

ΕN

DECLARATION OF PERFORMANCE

DoP 0369

for fischer injection system FIS V Zero (Metal injection anchors for use in masonry)

1. <u>Unique identification code of the product-type:</u> **DoP 0369**

2. <u>Intended use/es:</u> Post-installed fastening in masonry units, see appendix, especially annexes B1 - B14.

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. <u>Authorised representative:</u> –

5. System/s of AVCP:

6. European Assessment Document: EAD 330076-01-0604, Edition 10/2022

European Technical Assessment: ETA-21/0267; 2024-11-14

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance for static and quasi-static loading:

- 1 Characteristic resistance to steel failure of a single anchor under tension loading: See appendix, especially annexes C1, C3
- 2 Characteristic resistance to steel failure of a single anchor under shear loading with and without level arm: See appendix, especially annexes C2, C3
- 3 Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading, Reduction factor: See appendix, especially annexes C5, C7, C10, C13, C15, C18
- 4 Characteristic resistance to local brick failure or brick breakout failure of a single anchor under shear loading: See appendix, especially annexes C5, C7, C11, C13, C15, C19
- 5 Characteristic resistance to brick breakout failure of an anchor group under tension loading: See appendix, especially annexes B13, B14, C4, C6, C8, C9, C12, C14, C17
- 6 Characteristic resistance to local brick failure or brick breakout failure of an anchor group under shear loading: See appendix, especially annexes B13 ,B14, C4, C5, C6, C7, C8, C9, C11, C12, C13, C14, C15, C17, C19
- 7 Edge distances, spacing, member thickness: See appendix, especially annexes B13, B14, C4, C6, C8, C9, C12, C14, C16
- 8 Displacements under tension and shear loading: see appendix, especially annex C21
- 9 Maximum installation torque: See appendix, especially annexes B4-B7

Characteristic resistance and displacements for seismic loading:

- 10 Resistance to tension load, displacements: NPD
- 11 Resistance to shear load, displacements: NPD
- 12 Factor annular gap: NPD

Safety in case of fire (BWR 2)

- 13 Reaction to fire: Class (A1)
- 14 Resistance to fire under tension and shear loading with and without level arm, minimum edge distances and spacing: NPD

Hygiene, health and the environment (BWR 3)

15 Content, emission and/or release of dangerous substances: NPD

8. <u>Appropriate Technical Documentation and/or Specific – Technical Documentation:</u>

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr. Ronald Mihala, Head of Development and Production Management

Tumlingen, 2024-12-12

Jürgen Grün Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V100.xlsm 1 / 1

Translation guidance Essential Characteristics and Performance Parameters for Annexes

Me	echanical resistance and stability (BWR 1)	
Cł	naracteristic resistance for static and quasi-static loading:	
1	Characteristic resistance to steel failure of a single anchor under tension loading:	N _{Rk,s} [kN]
2	Characteristic resistance to steel failure of a single anchor under shear loading with and without level arm:	V _{Rk,s} [kN], M ⁰ _{Rk,s} [Nm]
3	Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading, Reduction factor:	$N_{Rk,p}$; $N_{Rk,b}$; [kN] $N_{Rk,p,c}$; $N_{Rk,b,c}$ [kN], β [-]
4	Characteristic resistance to local brick failure or brick breakout failure of a single anchor under shear loading:	$V_{Rk,b}$; $V_{Rk,c,II}$; $V_{Rk,c,\perp}$ [kN]
5	Characteristic resistance to brick breakout failure of an anchor group under tension loading:	N^g_{Rk} [kN], $\alpha_{g,N}$ [-]
6	Characteristic resistance to local brick failure or brick breakout failure of an anchor group under shear loading:	$\begin{array}{c} V^{g}_{Rk,b}; \ V^{g}_{Rk,c,ll}; \ V^{g}_{Rk,c,\perp} \ [kN]; \\ \alpha_{g,V,ll}; \ \alpha_{g,V,\perp} \ [-] \end{array}$
7	Edge distances, spacing, member thickness:	c _{cr} ; s _{cr} ; c _{min} ; s _{min,II} ; s _{min,L} ; h _{min} [mm]
8	Displacements under tension and shear loading:	$\delta_{N0}; \delta_{N\infty;} \delta_{V0;} \delta_{V\infty} [mm]$
9	Maximum installation torque:	max. T _{inst} [Nm]
Cr	I naracteristic resistance and displacements for seismic loading:	
10	Resistance to tension load, displacements:	$N_{Rk,s,eq}$; $N_{Rk,eq}$ [kN], $\alpha_{N,seis}$ [-]; $\delta_{N,eq}$ [mm]
11	Resistance to shear load, displacements:	$V_{Rk,s,eq}$; $V_{Rk,b,eq}$ [kN], $\alpha_{V,seis}$ [-]; $\delta_{V,eq}$ [mm]
12	Factor annular gap:	α _{gap} [-]
Sa	Ifety in case of fire (BWR 2)	
13	Reaction to fire:	-
14	Resistance to fire under tension and shear loading with and without level arm, minimum edge distances and spacing:	$N_{Rk,s,fi}$; $N_{Rk,p,fi}$; [kN], $N_{Rk,b,fi}$; $V_{Rk,s,fi}$ [kN], $M^{0}_{Rk,s}$ [Nm], $c_{cr,fi}$, $s_{cr,fi}$ [mm]
Hy	/giene, health and the environment (BWR 3)	
15	Content, emission and/or release of dangerous substances:	-

Specific Part

1 Technical description of the product

The fischer injection system FIS V Zero for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar fischer FIS V Zero, a perforated sleeve and an anchor rod with hexagon nut and washer or an internal threaded rod. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading	See Annexes B 4 to B 7, B 14 C 1 to C 21
Characteristic resistance and displacements for seismic loading	

3.2 Safety in case of fire (BWR 2)

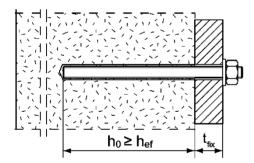
Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire under tension and shear loading with and without lever arm. Minimum edge distances and spacing	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

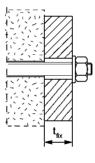
Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

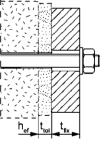
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330076-01-0604 the applicable European legal act is: [97/177/EC].


The system to be applied is: 1

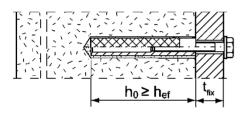
Installation conditions part 1 Anchor rods with perforated sleeve FIS H K; Installation in perforated and solid brick masonry Pre-positioned installation: Installation with render bridge FIS H 16x85 K Size of the perforated sleeve: FIS H 12x50 K FIS H 20x85 K FIS H 12x85 K FIS H 16x130 K FIS H 20x130 K Push through installation: Installation with render bridge Size of the perforated sleeve: FIS H 18x130/200 K FIS H 22x130/200 K Internal threaded anchor FIS E with perforated sleeve FIS H K; Installation in perforated and solid brick masonry Pre-positioned installation: Installation with render bridge Figures not to scale hef = effective anchorage depth t_{tol} = thickness of unbearing layer (e.g. plaster) t_{fix} = thickness of fixture fischer injection system FIS V Zero for masonry Annex A1 **Product description** Installation conditions part 1, Anchor rods and internal threaded anchor with perforated sleeve FIS H K Appendix 3 / 42

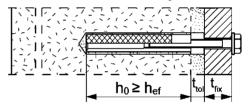

Installation conditions part 2


Anchor rods without perforated sleeve FIS H K; installation in solid brick masonry and autoclaved aerated concrete (AAC)

Pre-positioned installation:

Push through installation: Annular gap filled with mortar




Installation with render bridge

Internal threaded anchors FIS E without perforated sleeve FIS H K; installation in solid brick masonry

Pre-positioned installation:

Installation with render bridge

Figures not to scale

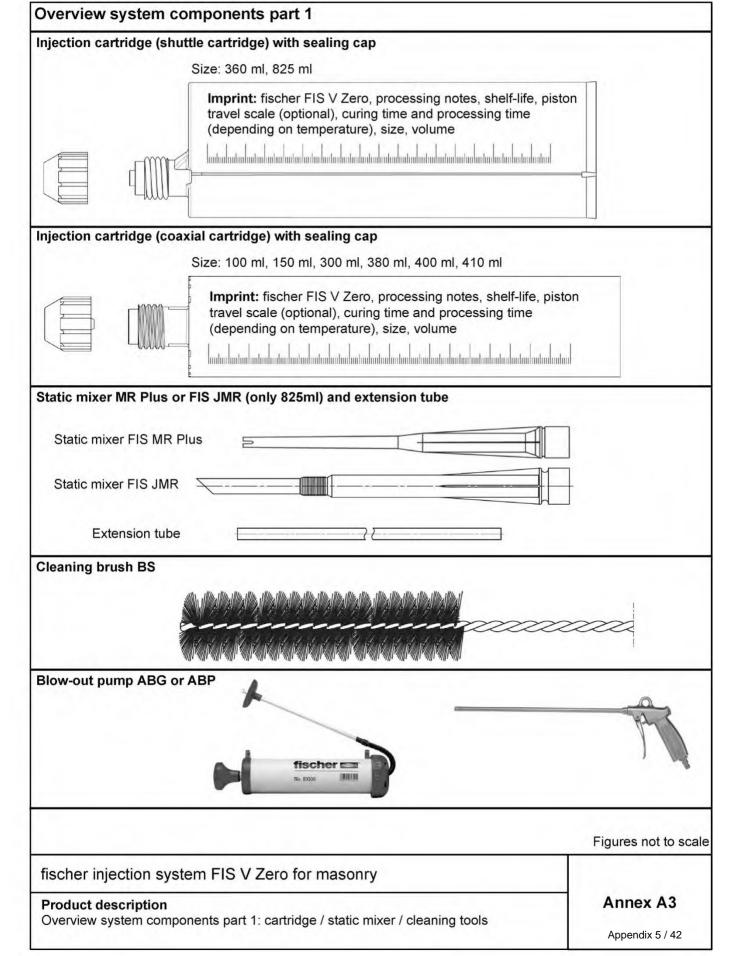
 h_0 = depth of drill hole

hef = effective anchorage depth

 t_{tol} = thickness of unbearing layer (e.g. plaster)

t_{fix} = thickness of fixture

fischer injection system FIS V Zero for masonry


Product description

Installation conditions part 2,

Anchor rods and internal threaded anchor without perforated sleeve

Annex A2

Appendix 4 / 42

Overview system components part : fischer anchor rod	_				
	Size:	M8, M10, M12, M16			
Internal threaded anchor FIS E					
	Size:	11x85 M8 15x85 M10 / M12			
Perforated sleeve FIS H K	Size:	FIS H 12x50 K FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K			
	Size:	FIS H 16x130 K FIS H 20x130 K			
Perforated sleeve FIS H K (push through in	stallation)				
			Size: FIS H 18x130/200 K FIS H 22x130/200 K		
Washer					
Hexagon nut					
			Figures not to scale		
fischer injection system FIS V Zero fo	r masonry				
Product description	oarte / norferete	d sleeves FIS H V	Annex A4		
Overview system components part 2. Metal p	Overview system components part 2: Metal parts / perforated sleeves FIS H K				

