

ΕN

DECLARATION OF PERFORMANCE

1. Unique identification code of the product-type:

DoP 0239

for fischer injection system FIS V Zero (Metal injection anchors for use in masonry)

DoP 0239

2. Intended use/es: Post-installed fastening in masonry units, see appendix, especially annexes B1 - B14.

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative:

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330076-01-0604, Edition 05/ 2021

European Technical Assessment: ETA-21/0267; 2021-08-27

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to steel failure of a single anchor under tension loading: See appendix, especially annexes C1, C3

Characteristic resistance to steel failure of a single anchor under shear loading with and without level arm: See appendix, especially annexes C2. C3

Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading, Reduction factor: See appendix, especially annexes C5, C7, C10, C13, C15, C16

Characteristic resistance to local brick failure or brick breakout failure of a single anchor under shear loading: See appendix, especially annexes C5, C7, C11, C13, C15

Characteristic resistance to brick breakout failure of an anchor group under tension loading: See appendix, especially annexes B13, B14, C4, C6, C8, C9, C12, C14

Characteristic resistance to local brick failure or brick breakout failure of an anchor group under shear loading: See appendix, especially annexes B13, B14, C4, C6, C8, C9, C12, C14

Edge distances, spacing, member thickness: See appendix, especially annexes B2, B13, C4, C6, C8, C9, C12, C14

Displacements under tension and shear loading: See appendix, especially annexes C17

Maximum installation torque: See appendix, especially annexes C4, C6, C8, C9, C12, C14

Safety in case of fire (BWR 2)

Reaction to fire: Class (A1)

Resistance to fire under tension and shear loading with and without level arm, minimum edge distances and spacing: NPD

Hygiene, health and the environment (BWR 3)

Content, emission and/or release of dangerous substances: NPD

8. Appropriate Technical Documentation and/or

Specific Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering

Tumlingen, 2021-09-06

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V41.xlsm 1/1

Specific Part

1 Technical description of the product

The fischer injection system FIS V Zero for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar fischer FIS V Zero, a perforated sleeve and an anchor rod with hexagon nut and washer or an internal threaded rod. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to steel failure of a single anchor under tension loading	See Annexes C 1 and C 3
Characteristic resistance to steel failure of a single anchor under shear loading with and without lever arm	See Annex C 2 and C 3
Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading, Reduction factor	See Annex C 5, C 7, C 10, C 13, C 15 and C 16
Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading	See Annex C 5, C 7, C 11, C 13 and C 15
Characteristic resistance to brick breakout failure of an anchor group under tension loading	See Annex B 13, B 14, C 4, C 6, C 8, C 9, C 12 and C 14
Characteristic resistance to local brick failure or brick edge failure of an anchor group under shear loading	See Annex B 13, B 14, C 4, C 6, C 8, C 9, C 12 and C 14
Edge distances, spacing, member thickness	See Annex B 2, B 13, C 4, C 6, C 8, C 9, C 12 and C 14
Displacements under tension and shear loading	See Annex C 17
Maximum installation torque	See Annex C 4, C 6, C 8, C 9, C 12 and C 14

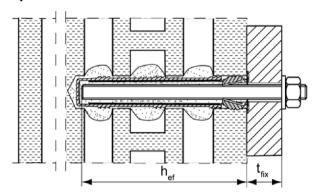
3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire under tension and shear loading with and without lever arm, minimum edge distances and spacing	No performance assessed

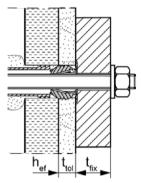
3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with the European Assessment Document EAD 330076-01-0604 the applicable European legal act is: [97/177/EC].

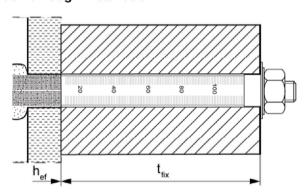
The system to be applied is: 1


Installation conditions part 1

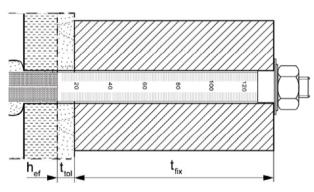
Anchor rods with perforated sleeve FIS H K; Installation in perforated and solid brick masonry

Pre-positioned installation:

Installation with render bridge



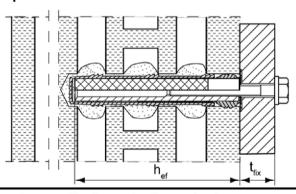
Size of the perforated sleeve:


FIS H 12x50 K FIS H 12x85 K FIS H 16x85 K FIS H 16x130 K FIS H 20x85 K

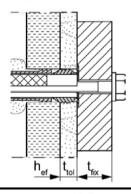
FIS H 20x130 K

Push through installation:

Installation with render bridge


Size of the perforated sleeve:

FIS H 18x130/200 K


FIS H 22x130/200 K

Internal threaded anchor FIS E with perforated sleeve FIS H K; Installation in perforated and solid brick masonry

Pre-positioned installation:

Installation with render bridge

Figures not to scale

hef = effective embedment depth

t_{fix} = thickness of fixture

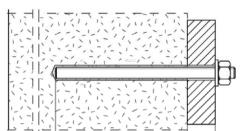
ttol = thickness of unbearing layer (e.g. plaster)

fischer injection system FIS V Zero for masonry

Product description

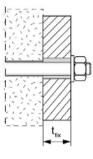
Installation conditions part 1,

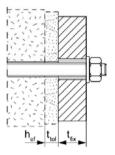
Anchor rods and internal threaded anchor with perforated sleeve


Annex A 1

Appendix 3 / 38

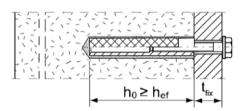
Installation conditions part 2

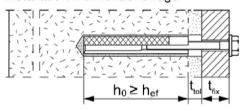

Anchor rods without perforated sleeve FIS H K; installation in solid brick masonry


Pre-positioned installation:

 $h_0 \ge h_{ef}$

Push through installation: Annular gap filled with mortar




Installation with render bridge

Internal threaded anchors FIS E without perforated sleeve FIS H K; installation in solid brick masonry

Pre-positioned installation:

Installation with render bridge

Figures not to scale

 $h_0 = depth of drill hole$

t_{tol} = thickness of unbearing layer (e.g. plaster)

hef = effective embedment depth

t_{fix} = thickness of fixture

fischer injection system FIS V Zero for masonry

Product description

Installation conditions part 2,

Anchor rods and internal threaded anchor without perforated sleeve

Annex A 2

Appendix 4 / 38

Overview system components part 1 Injection cartridge (shuttle cartridge) with sealing cap Size: 360 ml, 825 ml **Imprint:** fischer FIS V Zero, processing notes, shelf-life, piston travel scale (optional), curing time and processing time (depending on temperature), size, volume Injection cartridge (coaxial cartridge) with sealing cap Size: 100 ml, 150 ml, 300 ml, 380 ml, 400 ml, 410 ml Imprint: fischer FIS V Zero, processing notes, shelf-life, piston travel scale (optional), curing time and processing time (depending on temperature), size, volume Static mixer MR Plus or FIS JMR (only 825ml) and extension tube Static mixer MR Plus Static mixer JMR Plus Extension tube Cleaning brush BS **Blow-out pump ABG or ABP** Figures not to scale fischer injection system FIS V Zero for masonry Annex A 3 **Product description** Overview system components part 1: cartridge / static mixer / cleaning tools Appendix 5 / 38

