\infty} - Factor} \cdot V$					
τ = acting bond strength under tension loading V = acting shear loading										
3) Perform	nance not as	ssessed								

fischer injection system FIS VL

PerformancesDisplacements for reinforcing bars

Annex C 8
Appendix 24/24