Table A5.1: Materials					
Part Designation		Material			
1	Injection cartridge	Mortar, hardener; filler			
		Steel	Stainless steel R	High corrosion-resistant steel HCR	
	Steel grade	zinc plated	acc. to EN 10088-1:2023 Corrosion resistance class CRC III acc. to EN 1993-1-4:2020	acc. to EN 10088-1:2023 Corrosion resistance class CRC V acc. to EN 1993-1-4:2020	
2 Anchor rod		Property class 4.6; 4.8; 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated ≥ 5µm, EN ISO 4042:2022 Zn5/An(A2K) or hot-dip galvanised EN ISO 10684:2004+AC:2009f _{uk} ≤ 1000 N/mm² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062; 1.4662; 1.4462; EN 10088-1:2023 f _{uk} ≤ 1000 N/mm² A ₅ > 8% fracture elongation	Property class 50 or 80 EN ISO 3506-1:2020 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2023 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\% \text{ fracture}$ elongation	
3 Washer ISO 7089:2000		zinc plated ≥ 5µm, ISO 4042:2022 Zn5/An(A2K) or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	1.4565;1.4529 EN 10088-1:2023	
4 Hexagon nut		Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5µm, ISO 4042:2022 Zn5/An(A2K) or hot-dip galvanised ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023	
5 Internal threaded anchor FIS E		Property class 5.8; EN 10277-1:2018 zinc plated ≥ 5μm, ISO 4042:2022 Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023	
6	Commercial standard screw or threaded rod for internal threaded anchor FIS E	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:2022 Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023	
7	Perforated sleeve FIS H K	PP / PE			

Product description Materials

Specifications of intended use (part 1) Table B1.1 Overview installation and use fischer injection system FIS V Zero for masonry Hole drilling with hammer drill mode all bricks Hole drilling with rotary drill mode all bricks Static and quasi-static load all bricks Use conditions dry masonry all bricks Perforated sleeve with anchor rod or internal threaded anchor (in perforated and solid brick masonry) Anchor rod or internal threaded anchor Pre-positioned Size: FIS H 12x50 K (in solid brick masonry and FIS H 12x85 K autoclaved aerated concrete) FIS H 16x85 K FIS H 16x130 K Installation FIS H 20x85 K FIS H 20x130 K Perforated sleeve with anchor rod (in perforated and solid brick Anchor rod masonry) Push through (in solid brick masonry and autoclaved aerated concrete) Size: FIS H 18x130/200 K FIS H 22x130/200 K Installation and condition d/d all bricks use conditions (dry/dry) Installation temperature $T_{i,min}$ = -10 °C to $T_{i,max}$ = +40 °C Temperature (max. short term temperature +40 °C -40 °C to +40 °C max. long term temperature +24 °C) range Ta Temperature (max. short term temperature +80 °C Service -40 °C to +80 °C range Tb max. long term temperature +50 °C) temperature Temperature (max. short term temperature +120 °C; -40 °C to +120 °C max. long term temperature +72 °C) range Tc

fischer injection system	FIS V Zero for	masonry
--------------------------	----------------	---------

Intended use

Specifications (part 1)

Annex B1

Appendix 8 / 42

Specifications of intended use (part 2)

Anchorages subject to:

· Static and quasi-static loads

Base materials:

- · Solid brick masonry (base material group b) and AAC masonry (base material groub d), acc. to Annex B 12
- Hollow brick masonry (base material group c), according to Annex B12
- Minimum thickness of masonry member is hef+30mm
- Mortar strength class of the masonry M2.5 at minimum according to EN 998-2:2016
- For other bricks in solid masonry, hollow, perforated masonry or AAC masonry the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 053:2016-04 under consideration of the β-factor according to Annex C20, Table C20.1

Note (only applies to solid bricks and AAC):

The characteristic resistance is also valid for larger brick sizes, higher mean compressive strength and higher mean gross dry density of the masonry unit.

Temperature Range:

- Ta: from -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)
- Tb: from -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)
- Tc: from -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- For all other conditions according to EN 1993-1-4:2006+A2:2020 corresponding to corrosion resistance classes to Annex A5. Table A5.1.

fischer injection	n system f	FIS V Zero	for masonry
-------------------	------------	------------	-------------

Specifications of intended use (part 2 continued)

Design:

The anchorages have to be designed in accordance with EOTA Technical Report TR 054:2022-07,
 Design method A under the responsibility of an experienced in anchorages and masonry work.
 Applies to all bricks, if no other values are specified:

$$N_{Rk} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c} = N_{Rk,p,c}$$

$$V_{Rk} = V_{Rk,b} = V_{Rk,c,l} = V_{Rk,c,l}$$

For the Calculation of pulling out a brick under tension load $N_{Rk,pb}$ or pushing out a brick under shear load $V_{Rk,pb}$ see EOTA Technical Report TR 054:2022-07.

N_{Rk,s}, V_{Rk,s} and M⁰_{Rk,s} see annex C1-C3

Factors for job site tests see Annes C20 and displacements see Annex C21

Verifiable calculation notes and drawings have to be prepared taking account the relevant masonry in the
region of the anchorage, the loads to be transmitted and their transmission to the supports of the
structure. The position of the anchor is indicated on the design drawings.

Installation:

- Condition d/d: Installation and use in structures subject to dry, internal conditions
- · Hole drilling see Annex B1.1
- In case of aborted hole: The hole shall be filled with mortar
- Bridging of unbearing layer (e.g. plaster) at perforated brick masonry see Annex B6, Table B6.1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or anchor rods (including nut and washer) must comply with the appropriate material and property class of the fischer internal threaded anchor FIS E.
- Minimum curing time see Annex B8, Table B8.2
- Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

Material dimensions and mechanical properties of the metal parts according to the specifications are given in Annex A5, Table 5.1

Conformation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents shall be stored

Marking of the anchor rod with the effective anchorage depth. This may be done by the manufacturer of the rod or by a person on job site

fischer injection system FIS V Zero for masonry

Intended use

Specifications (part 2 continued)

Annex B3

Appendix 10 / 42

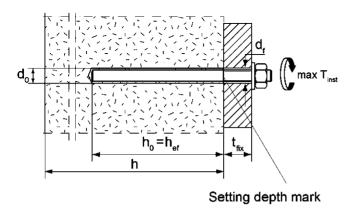
Table B4.1: Installation parameters for anchor rods in solid bricks and AAC without perforated sleeves FIS H K

Anchor rod Thread		Thread	M8	M10	M12	M16
Nominal drill hole diame	eter	d₀[mm]	10	12	14	18
Effective anchorage depth h _{ef} ¹⁾ in solid brick h _{0,min} =h _{ef,min} [mm] (cycl. drill hole)		h _{ef,min} [mm]	100			
Effective anchorage dep	oth h _{ef} 1)	h _{ef,min} [mm]		50)	
in solid brick (depth of drill hole $h_0 = h$	lef)	h _{ef,max} [mm]		h-30,	≤200	
Diameter of clearance	pre-positioned installation	d _f ≤[mm]	9	12	14	18
•	push through installation	d _f ≤[mm]	11	14	16	20
Diameter of cleaning brush d _b ≥[mm]		d _b ≥[mm]	see Table B8.1			
Maximum installation torque max T _{inst} [Nm]		x T _{inst} [Nm]	5	see parameters o	of brick Annex (2

¹⁾ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible.

Marking (on random place) fischer anchor rod:

Steel zinc plated PC¹) 8.8 • o		Steel hot-dip galvanised PC1) 8.8	•
High corrosion resistant steel HCR PC1) 50	•	High corrosion resistant steel HCR PC1) 70	_
High corrosion resistant steel HCR PC1) 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		


Alternatively: Colour coding according to DIN 976-1: 2016;

property class 4.6 marking according to EN ISO 898-1:2013

1) PC = property class

Installation conditions:

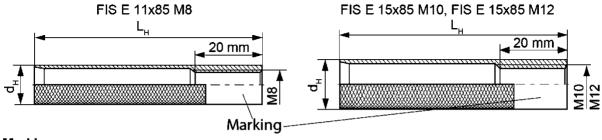
Anchor rod

Figures not to scale

fischer injection system FIS \	V Zero for masonry
--------------------------------	--------------------

Intended use

Installation parameters for anchor rods without perforated sleeve

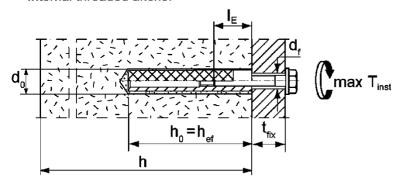

Annex B4

Appendix 11 / 42

Table B5.1: Installation parameters for internal threaded anchors FIS E in solid bricks without perforated sleeves