Overview system components par	t 2		
fischer anchor rod			
	Size:	M8, M10, M12, M16	
Internal threaded anchor FIS E			
	Size:	11x85 M8 15x85 M10 / M12	
Perforated sleeve FIS H K	655		
	Size:	FIS H 12x50 K FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K	
	Size:	FIS H 16x130 K FIS H 20x130 K	
Perforated sleeve FIS H K (push through	installation)		
			Size: FIS H 18x130/200 K FIS H 22x130/200 K
Washer			
Hexagon nut			
			Figures not to scale
fischer injection system FIS V Zero	for masonry		
Product description Overview system components part 2: Meta	ıl parts / perforate	ed sleeves	Annex A 4 Appendix 6 / 38

Part	Designation	Material			
1	Injection cartridge	Mortar, hardener; filler			
		Steel	Stainless steel R	High corrosion-resistant steel HCR	
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4:2015	
2	Anchor rod	Property class 4.6; 4.8; 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated ≥ 5µm, ISO 4042:2018 Zn5/An(A2K) or hot-dip galvanised EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062; 1.4662; 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\% \text{ fracture}$ elongation	Property class 50 or 80 EN ISO 3506-1:2020 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation	
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, ISO 4042:2018 Zn5/An(A2K) or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014	
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5µm, ISO 4042:2018 Zn5/An(A2K) or hot-dip galvanised ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 8 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014	
5	Internal threaded anchor FIS E	Property class 5.8; EN 10277-1:2008-06 zinc plated ≥ 5µm, ISO 4042:2018 Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014	
6	Commercial standard screw or threaded rod for internal threaded anchor FIS E	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:2018 Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014	
7	Perforated sleeve and centring sleeve	PP / PE			

fischer injection system	FIS V Zero for	masonry
--------------------------	----------------	---------

Product descriptionMaterials

Annex A 5

Specifications of intended use (part 1)

Table B1.1: Overview installation and use

		fischer injection system FIS V Zero for masonry				
Hole drilling with	hammer drill mode		all b	ricks		
_	n rotary drill mode	all bricks				
Static and qu	uasi-static load	all bricks				
Use conditions	dry masonry	all bricks				
Installation	Pre-positioned	Anchor rod or internal threaded anchor (in solid brick masonry) Anchor rod (in solid brick masonry)		or inter	sleeve with anchor rod nal threaded anchor brated and solid brick masonry) FIS H 12x50 K FIS H 12x85 K FIS H 16x85 K FIS H 16x85 K FIS H 20x85 K FIS H 20x85 K FIS H 20x85 K	
	Push through				sleeve with anchor rod brated and solid brick masonry) FIS H 18x130/200 K FIS H 22x130/200 K	
Installation and use conditions	condition d/d (dry/dry)		all b	ricks		
Installation temper	` , , ,	$T_{i,min} = -10$ °C to $T_{i,max} = +40$ °C			°C	
	Temperature range Ta	-40 °C to +40 °C (max. short term temperature +40 °C max. long term temperature +24 °C)				
Service temperature						
	Temperature range Tc	-40 °C to +120 °C (max. short term temperature +120 °C; max. long term temperature +72 °C)				

fischer injection system	FIS V Zero for masonry
--------------------------	------------------------

Intended use

Specifications (part 1)

Annex B 1

Appendix 8 / 38

Specifications of intended use (part 2)

Anchorages subject to:

· Static and quasi-static loads

Base materials:

- Solid brick masonry (base material group b), acc. to Annex B 12
- Hollow brick masonry (base material group c), according to Annex B 12
- Minimum thickness of masonry member is hef+30mm
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010
- For other bricks in solid masonry, hollow or perforated masonry the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 053:2016-04 under consideration of the β-factor according to Annex C 16, Table C16.1

Note (only applies to solid bricks):

The characteristic resistance is also valid for larger brick sizes, higher mean compressive strength and higher mean gross dry density of the masonry unit.

Temperature Range:

- Ta: from -40°C to +40°C (max, short term temperature +40°C and max. long term temperature +24°C)
- Tb: from -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)
- Tc: from -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- For all other conditions according to EN 1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 5, Table A5.1.

fischer injection system FIS V Zero for masonry

Specifications (part 2)

Annex B 2

Appendix 9 / 38

Specifications of intended use (part 2 continued)

Design:

• The anchorages have to be designed in accordance with EOTA Technical Report TR 054:2021-05, Design method A under the responsibility of an engineer experienced in anchorages and masonry work. Applies to all bricks, if no other values are specified:

$$N_{Rk} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c} = N_{Rk,p,c}$$

$$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$$

For the Calculation of pulling out a brick under tension load **N**_{Rk,pb} or pushing out a brick under shear load **V**_{Rk,pb} see EOTA Technical Report TR 054:2021-05.

NRK,s, VRK,s and MORK,s see annex C1-C3

Factors for job site tests and displacements see Annex C16

Verifiable calculation notes and drawings have to be prepared taking account the relevant masonry in the
region of the anchorage, the loads to be transmitted and their transmission to the supports of the
structure. The position of the anchor is indicated on the design drawings.

Installation:

- Condition d/d: Installation and use in structures subject to dry, internal conditions
- Hole drilling see Annex B1.1
- In case of aborted hole: The hole shall be filled with mortar
- Bridging of unbearing layer (e.g. plaster) at perforated brick masonry see Annex B 6, Table B6.1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or anchor rods (including nut and washer) must comply with the appropriate material and property class of the fischer internal threaded anchor FIS E.
- Minimum curing time see Annex B 8, Table B8.2
- Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

Material dimensions and mechanical properties of the metal parts according to the specifications are given in Annex A 5, Table 5.1

Conformation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents shall be stored

Marking of the anchor rod with the effective embedment depth. This may be done by the manufacturer of the rod or by a person on job site

fischer injection system FIS V Zero for masonry

Intended use

Specifications (part 2 continued)

Annex B 3

Appendix 10 / 38

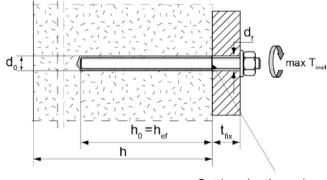
Table B4.1: Installation parameters for anchor rods in solid bricks without perforated sleeves

Anchor rod		Thread	M8	M10	M12	M16
Nominal drill hole diame	eter	d₀ [mm]	10	12	14	18
	Effective embedment depth hef,min [mm]		50			
$h_{ef}^{1)}$ in solid brick (depth of drill hole $h_0 = h_{ef}$)		n _{ef,max} [mm]	h-30, ≤200			
Diameter of clearance	pre-positioned installation	d _f ≤[mm]	9	12	14	18
hole in the fixture	push through installation	d _f ≤[mm]	11	14	16	20
Diameter of cleaning br	ush	d _b ≥[mm]	m] see Table B8.1			
Maximum installation to	rque max	x T _{inst} [Nm]	n] see parameters of brick Annex C			

¹⁾ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible.

Marking (on random place) fischer anchor rod:

Steel zinc plated PC ¹⁾ 8.8	• or +	Steel hot-dip galvanised PC1) 8.8	•
High corrosion resistant steel HCR PC1) 50	•	High corrosion resistant steel HCR PC1) 70	_
High corrosion resistant steel HCR PC ¹⁾ 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		


Alternatively: Colour coding according to DIN 976-1: 2016;

property class 4.6 marking according to EN ISO 898-1:2013

1) PC = property class

Installation conditions:

Anchor rod

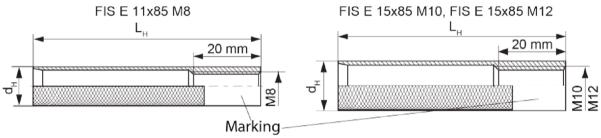
Setting depth mark

Figures not to scale

fischer injection syst	em FIS V Zero fo	or masonry
------------------------	------------------	------------

Intended use

Installation parameters for anchor rods without perforated sleeve

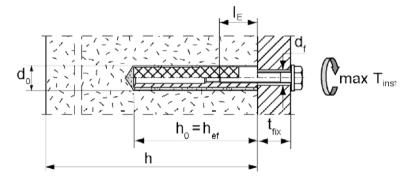

Annex B 4

Appendix 11 / 38

Table B5.1: Installation parameters for internal threaded anchors FIS E in solid bricks without perforated sleeves

Internal threaded anchor FIS I	11x85 M8	15x85 M10	15x85 M12	
Diameter of anchor	d _H [mm]	11 15		
Nominal drill hole diameter	d₀ [mm]	14	1	8
Length of anchor	L _H [mm]	85		
Effective embedment depth	$h_0 = h_{ef}[mm]$	85		
Diameter of cleaning brush	d _b ≥[mm]	see Table B8.1		
Maximum installation torque	max T _{inst} [Nm]	see p	parameters of brick An	nex C
Diameter of clearance hole in the fixture	d _f [mm]	9 12		14
Saraw in donth	I _{E,min} [mm]	8	10	12
Screw-in depth	I _{E,max} [mm]	60		

fischer Internal threaded anchor FIS E



Marking:

Size, e.g. M8, Stainless steel: R, e.g. M8 R, High corrosion-resistant steel: HCR, e.g. M8 HCR

Installation conditions:

Internal threaded anchor

Figures not to scale

fischer injection system	FIS V Zero for masonry
--------------------------	------------------------

Intended use

Installation parameters for internal threaded rods FIS E without perforated sleeve

Annex B 5

Appendix 12 / 38

Table B6.1: Installation parameters for anchor rods and internal threaded anchors FIS E with perforated sleeves (pre-positioned installation)

perforated sleeve FIS H K		12x50	12x85 ²⁾	16x85	16x130 ²⁾	20x85	20x130 ²⁾
		12		16		20	
Depth of drill hole	h₀ [mm]	55	90	90	135	90	135
Effective embedment death	h _{ef,min} [mm]	50	65	85	110	85	110
Effective embedment depth	h _{ef,max} [mm]	50	85	85	130	85	130
Size of threaded rod [-]		M	18	M8 ar	nd M10	M12 a	nd M16
Size of internal threaded anchor FIS E		-	-	11x85	-	15x85	-
Diameter of cleaning brush 1)			see Tal	ble B8.1			
Maximum installation torque	see parameters of brick Annex C						

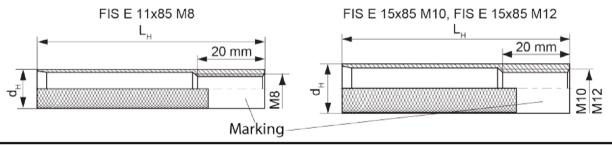
¹⁾ Only for solid areas in hollow bricks and solid bricks.

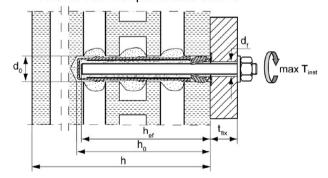
Perforated sleeve


FIS H 12x50 K; FIS H 12x85 K; FIS H 16x85 K; FIS H 16x130 K;

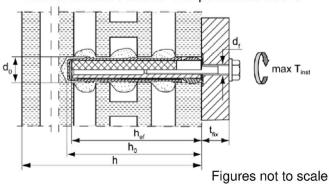
FIS H 20x85 K; FIS H 20x130 K

Marking:


Size D_{sleeve, nom} x L_{sleeve} (e.g.: 16x85)


Lsleeve

fischer Internal threaded anchor FISE



Installation conditions:

Internal threaded anchor with perforated sleeve

fischer injection system FIS V Zero for masonry

Intended use

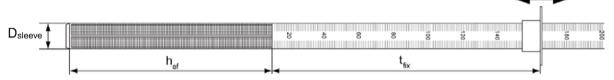
Installation parameters for anchor rods and internal threaded anchors FIS E with perforated sleeve (pre-positioned installation)

Annex B 6

Marking

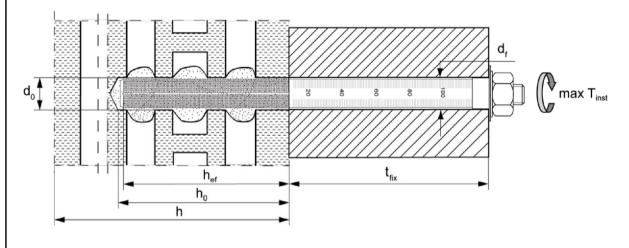
Appendix 13 / 38

²⁾ Bridging of unbearing layer (e.g. plaster) is possible. When reducing the effective embedment depth h_{ef, min}, the values of the next shorter perforated sleeve of the same diameter must be used. The smaller value of charastereristic resistance must be taken.


Table B7.1: Installation parameters for anchor rods with perforated sleeves (push through installation)

Perforated sleeve FIS H K		18x13	22x130/200		
Nominal sleeve diameter	D _{sleeve,nom} [mm]	1	16 20		
Nominal drill hole diameter	d ₀ [mm]	1	8	22	
Depth of drill hole	h₀ [mm]	135			
Effective embedment depth	h _{ef} [mm]	≥130			
Diameter of cleaning brush 1)	d _b ≥ [mm]	see Table B8.1			
Size of threaded rod	[-]	M10 M12 M16			
Maximum installation torque	max T _{inst} [Nm]	see parameters of brick Annex C			
Thickness of fixture	t _{fix,max} [mm]		200		

¹⁾ Only for solid areas in hollow bricks and solid bricks.


Perforated sleeve

FIS H 18x130/200 K; FIS H 22x130/200 K

Installation conditions:

Anchor rod with perforated sleeve

Figures not to scale

movable

fischer injection system FIS V Zero for masonry

Intended use

Installation parameters for anchor rods with perforated sleeves (push through installation)

Annex B 7

Appendix 14 / 38

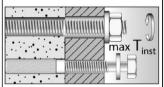
Table B8.1: Par	Table B8.1: Parameters of the cleaning brush BS (steel brush with steel bristles)								
The size of the cleaning brush refers to the drill hole diameter									
Nominal drill hole diameter d₀ [mm] 10 12 14 16 18 20 22								22	
Steel brush diameter	d₀ [mm]	11	14	16	20	20	25	25	

Only for solid areas in hollow bricks and solid bricks

Table B8.2: Maximum processing times and minimum curing times (During the curing time of the mortar the temperature of the anchoring base may not fall below the listed minimum temperature)

Temperature at anchoring base	Maximum processing time twork	Minimum curing time t _{cure}
[°C]	FIS V Zero	FIS V Zero
-10 to -5 ¹⁾	6 h	72 h
> -5 to 0 ¹⁾	2 h	24 h
> 0 to 5 ¹⁾	45 min	12 h
> 5 to 10	20 min	6 h
> 10 to 15	8 min	3 h
> 15 to 20	5 min	2 h
> 20 to 25	3 min	1 h
> 25 to 30	2 min	45 min
> 30 to 40	1 min	30 min