Internal threaded anchor FIS E	•	11x85 M8	15x85 M10	15x85 M12		
Diameter of anchor	d _H [mm]	11 15				
Nominal drill hole diameter	d₀[mm]	14 18				
Length of anchor	L _H [mm]	85				
Effective anchorage depth	$h_0 = h_{ef}[mm]$	85				
Diameter of cleaning brush	d _b ≥[mm]	see Table B8.1				
Maximum installation torque	max T _{inst} [Nm]	see par	ameters of brick Annex	C4-C16		
Diameter of clearance hole in the fixture	d/lmml		12	14		
Carau in donth	I _{E,min} [mm]	8 10				
Screw-in depth	I _{E,max} [mm]	60				

fischer Internal threaded anchor FISE



Marking:

Size, e.g. M8, Stainless steel: R, e.g. M8 R, High corrosion-resistant steel: HCR, e.g. M8 HCR

Installation conditions:

Internal threaded anchor

Figures not to scale

fischer injection system F	FIS V Zero for masonry
----------------------------	------------------------

Intended use

Installation parameters for internal threaded rods FIS E without perforated sleeve

Annex B5

Appendix 12 / 42

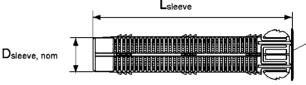
Table B6.1: Installation parameters for anchor rods and internal threaded anchors FIS E with perforated sleeves FIS H K(pre-positioned installation)

perforated sleeve FIS H K		12x50	12x85 ²⁾	16x85	16x130 ²⁾	20x85	20x130 ²⁾
Nominal drill hole diameter d ₀ = D _{sleeve,nom}	d₀ [mm]	12		16		20	
Depth of drill hole	h₀ [mm]	55	90	90	135	90	135
Estanti a analana a la ath	h _{ef,min} [mm]	50	65	85	110	85	110
Effective anchorage depth	h _{ef,max} [mm]	50	85	85	130	85	130
Size of threaded rod	[-]	M8		M8 and M10		M12 and M16	
Size of internal threaded anch	or FIS E	-	-	11x85	-	15x85	-
Diameter of cleaning brush 1)	d₅≥[mm]	n] see Table B8.1					
Maximum installation torque	max T _{inst} [Nm]	see parameters of brick Annex C					

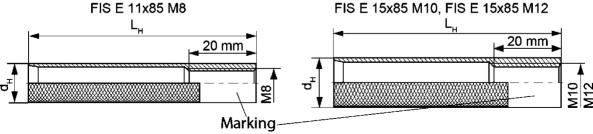
¹⁾ Only for solid areas in hollow bricks and solid bricks.

Perforated sleeve

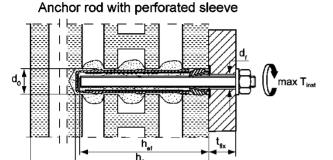
FIS H 12x50 K; FIS H 12x85 K; FIS H 16x85 K; FIS H 16x130 K;

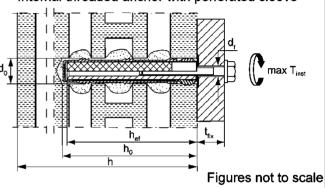

FIS H 20x85 K; FIS H 20x130 K

Marking:


Size D_{sleeve, nom} x L_{sleeve}

(e.g.: 16x85)




fischer Internal threaded anchor FIS E

Installation conditions:

Internal threaded anchor with perforated sleeve

fischer injection system FIS V Zero for masonry

Intended use

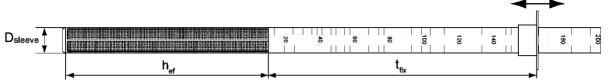
Installation parameters for anchor rods and internal threaded anchors FIS E with perforated sleeve FIS H K (pre-positioned installation)

Annex B6

Marking

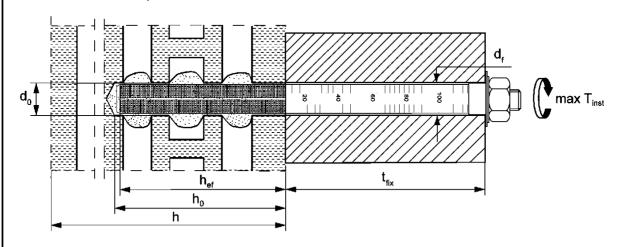
Appendix 13 / 42

²⁾ Bridging of unbearing layer (e.g. plaster) is possible. When reducing the effective anchorage depth h_{ef, min}, the values of the next shorter perforated sleeve of the same diameter must be used. The smaller value of charastereristic resistance must be taken.


Table B7.1: Installation parameters for anchor rods with perforated push through sleeves (push through installation)

Perforated sleeve FIS H K		18x13	22x130/200		
Nominal sleeve diameter	D _{sleeve,nom} [mm]	16		20	
Nominal drill hole diameter	d₀ [mm]	18		22	
Depth of drill hole	h₀ [mm]	135			
Effective anchorage depth	h _{ef} [mm]	≥130			
Diameter of cleaning brush 1)	d _b ≥ [mm]	see Table B8.1			
Size of threaded rod	[-]	M10	M12	M16	
Maximum installation torque	max T _{inst} [Nm]	see parameters of brick Annex C			
Thickness of fixture	t _{fix,max} [mm]	200			

¹⁾ Only for solid areas in hollow bricks and solid bricks.


Perforated push through sleeve

FIS H 18x130/200 K: FIS H 22x130/200 K

Installation conditions:

Anchor rod with perforated sleeve

Figures not to scale

movable

fischer injection system FIS V Zero for masonry

Intended use

Installation parameters for anchor rods with perforated push through sleeves (push through installation)

Annex B7

Appendix 14 / 42

Table B8.1: Parameters of the cleaning brush BS (steel brush with steel bristles)									
The size of the cleaning brush refers to the drill hole diameter									
Nominal drill hole diameter	d₀[mm]	10	12	14	16	18	20	22	
Steel brush diameter	d₅ [mm]	11	14	16	20	20	25	25	

Only for solid areas in hollow bricks or solid bricks and autoclaved aerated concrete

Table B8.2: Maximum processing times and minimum curing times
(During the curing time of the mortar the temperature of the anchoring base may not fall below the listed minimum temperature)

Tomporeture et	Maximum processing time	Minimum curing time		
Temperature at	t _{work}	t _{cure}		
anchoring base				
[°C]	FIS V Zero	FIS V Zero		
	110 \$ 2010	110 1 2010		
-10 to -5 ¹⁾	6 h	72 h		
> -5 to 0 ¹⁾	2 h	24 h		
> 0 to 5 1)	45 min	12 h		
> 5 to 10	20 min	6 h		
> 10 to 15	8 min	3 h		
> 15 to 20	5 min	2 h		
> 20 to 25	3 min	1 h		
> 25 to 30	2 min	45 min		
> 30 to 40	1 min	30 min		

¹⁾ Minimum cartridge temperature +5°C

Figures not to scale

fischer injection system FIS V Zero for masonry	
Intended use	Annex B8
Parameters of the cleaning brush (steel brush) Processing time and curing time	Appendix 15 / 42

Installation instruction part 1 Installation in solid brick and autoclaved aerated concrete without perforated sleeve Drill the hole (drilling method see Annex C of the respective brick) depth of drill hole ho and nominal drill hole diameter do see Table B4.1: B5.1 Blow out the drill hole 2 twice. Brush twice and blow out twice again. Remove the sealing cap. Screw on the static mixer. (the spiral in the static 3 mixer must be clearly visible) Extrude approximately 10 cm of material out until Place the cartridge into the resin is evenly grey in 4 a suitable dispenser colour. Do not use mortar that is not uniformly grev. Fill approximetly 2/3 of the drill hole with mortar For push through beginning from the installation fill the annular 5 bottom of the hole.1) gap with mortar. Avoid bubbles Only use clean and oil-free metal parts. Mark the setting depth. Insert the anchor rod or internal threaded anchor FIS E by hand. Recommendation: 6 Rotation back and forth of the anchor rod or internal threaded anchor FIS E makes pushing easy. When reaching the setting depth mark, excess mortar must emerge from the mouth of the drill hole. Do not touch. Mounting the fixture. 7 Minimum curing time see max T_{inst} max Tinst see parameter of Table B8.2 brick. 1) Exact volume of mortar see manufacturer's specifications

fischer injection system FIS V Zero for masonry

Intended use

Installation instruction part 1
Installation in solid brick without perforated sleeve

Annex B9

Appendix 16 / 42

Installation instruction part 2 Installation in perforated or solid brick with perforated sleeve (pre-positioned installation) Drill the hole (drilling method see Annex C of the respective brick). When install perforated sleeves in solid bricks or depth of drill hole ho and solid areas of hollow bricks, also clean the hole by nominal drill hole blowing out and brushing. diameter do see Table B6.1 Remove the sealing cap. Screw on the static mixer, (the spiral in the static 2 mixer must be clearly visible) Extrude approximately 10 cm of material out until Place the cartridge into the resin is evenly grey in 3 a suitable dispenser. colour. Do not use mortar that is not uniformly grev. Insert the perforated Fill the perforated sleeve sleeve flush with the completely with mortar beginning from the surface of the masonry bottom of the hole 1) or plaster. Only use clean and oil-free metal parts. Mark the setting depth. Insert the anchor rod or the internal threaded anchor FIS E by hand. 5 Recommendation: Rotation back and forth of the anchor rod or internal threaded anchor FIS E makes pushing easy until reaching the setting depth mark (anchor rod) or flush with the surface (internal threaded anchor). Do not touch. Mounting the fixture. Minimum curing time max T_{inst} see parameter 6 see Table B8.2 of brick. max T_{inst} 1) Exact volume of mortar see manufacturer's specification.

fischer injection system FIS V Zero for masonry

Intended use

Installation instruction part 2

Installation in perforated or solid brick with perforated sleeve (pre-positioned installation)