¹⁾ Minimum cartridge temperature +5°C


Figures not to scale

fischer injection system FIS V Zero for masonry	
Intended use	Annex B 8
Parameters of the cleaning brush (steel brush)	Appendix 15 / 38
Processing time and curing time	Appendix 107 00

Installation instruction part 1 Installation in solid brick without perforated sleeve Drill the hole (drilling method see Annex C of the respective brick) 1 depth of drill hole h₀ and nominal drill hole diameter d₀ see Table B4.1; B5.1 Blow out the drill hole 2 twice. Brush twice and blow out twice again. Remove the sealing cap. Screw on the static mixer. (the spiral in the static 3 mixer must be clearly visible) Extrude approximately 10 cm of material out until Place the cartridge into the resin is evenly grey in 4 a suitable dispenser colour. Do not use mortar that is not uniformly grey. Fill approximetly 2/3 of the drill hole with mortar For push through installation fill the annular beginning from the 5 bottom of the hole¹⁾. gap with mortar. Avoid bubbles. Only use clean and oil-free metal parts. Mark the setting depth. Insert the anchor rod or internal threaded anchor FIS E by hand. Recommendation: 6 Rotation back and forth of the anchor rod or internal threaded anchor FIS E makes pushing easy. When reaching the setting depth mark, excess mortar must emerge from the mouth of the drill hole.

7

Do not touch.
Minimum curing time see
Table **B8.2**

Mounting the fixture. max T_{inst} see parameter of brick.

fischer injection system FIS V Zero for masonry

Intended use

Installation instruction part 1
Installation in solid brick without perforated sleeve

Annex B 9

Appendix 16 / 38

¹⁾ Exact volume of mortar see manufacturer's specifications

Installation instruction part 2

Installation in perforated or solid brick with perforated sleeve (pre-positioned installation)

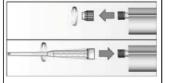

Drill the hole (drilling method see Annex C of the respective brick). depth of drill hole ho and nominal drill hole diameter do see

Table B6.1

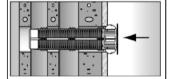
When install perforated sleeves in solid bricks or solid areas of hollow bricks, also clean the hole by blowing out and brushing.

2

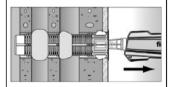
1

Remove the sealing cap. Screw on the static mixer. (the spiral in the static mixer must be clearly visible)

3

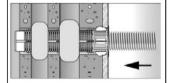


Place the cartridge into a suitable dispenser.



Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.

4



Insert the perforated sleeve flush with the surface of the masonry or plaster.

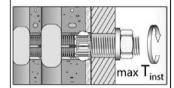
Fill the perforated sleeve completely with mortar beginning from the bottom of the hole. 1)

5

Only use clean and oil-free metal parts.

Mark the setting depth.

Insert the anchor rod or the internal threaded anchor FIS E by hand.


Recommendation:

Rotation back and forth of the anchor rod or internal threaded anchor FIS E makes pushing easy until reaching the setting depth mark (anchor rod) or flush with the surface (internal threaded anchor).

6

Do not touch.
Minimum curing time see Table **B8.2**

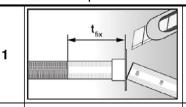
Mounting the fixture. max T_{inst} see parameter of brick.

1) Exact volume of mortar see manufacturer's specification.

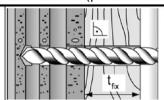
fischer injection system FIS V Zero for masonry

Intended use

Installation instruction part 2

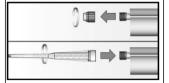

Installation in perforated or solid brick with perforated sleeve (pre-positioned installation)

Annex B 10


Appendix 17 / 38

Installation instruction part 3

Installation in perforated or solid brick with perforated sleeve (push through installation)

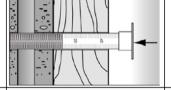


Push the movable stop up to the correct thickness of fixture and cut the overlap.

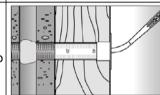
Drill the hole through the fixture. Depth of drill hole (h₀ + t_{fix}) and nominal drill hole diameter d₀ see **Table B7.1**

2

Remove the sealing cap. Screw on the static mixer. (the spiral in the static mixer must be clearly visible)

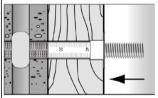


Place the cartridge into a suitable dispenser.



Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.

4



Insert the perforated sleeve flush with the surface of the fixture into the drill hole.

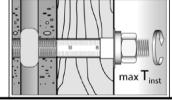
Fill the sleeve with mortar beginning from the bottom of the hole. ¹⁾ For deep drill holes use an extension tube.

5

Only use clean and oil-free metal parts.

Mark the setting depth.

Insert the anchor rod by hand.


Recommendation:

Rotation back and forth of the anchor rod makes pushing easy until reaching the setting depth mark (anchor rod).

6

Do not touch. Minimum curing time see Table **B8.2**

Mounting the fixture. max T_{inst} see parameter of brick.

1) Exact volume of mortar see manufacturer's specification.

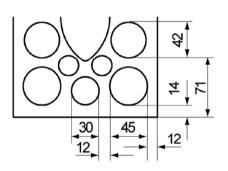
fischer injection system FIS V Zero for masonry

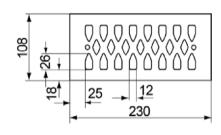
Intended use

Installation instruction part 3

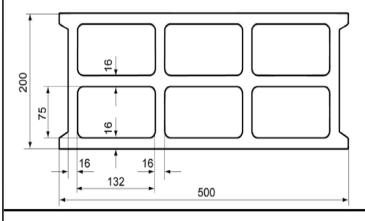
Installation in perforated or solid brick with perforated sleeve (push through installation)

Annex B 11


Appendix 18 / 38


	Table	B12.1:	Overview	of assessed	hricks
ı	IIabic	D12.1.		UI 0335335U	DITURS

Kind of masonry	Brick format [mm]		Mean compressive strength [N/mm²]	Main country of origin	Mean gross dry density ρ [kg/dm³]	Annex		
		So	lid brick Mz					
Solid brick Mz		≥ 230x108x55	36 - 48	Denmark	≥2,0	C4/C5		
Solid calcium silicate (sand - lime) brick KS / perforated calcium silicate (sand - lime) brick KSI								
Solid calcium silicate brick KS	NF	≥240x115x71	8- 20	Germany	≥2,0	C6/C7		
Perforated calcium silicate brick KSL	3DF	240x175x113	8 - 16	Germany	≥1,6	C8 – C11		
		Vertical pe	erforated brick HL	.z				
Vertical perforated brick HLz		230x108x55	6 - 16	Denmark	≥1,6	C12/C13		
	Light	weight aggrega	ite concrete hollo	w block Hbl				
Lightweight aggregate concrete hollow block Hbl		500x200x200	2 - 4	France	≥1,0	C14/C15		


Picture B12.1: Overview dimensions of perforated and hollow bricks

Perforated calcium silicate (sand-lime) brick KSL, 3DF, Vertical perforated brick HLz, EN 771-1:2015; EN 771-2:2015; e.g. KS Wemding according to Annex C 8 e.g. Wienerberger according to Annex C 12

Lightweight aggregate concrete hollow block Hbl, EN 771-3:2015; e.g. Sepa according to Annex C 14