Annex B10

Appendix 17 / 42

Installation instruction part 3 Installation in perforated or solid brick with perforated sleeve (push through installation) Drill the hole through the fixture. Depth of drill hole Push the movable stop up to the correct (ho + tfix) 1 thickness of fixture and and nominal drill hole cut the overlap. diameter do see Table B7 1 Remove the sealing cap. Screw on the static mixer. (the spiral in the static 2 mixer must be clearly visible) Extrude approximately 10 cm of material out until Place the cartridge into the resin is evenly grey in 3 a suitable dispenser. colour. Do not use mortar that is not uniformly grey. Fill the sleeve with mortar Insert the perforated beginning from the sleeve flush with the bottom of the hole. 1) surface of the fixture into For deep drill holes use the drill hole an extension tube. Only use clean and oil-free metal parts. Mark the setting depth. Insert the anchor rod by hand. manaman 5 Recommendation: Rotation back and forth of the anchor rod makes pushing easy until reaching the setting depth mark (anchor rod). Do not touch. Mounting the fixture. 6 Minimum curing time max T_{inst} see parameter see Table B8.2 of brick $\max T_{inst}$ 1) Exact volume of mortar see manufacturer's specification.

fischer injection system FIS V Zero for masonry

Intended use

Installation instruction part 3

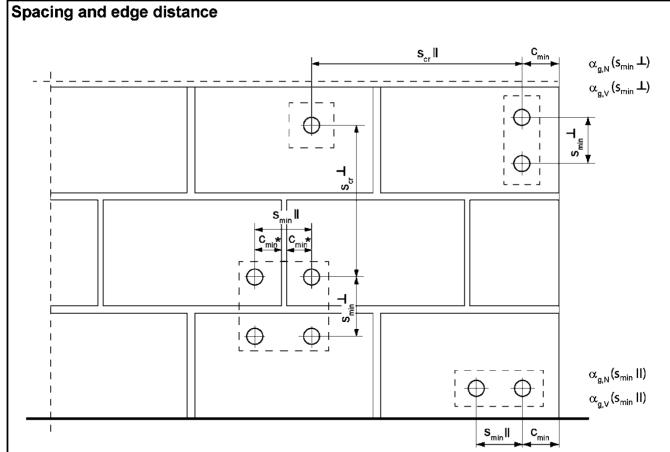
Installation in perforated or solid brick with perforated sleeve (push through installation)

Annex B11

Appendix 18 / 42

Kind of masonry	Brick format [mm]	Mean compressive strength [N/mm²]	Main country of origin	Mean gross dry density ρ [kg/dm³]	Annex
	So	lid brick Mz			
Solid brick Mz	≥ 230x108x55	36 - 48	Denmark	≥2,0	C4/C5
Solid calcium silicate	(sand - lime) brick KS	/ perforated cald	ium silicate (sa	nd - lime) brid	k KSL
Solid calcium silicate brick KS	NF ≥240x115x71	8- 20	Germany	≥2,0	C6/C7
Perforated calcium silicate brick KSL	3DF 240x175x113	8 - 16	Germany	≥1,6	C8 – C11
	Vertical p	erforated brick H	Lz		
Vertical perforated brick HLz	230x108x55	6 - 16	Denmark	≥1,6	C12/C13
	Lightweight aggrega	ate concrete hollo	w block Hbl		
Lightweight aggregate concrete hollow block Hbl	2 - 4	France	≥1,0	C14/C15	
	Autoclave	d aerated concre	te		
PP2 / AAC AAC PP4 / AAC PP6 / AAC		2 4 6	Germany	≥0,35 ≥0,5 ≥0,65	C16-C19
Table B12.2: Overview Perforated calcium silicate (s 3DF, EN 771-2:2011+A1:201		forated and ho Lightweight aggr 2011+A1:2015; e	egate concrete h		
vertical perforated brick HLz 2011+A1:2015; e.g. Wienerberger according	24 24 24 45 12 , EN 771-1:	200			
25 12 230				Meas	sures in [m

Figures not to scale


fischer injection system FIS V Zero for masonry

Intended use

Annex B12

Overview of assessed bricks Overview dimensions of perforated and hollow bricks

Appendix 19 / 42

* Only, if vertical joints are not completely filled with mortar

s_{min} II = Minimum spacing parallel to horizontal joint

 s_{min} = Minimum spacing perpendicular to horizontal joint

s_{cr} II = Characteristic spacing parallel to horizontal joint

 s_{cr}^{\perp} = Characteristic spacing perpendicular to horizontal joint

 $c_{cr} = c_{min}$ = Edge distance

 $\alpha_{q,N}(s_{min}|I)$ = Group factor for tension load, anchor group parallel to horizontal joint

 $\alpha_{g,V}(s_{min} \, II)$ = Group factor for shear load, anchor group parallel to horizontal joint

 $\alpha_{g,N}(s_{min}\perp)$ = Group factor for tension load, anchor group vertical to horizontal joint

 $\alpha_{g,V}(s_{min}\perp)$ = Group factor for shear load, anchor group vertical to horizontal joint

fischer injection system FIS V Zero for masonry

Intended use

Spacing and edge distance

Annex B13

Appendix 20 / 42

Spacing and edge distance (continuation)

For
$$s \ge s_{cr}$$
 $\alpha_a = 2$

For $s_{min} \le s < s_{cr}$ α_g according to installation parameters of brick Annex C

Group of 2 anchors

$$N^{g}_{Rk} = \alpha_{g,N} \cdot N_{Rk}$$
; $V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} \cdot V_{Rk}$

Group of 4 anchors

$$N^{g}_{Rk} = \alpha_{g,N} (s_{min}II) \cdot \alpha_{g,N} (s_{min}^{\perp}) \cdot N_{Rk}$$
;

$$V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} (s_{min}II) \cdot \alpha_{g,V} (s_{min}\perp) \cdot V_{Rk}$$

with N_{Rk} and $\alpha_{g,N}$ depending on s_{min}II or s_{min} \perp acc. to Annex C

with V_{Rk} and α_{g,V} depending on s_{min}II or s_{min}⊥ acc. to Annex C

fischer injection system FIS V Zero for masonry

Intended use

Spacing and edge distance (continuation)

Annex B14

Appendix 21 / 42

Table C1.1: Characteristic resistance to steel failure of a single anchor under tension loading of fischer anchor rods and standard threaded rods

Anchor rod / standard threaded rod				M8 ³⁾	M10 ³⁾	M12	M16		
Chara	acteristic resistar	ice to steel	failure	under	tension loadi	ng			
Characteristic resistance N _{Rk,s}			4.6		15(13)	23(21)	33	63	
	Ctaal wine plated		4.8		15(13)	23(21)	33	63	
	Steel zinc plated		5.8		19(17)	29(27)	43	79	
		Property	8.8	FLANT	29(27)	47(43)	68	126	
	Stainless steel R and	class –	50	[kN] —	19	29	43	79	
	High corrosion resistant steel HCR		70		26	41	59	110	
			80		30	47	68	126	
Partia	Il factors 1)								
		·-	4.6		2,00				
	Stool zing plated		4.8		1,50				
ors	Steel zinc plated		5.8		1,50				
fact s,N		Property	8.8		1,50				
Partial factors	Stainless steel R and	class	50	[-]	2,86				
Ра	High corrosion	70	70		1,50 ²⁾ / 1,87				
	resistant steel HCR			1,60					

¹⁾ In absence of other national regulations

fischer injection syste	m FIS V Zero for masonry
-------------------------	--------------------------

Performances

Characteristic resistance to steel failure of a single anchor under tension loading of fischer anchor rods and standard threaded rods

Annex C1

Appendix 22 / 42

²⁾ Only for fischer anchor rod FIS A made of high corrosion-resistant steel HCR

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009

Table C2.1: Characteristic resistance to steel failure of a single anchor under shear loading with and without lever arm of fischer anchor rods and standard threaded rods

Anchor rod / standard threaded rod				M8 ³⁾	M10 ³⁾	M12	M16		
Chara	acteristic resistar	ice to steel	failure	under	shear loading				
witho	ut lever arm								
	A. (*** *** * * * * * * * * * * * * * * *		4.6		9(8)	14(13)	20	38	
Characteristi resistance V _R	Stool zine plated		4.8		9(8)	14(13)	20	38	
	Steel zinc plated		5.8		11(10)	17(16)	25	47	
		Property	8.8	[kN]	15(13)	23(21)	34	63	
	Stainless steel R and	class	50	[KIN]	9	15	21	39	
	High corrosion		70		13	20	30	55	
	resistant steel HCR		80		15	23	34	63	
with I	ever arm								
g	Steel zinc plated	Property class	4.6		15(13)	30(27)	52	133	
tan			4.8		15(13)	30(27)	52	133	
Sis			5.8		19(16)	37(33)	65	166	
ristic re M ^o rk,s			8.8	[Nm]	30(26)	60(53)	105	266	
erist M°	Stainless steel R and		50		19	37	65	166	
Characteristic resistance M ⁰ Rk,s	High corrosion resistant steel HCR		70		26	52	92	232	
Ç			80		30	60	105	266	
Partia	al factors 1)								
			4.6		1,67				
447	Steel zinc plated		4.8			1,2	25		
tors	Steel Zille piated		5.8			1,2	25		
al fact Yms,v		Property	8.8	[-]		1,2	25		
Partial factors	Stainless steel R and	class	50	[-]	2,38				
ď,	High corrosion resistant steel		70		1,25 ²⁾ / 1,56				
	HCR		80		1,33				

¹⁾ In absence of other national regulations

fischer injection	system FIS \	/ Zero for	masonry
-------------------	--------------	------------	---------

Performances

Characteristic resistance to steel failure of a single anchor under shear loading with and without lever arm of fischer anchor rods and standard threaded rods

Annex C2

Appendix 23 / 42

²⁾ Only for fischer anchor rod FIS A made of high corrosion-resistant steel HCR

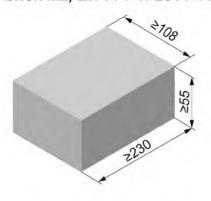
³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods (M8 resp. M10) according to EN ISO 10684:2004+AC:2009.