Measures in [mm]

Figures not to scale

Intended use

Overview of assessed bricks

Overview dimensions of perforated and hollow bricks

Annex B 12

Appendix 19 / 38

* Only, if vertical joints are not completely filled with mortar

 $s_{min} II = Minimum spacing parallel to horizontal joint$

 s_{min} = Minimum spacing perpendicular to horizontal joint

s_{cr} II = Characteristic spacing parallel to horizontal joint

 s_{cr}^{\perp} = Characteristic spacing perpendicular to horizontal joint

 $c_{cr} = c_{min}$ = Edge distance

 $\alpha_{g,N}$ (s_{min} II) = Group factor for tension load, anchor group parallel to horizontal joint

 $\alpha_{g,V}$ (s_{min} II) = Group factor for shear load, anchor group parallel to horizontal joint

 $\alpha_{g,N}$ (s_{min}^{\perp}) = Group factor for tension load, anchor group vertical to horizontal joint

 $\alpha_{g,V}(s_{min}\perp)$ = Group factor for shear load, anchor group vertical to horizontal joint

fischer injection system FIS V Zero for masonry

Intended use

Spacing and edge distance

Annex B 13

Appendix 20 / 38

Spacing and edge distance (continuation)

For
$$s \ge s_{cr}$$
 $\alpha_g = 2$

For $s_{min} \le s < s_{cr}$ α_g according to installation parameters of brick Annex C

Group of 2 anchors

$$N^g_{Rk} = \alpha_{g,N} \bullet N_{Rk}$$
; $V^g_{Rk,b} = V^g_{Rk,c,II} = V^g_{Rk,c,\perp} = \alpha_{g,V} \bullet V_{Rk}$

Group of 4 anchors

$$N^{g}_{Rk} = \alpha_{g,N} (s_{min}II) \cdot \alpha_{g,N} (s_{min}L) \cdot N_{Rk}$$
;

$$V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} (Smin II) \cdot \alpha_{g,V} (Smin L) \cdot V_{Rk}$$

with N_{Rk} and $\alpha_{g,N}$ depending on s_{min}II or s_{min} \perp acc. to Annex C

with V_{Rk} and $\alpha_{g,V}$ depending on $s_{min}II$ or $s_{min}\bot$ acc. to Annex C

fischer injection system FIS V Zero for masonry

Intended use

Spacing and edge distance (continuation)

Annex B 14

Appendix 21 / 38

Table C1.1: Characteristic resistance to steel failure of a single anchor under tension loading of fischer anchor rods and standard threaded rods

Anchor rod / standard threaded rod					M8 ³⁾	M10 ³⁾	M12	M16		
Chara	Characteristic resistance to steel failure under tension loading									
			4.6		15(13)	23(21)	33	63		
S	Steel zinc plated		4.8		15(13)	23(21)	33	63		
stic	Steel Zillo piated		5.8		19(17)	29(27)	43	79		
teri ce		Property	8.8	[LNI]	29(27)	47(43)	68	126		
E 75	Stainless steel R and	class	50	[kN]	19	29	43	79		
_	High corrosion		70		26	41	59	110		
	resistant steel HCR		80		30	47	68	126		
Partia	I factors 1)									
			4.6			2,0	00			
	Steel zinc plated		4.8		1,50					
tors	Steel Zille piateu		5.8		1,50					
al faci Yms,n		Property	8.8	r 1	1,50					
I ≔	Stainless steel R and			[-]	2,86					
	High corrosion		70			1,50 ²⁾ / 1,87				
	resistant steel HCR		80			1,0	60			

¹⁾ In absence of other national regulations

fischer injection system FIS V Zero for masonry

Performances

Characteristic resistance to steel failure of a single anchor under tension loading of fischer anchor rods and standard threaded rods

Annex C 1

Appendix 22 / 38

²⁾ Only for fischer FIS A made of high corrosion-resistant steel HCR

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009

Table C2.1: Characteristic resistance to steel failure of a single anchor under shear loading with and without lever arm of fischer anchor rods and standard threaded rods

Anchor rod / standard threaded rod					M8 ³⁾	M10 ³⁾	M12	M16
Char	acteristic resistar	nce to steel	failure	unde	r shear loading	g		
withc	out lever arm							
			4.6		9(8)	14(13)	20	38
. σ	Steel zinc plated		4.8		9(8)	14(13)	20	38
stic V _{RK}	Steel Zinc plated		5.8		11(10)	17(16)	25	47
teri Ice		Property	8.8	[kN]	15(13)	23(21)	34	63
Characteristic resistance V _{RK,s}	Stainless steel R and	class	50	נאואן	9	15	21	39
S S	High corrosion		70		13	20	30	55
	resistant steel HCR		80		15	23	34	63
with	lever arm							
ce		4.6 4.8 5.8	4.6		15(13)	30(27)	52	133
tan	Steel zinc plated		4.8		15(13)	30(27)	52	133
Sis	Steel Zinc plated		5.8		19(16)	37(33)	65	166
ristic re M ⁰ Rk,s			8.8	[[30(26)	60(53)	105	266
eristi M ^o	Stainless steel R and		19	37	65	166		
Characteristic resistance M ^{ORK,S}	High corrosion			70		26	52	92
င္ပိ	resistant steel HCR		80		30	60	105	266
Partia	al factors 1)							
			4.6			1,0	67	
	Steel zinc plated		4.8			1,:	25	
ors	Steel Zinc plated		5.8			1,5	25	
al fact Yms,v		Property	8.8	.,[1,:	25	
Partial factors	Stainless steel R and	class	50	[-]		2,3	38	
P	High corrosion		70			1,25 ²⁾	/ 1,56	
	resistant steel HCR		80			1,:	33	

¹⁾ In absence of other national regulations

fischer injection system FIS V Zero for masonry

Performances

Characteristic resistance to steel failure of a single anchor under shear loading with and without lever arm of fischer anchor rods and standard threaded rods

Annex C 2

Appendix 23 / 38

²⁾ Only for fischer FIS A made of high corrosion-resistant steel HCR

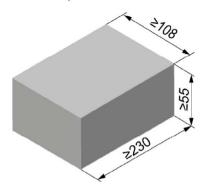
³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods (M8 resp. M10) according to EN ISO 10684:2004+AC:2009.

Table C3.1: Characteristic resistance to steel failure of a single anchor under tension / shear loading of internal threaded anchors FIS E

fischer internal	thread	ed anchor	FIS E		М8	M10	M12
Characteristic r	esistar	nce to stee	failure	unde	er tension loading		
Characteristic		Property class	5.8	F1 N 17	18	29	42
resistance with screw	N _{Rk,s}	Property	R	[kN]	26	41	59
With Solow		class 70	HCR		26	41	59
Partial factors 1)						
D		Property class	5.8	. ,		1,50	
Partial factors	γMs,N	Property	R	[-]		1,87	
		class 70	HCR			1,87	
Characteristic r	esistar	nce to stee	failure	unde	er shear loading		
without lever ar	m						
Characteristic	.,	Property class	5.8	[kN]	9	15	21
resistance with screw	V _{Rk,s}	Property	R		13	20	30
With Sciew		class 70	HCR		13	20	30
with lever arm							
Characteristic	0	Property class	5.8		19	37	65
resistance	M ⁰ Rk,s	Property	R	[Nm]	26	52	92
		class 70	HCR		26	52	92
Partial factors 1)						
Destini feete		Property class	5.8			1,25	
Partial factors	γMs,V	Property	R	[-]		1,56	
		class 70	HCR			1,56	

¹⁾ In absence of other national regulations

fischer injection system FIS V Zero for masonry


Performances

Characteristic resistance to steel failure of a single anchor under tension / shear loading of internal threaded anchors FIS E

Annex C 3

Appendix 24 / 38

Solid brick Mz, EN 771-1:2015

Soli	id brick M	z, EN 771-1	1:2015				
Producer		e.g. Wienerberger					
Nominal dimensions	[mm]	length L	width W	height H			
INOMINAL CIMENSIONS	[mm]	≥ 230 ≥ 108 ≥ 55					
Mean gross dry density ρ	[kg/dm³]		≥ 2,0				
Mean compressive strength	[N/mm ²]		36 / 48				
Standard		EN 771-1:2015					

Table C4.1: Installation parameters

Anchor rod			M	18	М	10	M	12	М	16	-	-	
Internal thread	ded anchor										М8	M10	M12
FIS E			-			-		-		•	11x85	15>	(85
Anchor rod an	nd internal t	threac	led an	chor F	IS E w	ithout	perfora	ated sl	eeve				
Effective embedment de	pth h _{ef}	[mm]	50	80	50	80	50	80	50	80	8	5	
Max. installation max T _{inst} [Nm] 10 10													
General instal	lation para	meter	s										
Edge distance	Cmin							10	00				
	s _{min} II							10	00				
On a sin a	s _{cr} II	[mm]						3 x	h _{ef}				
Spacing -	S _{min} ⊥							1(00				
	S _{cr} ⊥ 3 x h _{ef}												
Drilling metho	d												
Hole drilling wit	th rotary dril	l mode	or ha	mmer c	drilling	with ha	rd meta	al hamı	mer dri	I			

Table C4.2: Group factors

Anchor roc	Anchor rods			M10	M12	M16	-	-	
Internal threaded anchor FIS E			_	-	-	-	M8	M10 M1	
			-				11x85	15x85	
	α _{g,N} (s _{min} II)				1,	81			
Group	α _{g,V} (S _{min} II)	[[-]	1,49						
Group factors	α _{g,N} (S _{min} ⊥)		1,74						
	αg,ν (Smin ⊥)				1,	49			

fischer injection system	FIS V Zero for masonry
--------------------------	------------------------

Performances

Solid brick Mz, dimensions, installation parameters

Annex C 4

Appendix 25 / 38

Solid brick Mz, EN 771-1:2015

Table C5.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Anchor rod	M8	M10	M12	M16	-	-	
Internal threaded anchor FIS E					М8	M10	M12
	-	-	-	-	11x85	15>	(85

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C)

3-1-4,											
Mean compressive		Effective embedment depth her [mm]									
strength f ₅	50	80	50	80	50	80	50	80	85		
36 N/mm ²	2,5	3,0	3,0	3,0	3,0	3,0	3,0	4,5	2,5		
48 N/mm ²	3,0	3,5	3,5	3,5	3,5	3,5	3,5	5,0	3,0		

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 50/80°C and 72/120°C)

ı	Strength ib, mstanation	and us	Se conc	iitioii u	u, (tell	iperatu	ie rang	E 30/00	Canu	12/120 0)
	Mean compressive	Effective embedment depth hef [mm]								
	strength f _b	50	80	50	80	50	80	50	80	85
	36 N/mm ²	1,5	2,0	2,0	2,0	2,0	2,0	2,0	3,5	1,5
	48 N/mm ²	1,5	2,5	2,5	2,5	2,5	2,5	2,5	4,0	1,5

Table C5.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading

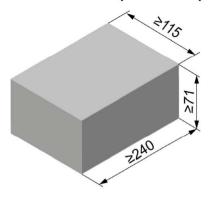
Anchor rod	M8	M10	M12	M16	-	-	,
Internal threaded					M8	M10	M12
anchor FIS E	-	-	-	-	11x85	15x	(85

Shear resistance $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C, 50/80°C and 72/120°C)

			,, (.9						
	Mean compressive strength f ₅		Effective embedment depth hef [mm]									
		50	80	50	80	50	80	50	80	8	35	
	36 N/mm ²	2,5	4,5	2,5	4,5	2,5	4,5	2,5	4,5	2,5	2,5	
ı	48 N/mm ²	3,0	5,0	3,0	5,0	3,0	5,0	3,0	5,0	3,0	3,0	

Factor for job site tests see annex C16 and displacements see annex C17

fischer injection system FIS V Zero for masonry


Performances

Solid brick Mz, Characteristic resistance under tension and shear loading

Annex C 5

Appendix 26 / 38

Solid calcium silicate (sand-lime) brick KS, NF, EN 771-2:2015

Solid calci	Solid calcium silicate (sand-lime) brick KS, NF, EN 771-2:2015											
Producer												
Naminal dimensions	[mm]	length L	width W	height H								
Nominal dimensions	լուուդ	≥ 240	≥ 115	≥ 71								
Mean gross dry density	[kg/dm³]		≥ 2,0									
Mean compressive strength	[N/mm²]	12 / 16 / 20										
Standard		EN 771-2:2015										

 Table C6.1:
 Installation parameters

Anchor rod			N	18	М	10	М	12	M16		•	-	ı
Internal threa	ernal threaded anchor S E		-		-		-		-		M8 11x85	M10 15x	M12 85
Anchor rod a	Anchor rod and internal threaded anchor FIS E without perforated sleeve												
Effective embedment d	epth h _{ef}	[mm]	50	80	50	80	50	80	50	80	85	8	5
Max. installation	on max T _{inst}	[Nm]	æ	3			1	0			8	10	
General insta	Illation para	mete	'S										
Edge distance	C _{min}							10	00				
	Smin II							10	00				
0	s _{cr} II	[mm]						3 x	h _{ef}				
Spacing -	Smin ⊥							10	00				
_	Scr⊥							3 x	h _{ef}				

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C6.2:Group factors

Anchor ro	chor rod		М8	M10	M12	M16	-	-	
Internal threaded anchor							M8	M10	M12
FIS E			-	-	-	-	11x85	15x	8 5
	α _{g,N} (S _{min} II)				1,	67			
Group	α _{g,V} (s _{min} II)	F 3			1,	26			
Group factors	αg,N (Smin ⊥)	[-]			1,	67			
	α _{g,V} (S _{min} ⊥)				2	,0			

fischer injection system FIS V Zero for masonry

Performances

Solid calcium silicate (sand-lime) brick KS, NF, dimensions, installation parameters

Annex C 6

Appendix 27 / 38

Solid calcium silicate (sand-lime) brick KS, NF, EN 771-2:2015

Table C7.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Anchor rod	M8	M10	M12	M16	-		
Internal threaded					М8	M10	M12
anchor FIS E	-	-	-	-	11x85	15)	(85

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d (temperature range 24/40°C)

Mean compressive		Effective embedment depth hef [mm]											
strength f ь	50	80	50	80	50	80	50	80	85	85			
12 N/mm ²	2,0	2,0	2,5	4,5	2,0	4,5	2,0	2,0	2,0				
16 N/mm ²	2,5	2,5	2,5	5,0	2,5	5,0	2,5	2,5	2,5				
20 N/mm ²	2,5	3,0	3,0	6,0	2,5	6,0	2,5	3,0	2	,5			

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d (temperature range 50/80°C and 72/120°C)