Table C3.1: Characteristic resistance to steel failure of a single anchor under tension / shear loading of internal threaded anchors FIS E

fischer internal	thread	ed anchor	FIS E		M8	M10	M12
Characteristic i	esistar	ice to stee	l failure	under te	nsion loading		
Characteristic		Property class	5.8		18	29	42
resistance with screw	N _{Rk,s}	Property	R	[kN]	26	41	59
With Sciew		class 70	HCR		26	41	59
Partial factors 1)						
		Property class	5.8			1,50	
Partial factors	$\gamma_{Ms,N}$	Property	R	[-]		1,87	
		class 70	HCR			1,87	
Characteristic i	resistar	ice to stee	l failure	under sh	near loading		
without lever a	rm						
Characteristic		Property class	5.8		9	15	21
resistance with screw	$V_{Rk,s}$	Property	R	[kN]	13	20	30
With Sciew		class 70	HCR		13	20	30
with lever arm							
Characteristic		Property class	5.8	fN1 - 1	19	37	65
resistance	M^0 Rk,s	Property	R	[Nm]	26	52	92
		class 70	HCR		26	52	92
Partial factors 1)						
Darkate		Property class	5.8			1,25	
Partial factors	γ Ms,V	Property	R	[-]		1,56	
		class 70	HCR			1,56	

¹⁾ In absence of other national regulations

fischer injection	system FIS V	Zero for masonry
-------------------	--------------	------------------


Performances

Characteristic resistance to steel failure of a single anchor under tension / shear loading of internal threaded anchors FIS E

Annex C3

Appendix 24 / 42

Solid brick Mz, EN 771-1: 2011+A1:2015

Solid brid	ck Mz, EN	771-1: 201	1+A1:2015	
Producer		e.g	. Wienerber	ger
Naminal dimensions	[mm]	length L	width W	height H
Nominal dimensions	[mm]	≥ 230	≥ 108	≥ 55
Mean gross dry density ρ	[kg/dm ³]		≥ 2,0	
Normalised mean compressive strength	[N/mm ²]		36 / 48	
Standard		EN 77	1-1: 2011+A	1:2015

Table C4.1: Installation parameters

Anchor rod			N	18	M	10	М	12	M	16	<u> -</u> ,		-
Internal threaded anchor FIS E				-						M8 11x85	M10	M12 x85	
Anchor rod and	internal	thread	ed an	chor F	IS E w	ithout	perfora	ated sl	eeve	_			
Effective anchorage deptl	h _{ef}	[mm]	50	80	50	80	50	80	50	80		85	
Max. installation torque	max T _{inst}	[Nm]		10					10				
General installa	ation para	meters	3										
Edge distance	C _{min} = C _{cr}							1	00				
	s _{min} II							10	00				
_	s _{cr} II	[mm]						3 x	h _{ef}				
Spacing —	S _{min} \bot							1	00				
_	Scr⊥							3 x	h _{ef}				

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C4.2: Group factors

Anchor ro	ds		M8	M10	M12	M16	- A		-
Internal threaded anchor						M8	M10	M12	
FIS E	The second second		-	•		-	11x85	153	x85
	α _{g,N} (s _{min} II)				1,	81			
Group	αg, v (Smin II)				1,	49			
factors	α _{g,N} (S _{min} ⊥)	[-]			1,	74			
	α _{g,V} (s _{min} ⊥)				1,	49			

fischer injection	system FIS \	✓ Zero for masonry

Performances

Solid brick Mz, dimensions, installation parameters

Annex C4

Appendix 25 / 42

Solid brick Mz, EN 771-1:2015

Table C5.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Anchor rod	M8	M10	M12	M16	-		-
Internal threaded					M8	M10	M12
anchor FIS E	-	-		-	11x85	15:	x85

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the normalised mean compressive strength f_b ; (temperature range 24/40°C)

Normalised mean				Ef	fective a	anchora	ge dep	h h _{ef} [mm]	
compressive strength f ь	50	80	50	80	50	80	50	80	85
36 N/mm ²	2,5	3,0	3,0	3,0	3,0	3,0	3,0	4,5	2,5
48 N/mm ²	3,0	3,5	3,5	3,5	3,5	3,5	3,5	5,0	3,0

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the normalised mean compressive strength f_b (temperature range 50/80°C and 72/120°C)

Normalised mean				Ef	fective a	anchora	ge dept	th hef [mm]	
compressive strength f ₅	50	80	50	80	50	80	50	80	85
36 N/mm ²	1,5	2,0	2,0	2,0	2,0	2,0	2,0	3,5	1,5
48 N/mm ²	1,5	2,5	2,5	2,5	2,5	2,5	2,5	4,0	1,5

Table C5.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading

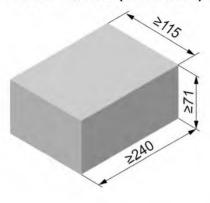
Anchor rod	M8	M10	M12	M16	-		
Internal threaded					M8	M10	M12
anchor FIS E	-	-			11x85	15:	x85

Shear resistance $V_{Rk} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] depending on the normalised mean compressive strength f_b ; (temperature range 24/40°C, 50/80°C and 72/120°C)

Normalised mean		Effective anchorage depth hef [mm]									
compressive strength f _b	50	50 80 50 80 50 80 85							35		
36 N/mm ²	2,5	4,5	2,5	4,5	2,5	4,5	2,5	4,5	2,5	2,5	
48 N/mm ²	3,0	5,0	3,0	5,0	3,0	5,0	3,0	5,0	3,0	3,0	

Factor for job site tests see annex C20 and displacements see annex C21

fischer injection system FIS V Zero for masonry


Performances

Solid brick Mz, Characteristic resistance under tension and shear loading

Annex C5

Appendix 26 / 42

Solid calcium silicate (sand-lime) brick KS, NF, EN 771-2: 2011+A1:2015

Solid calci NF,		e (sand-lin : 2011+A1		S,			
Producer							
Naminal dimensions	[mama]	length L	width W	height H			
Nominal dimensions	[mm]	≥ 240	≥ 115	≥ 71			
Mean gross dry density	[kg/dm ³]		≥ 2,0				
Normalised mean compressive strength	[N/mm ²]	12 / 16 / 20					
Standard		EN 77	I-2: 2011+A	1:2015			

Table C6.1: Installation parameters

Anchor rod			IV	18	M	10	M	12	M	16	-		
Internal thread FIS E	ed anchoi	-		-				-			M8 11x85	M10	M12 x85
Anchor rod and	dinternal	thread	ed an	chor F	IS E w	ithout	perfor	ated s	leeve				
Effective anchorage depth	h _{ef}	[mm]	50	80	50	80	50	80	50	80	85	8	5
Max. installatior torque	max T _{inst}	[Nm]		3			1	0			8	1	0
General install	ation para	meter	s										
Edge distance	Cmin = Ccr							1	00				
	s _{min} II							1	00				
	s _{cr} II	[mm]						3 x	h _{ef}				
Spacing —	S _{min} ⊥							1	00				
-	S _{cr} ⊥							3 x	hef				

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C6.2: Group factors

Anchor ro	d		M8	M10	M12	M16	-		-
Internal th	readed anchor				_		M8	M10	M12
FIS E			-	•	-	•	11x85	153	x85
	α _{g,N} (S _{min} II)				1,	67			
Group	α _{g,V} (s _{min} II)	r 1			1,	26			
Group factors	α _{g,N} (S _{min} ⊥)	[-]			1,	67			
	αg,ν (Smin ⊥)				2	,0			

fischer injection system FIS V Zero for masonry	fischer in	jection sys	stem FIS \	/ Zero	for masonry
---	------------	-------------	------------	--------	-------------

Performances

Solid calcium silicate (sand-lime) brick KS, NF, dimensions, installation parameters

Annex C6

Appendix 27 / 42

Solid calcium silicate (sand-lime) brick KS, NF, EN 771-2: 2011+A1:2015

Table C7.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Anchor rod	M8	M10	M12	M16			
Internal threaded			1		M8	M10	M12
anchor FIS E	7	-			11x85	15:	x85

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the normalised mean compressive strength f_b ; (temperature range 24/40°C)

Normalised mean				Ef	fective a	anchora	ge dept	th h _{ef} [mm]	
compressive strength f ₅	50	80	50	80	50	80	50	80	85	85
12 N/mm ²	2,0	2,0	2,5	4,5	2,0	4,5	2,0	2,0	2	,0
16 N/mm ²	2,5	2,5	2,5	5,0	2,5	5,0	2,5	2,5	2	,5
20 N/mm ²	2,5	3,0	3,0	6,0	2,5	6,0	2,5	3,0	2	,5

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the normalised mean compressive strength f_b ; (temperature range 50/80°C and 72/120°C)

Normalised mean	M.			Ef	fective a	anchora	ge dept	h hef [mm]	
compressive strength f ь	50	80	50	80	50	80	50	80	85	85
12 N/mm ²	1,5	1,5	1,5	3,0	1,5	3,0	1,5	1,5	1	5
16 N/mm ²	1,5	1,5	2,0	3,5	1,5	3,5	1,5	1,5	1	5
20 N/mm ²	2,0	2,0	2,0	4,0	2,0	4,0	2,0	2,0	2	0

Table C7.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading

Anchor rod	M8	M10	M12	M16	-		•
Internal threaded					M8	M10	M12
anchor FIS E		-		-	11x85	15:	x85

Shear resistance $V_{Rk} = V_{Rk,c,\parallel} = V_{Rk,c,\parallel} = V_{Rk,c,\perp}$ [kN] depending on the normalised mean compressive strength f_b ; (temperature range 24/40°C, 50/80°C and 72/120°C)

Normalised mean				Ef	fective	anchora	ge dep	th h _{ef} [mm	1]	
compressive strength f ₅	50	80	50	80	50	80	50	80	85	85
12 N/mm ²	3,5	3,5	4,5	4,5	3,5	4,0	3,5	4,0	3,5	3,5
16 N/mm ²	4,0	4,0	5,0	5,0	4,0	4,5	4,0	4,5	4,0	4,0
20 N/mm ²	4,5	4,5	6,0	6,0	4,5	5,0	4,5	5,0	4,5	4,5

Factor for job site tests see annex C20 and displacements see annex C21

fischer injection system FIS V Zero for masonry

Performances

Solid calcium silicate (sand-lime) brick KS, NF, Characteristic resistance under tension and shear loading