10, 1110101110111011			(0.00		,				
Mean compressive	Effective embedment depth her [mm]											
strength f ь	50	80	50	80	50	80	50	80	85	85		
12 N/mm ²	1,5	1,5	1,5	3,0	1,5	3,0	1,5	1,5	1,5			
16 N/mm ²	1,5	1,5	2,0	3,5	1,5	3,5	1,5	1,5	1,5			
20 N/mm ²	2,0	2,0	2,0	4,0	2,0	4,0	2,0	2,0	2,0			

Table C7.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading

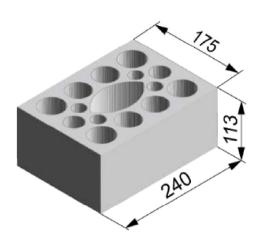
Anchor rod	M8	M10	M12	M16	-		
Internal threaded					M8	M10	M12
anchor FIS E	-	-	-	-	11x85	15>	(85

Shear resistance $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] depending on the mean compressive strength f_b; Installation and use condition d/d (temperature range 24/40°C, 50/80°C and 72/120°C)

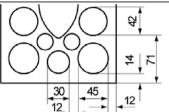
					<u> </u>	,								
Mean compressive		Effective embedment depth hef [mm]												
strength f ь	50	80	50	80	50	80	50	80	85	85				
12 N/mm ²	3,5	3,5	4,5	4,5	3,5	4,0	3,5	4,0	3,5	3,5				
16 N/mm ²	4,0	4,0	5,0	5,0	4,0	4,5	4,0	4,5	4,0	4,0				
20 N/mm ²	4,5	4,5	6,0	6,0	4,5	5,0	4,5	5,0	4,5	4,5				

Factor for job site tests see annex C16 and displacements see annex C17

fischer injection system FIS V Zero for masonry


Performances

Solid calcium silicate (sand-lime) brick KS, NF, Characteristic resistance under tension and shear loading


Annex C 7

Appendix 28 / 38

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2:2015

Perforated cal	Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2:2015												
Producer e.g. KS Wemding													
Naminal dimensions	[mm]	length L	width W	height H									
Nominal dimensions	[mm]	240	175	113									
Mean gross dry density ρ	[kg/dm³]	≥ 1,6											
Mean compressive strength	[N/mm ²]	6 /	8 / 10 / 12 /	16									
Standard EN 771-2:2015													

Dimensions see also Annex B 12

Table C8.1: Installation parameters

(Pre-positioned installation with perforated sleeve FIS H K)

Anchor rod			М	18	M	18		· II	M8	M10	M8	M10	a = 8	M12	M16	M12	M16
Internal threade	ed		_				М	8				_	M10 M12	2		_	
anchor FIS E							11>	(85	·			_	15x85	-			
Perforated slee	rated sleeve FIS H K 12			¢50	12x85 16x85			(85	5 16x130			20:	x85		20x	130	
Anchor rod and	l internal t	thread	led ar	nchoi	FIS	E wi	th pe	rfora	ated :	sleev	e FIS	ВНК					
Max. installation torque	max T _{inst}	[Nm]		8		8		8	8	10	8	10	10				
General installa	tion para	meter	S														
Edge distance	Cmin									10	00						
	Smin II									1(00						
Spacing	s _{cr} II	[mm]		240													
Spacing	S _{min} ⊥									1(00						
	s _{cr} ⊥		115														

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C8.2: Group factors

Anchor ro	d		М8	M8	-	M8	M10	М8	M10		-	M12	M16	M12	M16
Internal threaded anchor FIS E			_		М8			-		M10	M12				
			-		11x85		_			15x85		-			
Perforated	l sleeve FIS H K		12x50	12x50 12x85 16x85				16x	130	20x85				20x130	
	α _{g,N} (S _{min} II)						1,	14							
Group	α _{g,V} (s _{min} II)			1,51											
factors	αg,N (Smin ⊥)	[-]				1,14									
	α _{g,V} (S _{min} ⊥)		1,54												

fischer injection system FIS V Zero for masonry

Performances

Perforated calcium silicate (sand-lime) brick KSL, 3DF, dimensions, installation parameters

Annex C 8

Appendix 29 / 38

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2:2015

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C9.1: Installation parameters

(Push through installation with perforated sleeve FIS H K)

Anchor rod			M10	M12	M16							
Perforated sleev	ve FIS H k	(18x13	0/200	22x130/200							
Anchor rod with	perforate	ed sle	eve FIS H K									
Max. installation torque	max T _{inst}	[Nm]		1	0							
General installa	tion parai	meter	S									
Edge distance	Cmin			10	00							
	S _{min} II			10	00							
Chaoina	S _{cr} II	[mm]		24	40							
Spacing	S _{min} ⊥			100								
	$s_{cr} oldsymbol{\perp}$			11	15							
Drilling method												

Table C9.2: Group factors

Anchor ro	od		M10	M16							
Perforated sleeve FIS H K			18x13	22x130/200							
	$lpha_{\sf g,N}$ (S _{min} II)			1,14	4						
Group factors	α _{g,V} (s _{min} II)	r 1	1,51								
factors	α _{g,N} (S _{min} ⊥)	[-]	1,14								
	α _{g,V} (S _{min} ⊥)		1,54								

fischer injection system FIS V Zero for masonry	
Performances	

Perforated calcium silicate (sand-lime) brick KSL, 3DF, dimensions, installation parameters

Annex C 9

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2:2015 Table C10.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading (Pre-positioned installation) M8 M10 M8 M10 M12 M16 M12 M16 **M8 M8** Anchor rod M10 M12 **M8** Internal threaded anchor FIS E 11x85 15x85 Perforated sleeve FIS H K 16x85 12x50 12x85 16x130 20x85 20x130 Tension resistance $N_{RK} = N_{RK,D} = N_{RK,D,c} = N_{RK,D,c}$ [kN] depending on the mean compressive strength f_b; Installation and use condition d/d; (temperature range 24/40°C) Mean compressive strength fb 6 N/mm² 1,2 0,9 0.9 2,0 2,0 8 N/mm² 1.5 1.2 1.2 2.5 2.5 10 N/mm² 1,5 1.5 3,0 1.5 3,0 12 N/mm² 2,0 1,5 3.5 1,5 3.5 16 N/mm² 2.5 4.5 2.0 4.5 20 Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,b,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b; Installation and use condition d/d; (temperature range 50/80°C and 72/120°C) Mean compressive strength fb 6 N/mm² 0.6 0.75 1.5 0.75 1.5 8 N/mm² 0,75 0,9 2,0 0.9 2,0 10 N/mm² 0.9 0.9 2,5 0.9 2,5 12 N/mm² 0,9 1.2 2,5 1.2 2,5 16 N/mm² 1.2 1.5 3.5 3.5 1.5 Table C10.2: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading (Push through installation) M12 Anchor rod M10 M₁₆ Perforated sleeve FIS H K 18x130/200 22x130/200 Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b; Installation and use condition d/d; (temperature range 24/40°C) Mean compressive strength fb 6 N/mm² 2.0 8 N/mm² 2.5 10 N/mm² 3,0 12 N/mm² 3.5 16 N/mm² 4.5 Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b; Installation and use condition d/d; (temperature range 50/80°C and 72/120°C) Mean compressive strength fb 6 N/mm² 1.5 8 N/mm² 2,0 10 N/mm² 2,5 12 N/mm² 2,5 16 N/mm² 3.5 Factor for job site tests see annex C16 and displacements see annex C17 fischer injection system FIS V Zero for masonry