Annex C7

Appendix 28 / 42

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2: 2011+A1:2015 Perforated calcium silicate (sand-lime) brick KSL, 3DF. EN 771-2: 2011+A1:2015 Producer e.a. KS Wemdina lenath L width W height H Nominal dimensions [mm] 240 175 113 Mean gross [kg/dm³] ≥ 1.6 dry density o Normalised mean $[N/mm^2]$ 6/8/10/12/16 compressive strength Standard EN 771-2: 2011+A1:2015 4 Dimensions see 4 also Annex B12 12 Table C8.1: Installation parameters (Pre-positioned installation with perforated sleeve FIS H K) M8 M10 M8 M10 M12 M16 M12 M16 Anchor rod **M8 M8** M10 M12 **M8** Internal threaded anchor FIS F 11x85 15x85 Perforated sleeve FIS H K 12x50 12x85 16x85 16x130 20x85 20x130 Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K Max. installation max Tinst [Nm] 10 10 10 torque General installation parameters Edge distance Cmin = Ccr 100 100 Smin II 240 scr II [mm] Spacing 100 Smin 1 Scr 1 115 **Drilling method** Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill Table C8.2: **Group factors** Anchor rod M8 M10 M8 M10 M12 M16 M12 M16 **M8 M8** M10 M12 **M8** Internal threaded anchor FIS E 15x85 11x85 Perforated sleeve FIS H K 12x50 16x85 12x85 16x130 20x85 20x130 1.14 aan (Smin II) 1,51 ag,v (Smin II) Group [-] factors 1,14 αa,N (Smin ⊥) 1,54 $\alpha_{g,V}$ (Smin \perp) fischer injection system FIS V Zero for masonry Annex C8 Performances Perforated calcium silicate (sand-lime) brick KSL, 3DF, dimensions, installation Appendix 29 / 42 parameters

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2: 2011+A1:2015

Table C9.1: Installation parameters

(Push through installation with perforated sleeve FIS H K)

Anchor rod			M10	M12	M16
Perforated slee	ve FIS H	(18x13	0/200	22x130/200
Anchor rod wit	h perforat	ed sleeve	FIS H K		
Max. installation torque	max T _{inst}	[Nm]		10	
General installa	ation para	meters			
Edge distance	C _{min} = C _{cr}			100	
	Smin II			100	
Cassian	Scr II	[mm]		240	
Spacing	S _{min} \bot			100	
	S _{cr} ⊥			115	

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C9.2: Group factors

Anchor ro	d	M10	M12	M16
Perforated	d sleeve FIS H K	18x13	30/200	22x130/200
	α _{g,N} (S _{min} II)		1,14	
Group	αg, v (Smin II)		1,51	
factors	$\alpha_{g,N}$ ($s_{min} \perp$) [-]		1,14	
	α _{g,V} (s _{min} ⊥)		1,54	

fischer injection system FIS	V Zero for masonry
Tagarous session	

Performances

Perforated calcium silicate (sand-lime) brick KSL, 3DF, dimensions, installation parameters

Annex C9

Appendix 30 / 42

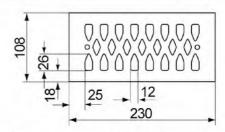
Anchor rod	M8	M8	-	M8 M10	M8 M10		M12 M1	6 M12 M16
Internal threaded anchor FIS E	-	-	M8 11x85	-	-	M10 M12 15x85		-
Perforated sleeve FIS H K	12x50	12x85		x85	16x130	20x	85	20x130
Tension resistance N _{Rk} = N _{Rk,p}				lepending	on the no	rmalised	mean	
compressive strength f _b ; (tem Norm. mean compressive strength f _b	*	ange 24/40	J-C)					
6 N/mm ²		.2	0	0,9	2,0	0,	a	2,0
8 N/mm²		,5		,2	2,5	1,		2,5
10 N/mm²	-	,5	1	,5	3,0	1,		3,0
12 N/mm²		,0		,5	3,5	1,		3,5
16 N/mm²	_	,5	1	2,0	4,5	2,		4,5
Tension resistance N _{Rk} = N _{Rk,p}	_							1 4,0
compressive strength fb; (tem	perature ra							
Norm. mean compressive strength fb								
6 N/mm ²	-	.6		.75	1,5	0,7		1.5
8 N/mm ²	-	75),9	2,0	0,		2,0
10 N/mm²		,9	-),9	2,5	0,		2,5
12 N/mm²		,9	+	,2	2,5	1,		2,5
16 N/mm²	1	,2	1	,5	3,5	1,	5	3,5
Anchor rod Perforated sleeve FIS H K	M	10 18v1	M 30/200	112		M ² 22x13		
Tension resistance N _{Rk} = N _{Rk,p}	p = N _{Rk,b} = N			lepending	on the no			r
compressive strength fb; (tem						iye ing wasin		
	7.1							
Norm. mean compressive strength \mathbf{f}_{b}								
6 N/mm ²				2	.0			
					.0 ,5			
6 N/mm ² 8 N/mm ² 10 N/mm ²				2				
6 N/mm ² 8 N/mm ²				2	,5			
6 N/mm ² 8 N/mm ² 10 N/mm ²				3 3	,5 ,0			
6 N/mm ² 8 N/mm ² 10 N/mm ² 12 N/mm ² 16 N/mm ² Tension resistance N _{Rk} = N _{Rk,F}	p = N _{Rk,b} = N			2 3 3 4 depending	,5 ,0 ,5 ,5	ormalised	mean	
6 N/mm ² 8 N/mm ² 10 N/mm ² 12 N/mm ² 16 N/mm ² Tension resistance N _{Rk} = N _{Rk,F}	p = N _{Rk,b} = N			2 3 3 4 depending	,5 ,0 ,5 ,5	ormalised	mean	
6 N/mm ² 8 N/mm ² 10 N/mm ² 12 N/mm ² 16 N/mm ² Tension resistance N _{Rk} = N _{Rk,F} compressive strength f _b ; (tem	p = N _{Rk,b} = N			2 3 3 4 depending 2/120°C)	,5 ,0 ,5 ,5 on the no	ormalised	mean	
6 N/mm ² 8 N/mm ² 10 N/mm ² 12 N/mm ² 16 N/mm ² Tension resistance N _{Rk} = N _{Rk,F} compressive strength f _b ; (tem	p = N _{Rk,b} = N			2 3 3 4 depending 2/120°C)	,5 ,0 ,5 ,5 on the no	ormalised	mean	
6 N/mm ² 8 N/mm ² 10 N/mm ² 12 N/mm ² 16 N/mm ² Tension resistance N _{Rk} = N _{Rk,F} compressive strength f _b ; (tem Norm. mean compressive strength f _b	p = N _{Rk,b} = N			2 3 3 4 depending 2/120°C)	,5 ,0 ,5 ,5 on the no	ormalised	mean	
6 N/mm ² 8 N/mm ² 10 N/mm ² 12 N/mm ² 16 N/mm ² Tension resistance N _{Rk} = N _{Rk,F} compressive strength f _b ; (tem Norm. mean compressive strength f _b 6 N/mm ² 8 N/mm ²	p = N _{Rk,b} = N			2 3 3 4 depending 2/120°C)	,5 ,0 ,5 ,5 ,5 on the no	ormalised	mean	
6 N/mm ² 8 N/mm ² 10 N/mm ² 12 N/mm ² 16 N/mm ² Tension resistance N _{Rk} = N _{Rk,F} compressive strength f _b ; (tem Norm. mean compressive strength f _b 6 N/mm ² 8 N/mm ² 10 N/mm ²	p = N _{Rk,b} = N			2 3 3 4 depending 2/120°C)	,5 ,0 ,5 ,5 on the no	ormalised	mean	
6 N/mm ² 8 N/mm ² 10 N/mm ² 12 N/mm ² 16 N/mm ² Tension resistance N _{Rk} = N _{Rk,F} compressive strength f _b ; (tem Norm. mean compressive strength f _b 6 N/mm ² 8 N/mm ² 10 N/mm ² 12 N/mm ²	p = N _{Rk,b} = N perature ra	ange 50 /8	0°C and 7	2 3 3 4 depending 2/120°C)	,5 ,0 ,5 ,5 on the no ,5 ,0 ,5	ormalised	mean	
6 N/mm² 8 N/mm² 10 N/mm² 12 N/mm² 16 N/mm² Tension resistance N _{Rk} = N _{Rk,F} compressive strength f _b ; (tem Norm. mean compressive strength f _b 6 N/mm² 8 N/mm² 10 N/mm² 12 N/mm² 16 N/mm² Factor for job site tests see a	p = N _{Rk,b} = N perature ra	nd displac	o°C and 7	2 3 3 4 depending 2/120°C)	,5 ,0 ,5 ,5 on the no ,5 ,0 ,5	ormalised	mean	
6 N/mm ² 8 N/mm ² 10 N/mm ² 12 N/mm ² 16 N/mm ² Tension resistance N _{Rk} = N _{Rk,F} compressive strength f _b ; (tem Norm. mean compressive strength f _b 6 N/mm ² 8 N/mm ² 10 N/mm ² 12 N/mm ² 16 N/mm ²	nnex C20 a	nd displac	ements se	2 3 3 4 depending 2/120°C) 1 2 2 2 2 3 ee annex C	,5 ,0 ,5 ,5 on the no ,5 ,0 ,5 ,5 ,5		mean	c C10

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2: 2011+A1:2015

Table C11.1: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading (Pre-positioned installation)

Anchor rod	M8	M8	-	M8	M10	M8	M10		-	M12	M16	M12 M16
Internal threaded		1 3971	M8					M10	M12			
anchor FIS E	5.01	-	11x85			Ш		15	x85		•	-
Perforated sleeve FIS H K	12x50	12x85	16	x85		16)	(130		20	x85		20x130
Shear resistance $V_{Rk} = V_{Rk,b} = V$ strength f_b ; (temperature range					he no	orma	lised	mea	n coi	mpre	ssive)
Normalised mean compressive strength f_b												
6 N/mm²	1	,5		2	2,0					3	,0	
8 N/mm²	2	,0		2	2,5					3	,5	
10 N/mm²	2	,5		3	3,0					4	,5	
12 N/mm²	2	,5		3	3,5					5	,0	
16 N/mm ²	3	,5		4	1,0					6	,5	

Table C11.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading (Push through installation)


Anchor rod	M10	M12	M16
Perforated sleeve FIS H K	18x13	30/200	22x130/200
Shear resistance $V_{Rk} = V_{Rk,b} = V_{Rk}$, strength f_b ; (temperature range 2	_{c,II} = V _{Rk,c,⊥} [kN] d 4/40°C, 50/80°C a	lepending on the norm and 72/120°C)	nalised mean compressive
Normalised mean compressive strength f _b			
6 N/mm²	2	,0	3,0
8 N/mm²	2	,5	3,5
10 N/mm²	3	,0	4,5
12 N/mm²	3	,5	5,0
16 N/mm ²	4	,0	6,5

Factor for job site tests see annex C20 and displacements see annex C21

fischer injection system FIS V Zero for masonry	
Performances	Annex C11
Perforated calcium silicate (sand-lime) brick KSL, 3DF, Characteristic resistance und shear loading	der Appendix 32 / 42

Vertical perforated brick HLz, EN 771-1: 2011+A1:2015 Vertical perforate Producer Nominal dimensions Mean gross dry density ρ Normalised mean compressive strengthese str

Vertical perforate	d brick H	Lz, EN 77	1-1: 2011+/	1:2015
Producer		e.g	. Wienerbe	rger.
Naminal disconsions	France 1	length L	width W	height H
Nominal dimensions	fuuul	230	108	55
Mean gross dry density ρ	[kg/dm ³]		≥ 1,6	
Normalised mean compressive strength	[N/mm ²]	8	3 / 10 / 12 /	16
Standard		EN 77	1-1: 2011+/	A1:2015

Dimensions see also Annex B12

Table C12.1: Installation parameters

Anchor rod	M8	M8	-	M8	M10	M8	M10	-	M12	M16	M12	M16
Internal threaded			M8 11x85					M10 M12	-			
Perforated sleeve FIS H K	12x50	12x85		x85		16>	130	- C-4/10-12-1	k85		20x	130

Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K

Max. installation torque max T_{inst} [Nm] 5

General installation parameters

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C12.2: Group factors

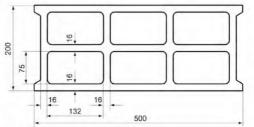
Anchor ro	od		M8	M8	0.50	M8	M10	M8	M10	-	M12 M16	M12 M16
Internal th				3- 11	M8 11x85				-	M10 M12 15x85		·
Perforated	d sleeve FIS H k	(12x50	12x85	16	x85		16>	(130	20:	x85	20x130
	α _{g,N} (s _{min} II)						1,	65				
Group	α _{g,V} (s _{min} II)	r 1					1,	64				
factors	αg,N (Smin ⊥)	[-]					1,	65				
	$\alpha_{\text{g,V}}$ ($s_{\text{min}} \perp$)						2,	00				

fischer injection system FIS V Zero for masonry

Performances

Vertical perforated brick HLz, dimensions, installation parameters

Annex C12


Appendix 33 / 42

	M8 - 12x85 I _{Rk,b} = N _{Rk,p,} ature range	c = N _{Rk,b,c} [M8 M10 - x85 kN] depend	M8 M10 - 16x130	M10 M12 15x85	M12 M16	M12 M16 -
= N _{Rk,p} = N _s ; (tempera	$I_{Rk,b} = N_{Rk,p,}$	11x85 16: c = N _{Rk,b,c} [- 16x130	15x85		-
= N _{Rk,p} = N _s ; (tempera	$I_{Rk,b} = N_{Rk,p,}$	c = N _{Rk,b,c} [16x130	201		
1,2			kN] depend		207	x85	20x130
1,2		•		ing on the	normalise	d mean	
1,2	1,5	1	,5	2,5	1,	,5	2,5
	2,0	2	.,0	2,5	2	,0	2,5
1,5	2,0	2	.,0	3,0	2	,0	3,0
1,5	2,5	2	.,5	3,5	2	,5	3,5
					normalise	d mean	
				-,			
0,6	1,2	1	,2	1,5	1.	,2	1,5
0,75	1,2	1	,2	2,0	1.	,2	2,0
0,75	1,5	1	,5	2,0	1,	,5	2,0
0,9	1,5	1	,5	2,5	1,	,5	2,5
or under	shear loa	ding			k edge fa		
1110	iii.o		1110	ino inito	M10 M12		
•		11x85	•	1.5	15x85	-	-
12x50	12x85	16:	x85	16x130	202	c 85	20x130
V _{Rk,b} = V _{Rk,} e range 24	_{c,II} = V _{Rk,c,⊥} 4/40°C, 50/8	[kN] deper 80°C and 7	nding on th 2/120°C)	e normalis	ed mean c	ompressiv	re
2,0	3,5	2	.,5	3,5	2	,5	3,5
2,0	4,0	3	,0	4,0	3	,0	4,0
2,0	4,0	3	,0	4,5	3	,0	4,5
2,5	5,0			5,0 ex C21	3.	,5	5,0
Sec annex	COZO and C	пэріасстіст	nto occ anno	021			
em FIS V	Zero for	masonry					
	0,6 0,75 0,75 0,9 acteristic or under M8 - 12x50 V _{Rk,b} = V _{Rk,c} e range 24 2,0 2,0 2,0 2,5 see annex	0,6 1,2 0,75 1,2 0,75 1,5 0,9 1,5 acteristic resistance or under shear load M8 M8 12x50 12x85 VRk,b = VRk,c,I = VRk,c,L e range 24/40°C, 50/8 2,0 4,0 2,0 4,0 2,5 5,0 see annex C20 and d	0,6 1,2 1 0,75 1,2 1 0,75 1,5 1 0,9 1,5 1 acteristic resistance to local or under shear loading M8 M8 -	0,6 1,2 1,2 0,75 1,2 1,2 0,75 1,5 1,5 0,9 1,5 1,5 1,5	0,6	0,6	0,6

Lightweight aggregate concrete hollow block Hbl , EN 771-3: 2011+A1:2015

Lightweight aggregate concrete hollow block Hbl, EN 771-3: 2011+A1:2015

200	0.000	2000		
Producer			e.g. Sepa	
Nominal dimensions	[mana]	length L	width W	height H
Nominal differsions	[mm]	500	200	200
Mean gross dry density ρ	[kg/dm ³]		≥ 1,0	
Normalised mean compressive strength	[N/mm ²]		2/4	
Standard		EN 77	1-1: 2011+/	A1:2015

Dimensions see also Annex B12

Installation parameters Table C14.1:

Anchor rod		M8	M10	M8	M10	M10	M12		-	M12	M16	M12	M16
Internal threaded	M8							M10	M12				
anchor FIS E	11x85	14.2	•		-			15	x85				
Perforated sleeve FIS H K	16	x85		16)	130	18x13	0/200		202	x85		20x	130

Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K

Max. installation max Tinst [Nm] 2 torque

General installation parameters

Edge distance	C _{min} = C _{cr}	100	
	s _{min} II	100	
Chaoina	s _{cr} II [mm]	500	
Spacing	S _{min} ⊥	100	
	S _{cr} ⊥	200	

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Group factors Table C14.2:

Anchor ro	d		-	M8	M10	M8	M10	M10	M12		-	M12	M16	M12	M16
Internal th	readed		M8							M10	M12				
anchor FI	SE		11x85		•				•	15	x85				•0
Perforated	d sleeve FIS H K		16	x85		16>	130	18x1	30/200		20:	x85		20x	130
	αg,N (Smin II)							2,	,00						
Group	α _{g,V} (S _{min} II)							1,	,28						
factors	αg,N (Smin ⊥)	[-]						1,	,40						
	α _{g,V} (s _{min} ⊥)							2,	,00						

fischer injection system FIS V Zero for masonry

Performances

Lightweight aggregate concrete hollow block Hbl, dimensions, installation parameters

Annex C14

Appendix 35 / 42

Internal threaded anchor FIS E Perforated sleeve FIS H K Tension resistance N _{RK} compressive strength Normalised mean compressive	M8 11x85		M10	M8	M10	M10	M12			M12	M16	M12 M1
FIS H K Tension resistance N _{RK} compressive strength Normalised mean	40	1	-		-			M10	M12			-
Normalised mean	16	x85		16>	c130	18x13	30/200			x85		20x130
						lepend	ding o	n the n	orma	lised r	nean	
strength f _b												
2 N/mm ²					0	,4						0,6
4 N/mm ²					0	,5						0,75
Tension resistance N _{Rk} compressivestrength f								n the n	orma	lised r	nean	
Normalised mean compressive strength f ₅												
2 N/mm ²					0	,3						0,5
4 N/mm ²					0	,4						0,6
anch	ıracteristic ı hor under s	hear	loadin	g				brick	edge			
anch Anchor rod Internal threaded	hor under s - M8				al bric	k failu M10		M10	M12	failu		
anch Anchor rod Internal threaded anchor FIS E	hor under s	hear	loadin	g					M12			
	- M8 11x85	hear	loadin	g M8		M10		M10	M12 85			
Anchor rod Internal threaded anchor FIS E Perforated sleeve FIS H K Shear resistance V _{Rk} = strength f _b ; (temperati	- M8 11x85 16 V _{Rk,b} = V _{Rk,c,}	M8 x85	M10 - ,c,⊥ [kN	M8 16x	M10 - <130 ending	M10 18x13	M12 - 30/200	M10 15>	M12 85	M12 x85	M16	M12 M1
Anchor rod Internal threaded anchor FIS E Perforated sleeve FIS H K Shear resistance V _{Rk} =	- M8 11x85 16 V _{Rk,b} = V _{Rk,c,}	M8 x85	M10 - ,c,⊥ [kN	M8 16x	M10 - <130 ending	M10 18x13	M12 - 30/200	M10 15>	M12 85	M12 x85	M16	M12 M1
Anchor rod Internal threaded anchor FIS E Perforated sleeve FIS H K Shear resistance V _{Rk} = strength f _b ; (temperated) Normalised mean compressive	- M8 11x85 16 V _{Rk,b} = V _{Rk,c,}	M8 x85	M10 - ,c,⊥ [kN	M8 16x	M10 - <130 ending	M10 18x13 on th	M12 - 30/200	M10 15>	M12 85	M12 x85	M16	M12 M1

Autoclaved aerated concrete (cylindrical drill hole), EN 771-4:2011+A1:2015

Producer	e.g. Ytong			
Mean gross dry density ρ	[kg/dm ³]	0,35	0,5	0,65
Mean compressive strength / Min. compressive strength single brick 1)	[N/mm²]	2,5 / 2	5/4	8/6
Standard or annex	EN 771	-4:2011+ <i>A</i>	1:2015	

Table C16.1: Installation parameters

Anchor rod			M8 M10 M12 N					
Internal threaded anchor FIS E						-		
Anchor rod and	internal	threaded	anchor FIS E v	vithout perforated s	leeve			
Effective anchorage depth	h _{ef}	[mm]	100	100	100	100		
Max. installation torque	max T _{inst}	[Nm]	2	2	2	2		
General installat	tion para	meters						
Edge distance	Cmin		100					
Edge distance	Ccr				250			
Scr II		[1	250					
0	s _{min} II	[mm]	100					
Spacing	s cr⊥				250			
	Smin 1			119	100			

Drilling method

Hammer drilling with hard metal hammer drill

fischer injection s	system FIS	V Zero fo	r masonry
---------------------	------------	-----------	-----------

Performance

Autoclaved aerated concrete (cylindrical drill hole), dimensions, installation parameters

Annex C16

Appendix 37 / 42

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Table	•			aerated concrete ingle brick 2 N/mi				
Ancho	or rod	M8 M10 M12						
	α _{g,N} II, (s _{min} II)		1,13					
actors	$\begin{array}{c} & & & & \\ & & \alpha_{\text{g,N}} \perp, (\textbf{s}_{\text{min}} \perp) \\ & & & \\ & & & \alpha_{\text{g,V}}, (\textbf{s}_{\text{min}} \textbf{II}) \\ \end{array}$		1,20					
3roup!	α _{g,V} , (s _{min} II)			1,	39			
O	α _{g,} ν , (s _{min} ⊥)			1,	17			
Table	-			aerated concrete ingle brick 4 N/mi				
Ancho	or rod		M8	M10	M12	M16		
m	α _{g,N} II, (s _{min} II)			1,	1,13			
factor	α _{g,N} ⊥, (S _{min} ⊥)	.,	1,20					
Groupfactors	α _{g,V} , (s _{min} II)	[-]	1,39					
Ü	α _{g,} ∨, (s _{min} ⊥)		1,17					
Table	-			aerated concrete ingle brick 6 N/mi				
Ancho	or rod		M8	M10	M12	M16		
(0	α _{g,N} II, (s _{min} II)			1,	13			
Groupfactors	αg,N 丄, (Smin 丄)			1,	20			
3roup	α _{g,V} , (s _{min} II)	[-]		1,:	39			
Ü	α _{g,} ∨, (s _{min} ⊥)		1,17					

Autoclaved aerated concrete (cylindrical drill hole), Group factors

Annex C17

Autoclaved aerated concrete (cylindrical drill hole), EN 771-4:2011+A1:2015

Table C18.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Anchor rod		M8	M10	M12 N		
Tension resistance N _{Rk} = Min. compressive streng				n the mean compr	essive strength	
Mean compressive stren-			age depth hef [mm]			
gth / Min. compressive strength single brick 1)	Use conditions	100	100	100	100	
2,5 / 2 N/mm ²	d/d	1,2	1,2	1,2	1,5	
5 / 4 N/mm ²	d/d	1,2	1,2	1,2	1,5	
8 / 6 N/mm ²	d/d	1,2	1,2	1,2	1,5	
Anchor rod		M8	M10	M12	M16	
ension resistance N _{Rk} = //in. compressive streng				n the mean compr	essive strength	
30.01.3	in single brick	i, (temperature	e range 50/80°C)			
	in single brick	, (temperature		age depth hef [mm]		
Mean compressive stren- gth / Min. compressive	Use conditions	100		age depth h _{ef} [mm]	100	
Mean compressive stren- gth / Min. compressive	Use		Effective anchor		100	
Mean compressive strength / Min. compressive strength single brick 1)	Use conditions	100	Effective anchor	100		

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

fischer injection system FIS V Zero for masonry

Performance

Autoclaved aerated concrete (cylindrical drill hole), Characteristic resistance under tension loading Annex C18

Appendix 39 / 42

Anchor rod		od M8 M10		M12	M16
nternal threaded anchor FIS E				-	7-7
hear resistance V _{Rk} = V _R ompressive strength sin	_{Rk,b} = V _{Rk,c,ll} = ngle brick; (t	V _{Rk,c,⊥} [kN] dep emperature ran	ending on the mear ge 24/40°C and 50/8	ocompressive stre 0°C) c _{min} ≥100mm	ngth / Min.
Mean compressive stren-	Use		Effective anchorage	e depth h _{ef} [mm]	1
gth / Min. compressive strength single brick 1)	con- ditions	100	100	100	100
2,5 / 2 N/mm²	d/d	1,2	1,2	1,2	1,2
5 / 4 N/mm²	d/d	1,2	1,2	1,2	1,2
8 / 6 N/mm ²	d/d	1,2	1,2	1,2	1,2
Anchor rod		M8	M10	M12	M16
Internal threaded anchor FIS E		-	-	-	-
Shear resistance V _{Rk} = V _R compressive strength sin	Rk,b = VRk,c,II = ngle brick; (t	V _{Rk,c,⊥} [kN] dep emperature ran	ge 24/40°C and 50/8	0°C) c _{cr} >250mm	ngth / Min.
Mean compressive stren-	Use	Í	Effective anchorage	e depth h _{ef} [mm]	ì
gth / Min. compressive strength single brick ¹⁾	con- ditions	100	100	100	100
2,5 / 2 N/mm ² d/d 5 / 4 N/mm ² d/d		2,5	2,5	2,5	2,5 2,5
		2,5	2,5	2,5	
8 / 6 N/mm² d/d		2,5	2,5	2,5	2,5
The compressive strength. Factor for job site tests s			ust not be less than 80		ressive

Performance

Autoclaved aerated concrete (cylindrical drill hole), Characteristic resistance under shear loading Annex C19

Appendix 40 / 42

β-factors for job site tests

 Table C20.1:
 β-factors for job site tests

Installation and use conditions	d/d					
temperature range [°C]	24/40	50/80	72/120			
M8	0,81	0,47	0,45			
M10	0,62	0,49	0,45			
M12 / FIS E 11x85	0,62	0,49	0,52			
M16 / FIS E 15x85	0,56	0,45	0,57			

Table C20.2: β-factors for job site tests for AAC

Installation and use conditions	d,	⁄d
temperature range [°C]	24/40	50/80
All sizes	0,58	0.49

fischer injection system FIS V Zero for masonry

Performances

β-factors for job site tests

Annex C20

Appendix 41 / 42

Material	Size	Effective anchorage depth [mm]	N [kN]	δΝ _ο [mm]	δN∞ [mm]	\ [k		δVo [mm]	δV∞ [mm]
	M8 -	50	0,57	0,00	0,00	0,	71	0,08	0,12
	IVIO	80	1,00	0,00	0,00	1,	71	0,32	0,48
	M10 -	50	0,57	0,00	0,00	0,	71	0,18	0,27
Solid brick	10110	80	1,00	0,01	0,02	1,	71	0,50	0,75
acc. to C4-C5	M12 -	50	1,29	0,03	0,06	0,	71	0,05	0,08
	10112 -	80	1,00	0,01	0,02	1,	71	0,75	1,13
	N446	50	1,29	0,03	0,06	0,	71	0,35	0,53
	M16 -	80	1,71	0,04	0,08	1,	71	0,20	0,30
		50	0,86	0,03	0,06	1,4	43		
	M8 -	80	0,86	0,00	0,00	1,4	43	0,32	0,48
Solid calcium	••••	50	0,86	0,00	0,00	1,4	43		0,51
silicate	M10 -	80	1,71	0,02	0,04	1,4	43	0,34	
(sand-lime) brick	M12 -	50	0,86	0,03	0,06	1,	43	0,12	0,18
acc. to C6-C7		80	1,71	0,04	0,08	1,4	43	0,32	0,48
	M16 -	50	0,86	0,03	0,06	1,	43	0,57	0,86
		80	1,14	0,02	0,04	1,4	43	0,20	0,03
		12x50		·				·	
Perforated	M8 -	12x85	0,71	0,01	0,02	1,0	00	0,16	0,24
calcium silicate (sand-lime)	M8	16x85	0,57	0,02	0,04	1,	14	0,57	0,86
brick	M10 -	16x130	1,29	0,06	0,12	1,	14	1,03	1,55
acc. to C8-C11	M12	20x85	0,57	0,03	0,06	1,8	36	1,15	1,73
00 071	M16	20x130	1,29	0,04	0,08	1,8	36	1,24	1,86
		12x50	0,43	0,00	0,00	0,	71	0,25	0,38
	M8 -	12x85	0,71	0,00	0,00	1,4	43	0,61	0,92
Perforated brick Hlz	M8	16x85	0,71	0,03	0,06		00	0,36	0,54
acc. to	M10	16x130	1,00	0,02	0,04		43	0,30	0,45
C12-C13	M12	20x85	0,71	0,00	0,00	1,0	00	0,22	0,33
	M16	20x130	1,00	0,04	0,08	-	43	0,17	0,26
Lightweight	M8	16x85	0,14	0,03	0,06	0,		1,54	2,31
aggregate	M10 -	16x130	0,14	0,02	0,04	0,		1,01	1,52
concrete hollow l block Hbl acc.	N440	20x85	0,14	0,06	0,12	0,		1,31	1,97
to C14-C15	M12 _ M16	20x130	0,21	0,04	0,08	0,		0,82	1,23
Autoclaved aerated		M8x100 M10x100	0,48	0,08	0,16	0,8	39	1,49	2,24
concrete acc. to		M12x100	0,49	0,09	0,18	0,8	39	1,49	2,24
C16-C19		M16x100	0,65	0,12	0,24	0,8	39	1,49	2,24

fischer injection system FIS V Zero for masonry

Performances displacements

Annex C21

Appendix 42 / 42