Performances

Perforated calcium silicate (sand-lime) brick KSL, 3DF, Characteristic resistance under tension loading

Annex C 10

Appendix 31 / 38

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2:2015

Table C11.1: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading (Pre-positioned installation)

Anchor rod	М8	M8	-	M8	M10	M8	M10	-	M12 N	/116	M12	M16
Internal threaded anchor FIS E	-	-	M8 11x85		•		-	M10 M12 15x85	_			•
Perforated sleeve FIS H K	12x50	12x85	162	x85		16x	130	20:	x85		20x	130

Shear resistance $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C, 50/80°C and 72/120°C)

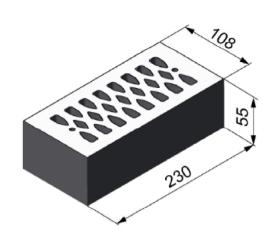
Mean compressive strength f _b			
6 N/mm²	1,5	2,0	3,0
8 N/mm²	2,0	2,5	3,5
10 N/mm ²	2,5	3,0	4,5
12 N/mm ²	2,5	3,5	5,0
16 N/mm ²	3,5	4,0	6,5

Table C11.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading (Push through installation)

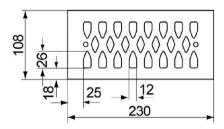
Anchor rod	M10	M12	M16						
Perforated sleeve FIS H K	18x13	0/200	22x130/200						
Shear resistance $V_{Rk} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] depending on the mean compressive strength f _b ; Installation and use condition d/d; (temperature range 24/40°C, 50/80°C and 72/120°C)									
Mean compressive strength f_b									
6 N/mm²	2,	,0	3,0						
8 N/mm²	2,	5	3,5						
10 N/mm²	3,	,0	4,5						
12 N/mm²	3,	.5	5,0						
16 N/mm²	4,	,0	6,5						

Factor for job site tests see annex C16 and displacements see annex C17

fischer injection system FIS V Zero for masonry


Performances

Perforated calcium silicate (sand-lime) brick KSL, 3DF, Characteristic resistance under shear loading


Annex C 11

Appendix 32 / 38

Vertical perforated brick HLz, EN 771-1:2015

Vertical perforated brick HLz, EN 771-1:2015										
Producer		e.g.	Wienerber	ger.						
Naminal dimensions	[mm]	length L	width W	height H						
Nominal dimensions	[mm]	230	108	55						
Mean gross dry density ρ	[kg/dm³]		≥ 1,6							
Mean compressive strength [N/mm²] 8 / 10 / 12 / 16										
Standard	N 771-1:201	15								

Dimensions see also Annex B 12

Table C12.1: Installation parameters

Anchor rod	М8	M8	-	M8	M10	M8	M10	-	M12 M16	M12	M16
Internal threaded anchor FIS E	-	-	M8 11x85		=	9	-	M10 M12 15x85	-	-	C
Perforated sleeve FIS H K	12x50	12x85	16:	x85		16x	130	20:	x85	20x1	130

Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K

Max. installation torque max T_{inst} [Nm] 5

General installation parameters

Gonorai motana	non parameter	•
Edge distance	Cmin	100
	S _{min} II	100
Consina	S _{cr} II [mm]	230
Spacing	S _{min} ⊥	60
•	S _{cr} ⊥	60

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C12.2: Group factors

Anchor rod	I		M8	M8						M16	M12	M16				
Internal thr			_		М8		-			M10	M12				_	
anchor FIS	E				11x85					15x	85					
Perforated sleeve FIS H K			12x50	12x50 12x85 16x85 16x130 20x85 20x									130			
	α _{g,N} (S _{min} II)								1,65							
Group	αg,ν (Smin II)	r 1						64								
factors	$lpha$ g,N (Smin \perp)	[-]			1,65											
	α _{g,V} (S _{min} ⊥)						2,	00								

fischer injection system FIS V Zero for masonry

Performances

Vertical perforated brick HLz, dimensions, installation parameters

Annex C 12

Appendix 33 / 38

Vertical perforated brick HLz, EN 771-1:2015

Table C13.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Internal threaded anchor FIS E	Anchor rod	М8	М8	-	M8	M10	M8	M10		•	M12	M16	M12	M16
anchor FIS E	Internal threaded			М8					M10	M12				
19v50 19v85 16v85 16v130 90v85 90v130	anchor FIS E	-	-	11x85		-		-	15	k 85] '	•		•
		12x50	12x85	16:	x85		16x	130		20:	x85		20x	130

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C)

Mean compressive strength f _b						
8 N/mm ²	1,2	1,5	1,5	2,5	1,5	2,5
10 N/mm ²	1,2	2,0	2,0	2,5	2,0	2,5
12 N/mm ²	1,5	2,0	2,0	3,0	2,0	3,0
16 N/mm ²	1,5	2,5	2,5	3,5	2,5	3,5

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 50/80°C and 72/120°C)

Mean compressive strength f _b						
8 N/mm²	0,6	1,2	1,2	1,5	1,2	1,5
10 N/mm ²	0,75	1,2	1,2	2,0	1,2	2,0
12 N/mm ²	0,75	1,5	1,5	2,0	1,5	2,0
16 N/mm ²	0,9	1,5	1,5	2,5	1,5	2,5

Table C13.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading

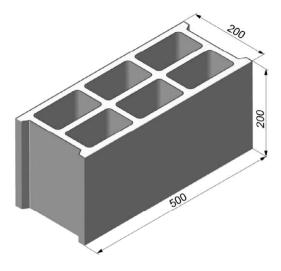
Anchor rod	М8	М8	-	M8	M10	M8	M10		-	M12	M16	M12	M16
Internal threaded		_	М8					M10	M12				
anchor FIS E	-	- 	11x85		-		-		15x85		•		•
Perforated sleeve FIS H K	12x50	12x85	16	x85		16x	130		20	x85		20x	130

Shear resistance $V_{Rk} = V_{Rk,b} = V_{Rk,c,\parallel} = V_{Rk,c,\perp}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C, 50/80°C and 72/120°C)

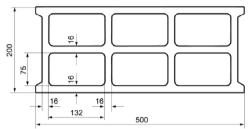
installation and use co	nanion a/a	, (tempera	ture range 24/40 C, 3	0/00 C and	12/120 0)	
Mean compressive strength f ₅						
8 N/mm ²	2,0	3,5	2,5	3,5	2,5	3,5
10 N/mm ²	2,0	4,0	3,0	4,0	3,0	4,0
12 N/mm ²	2,0	4,0	3,0	4,5	3,0	4,5
16 N/mm ²	2,5	5,0	3,5	5,0	3,5	5,0

Factor for job site tests see annex C16 and displacements see annex C17

fischer injection system FIS V Zero for masonry


Performances

Vertical perforated brick HLz, Characteristic resistance under tension and shear loading


Annex C 13

Appendix 34 / 38

Lightweight aggregate concrete hollow block Hbl , EN 771-3:2015

Lightweight a	Lightweight aggregate concrete hollow block Hbl, EN 771-3:2015										
Producer			e.g. Sepa								
Naminal dimensions	[mm]	length L	width W	height H							
Nominal dimensions	[mm]	500	200	200							
Mean gross dry density ρ	[kg/dm ³]		≥ 1,0								
Mean compressive strength [N/mm²] 2 / 4											
Standard	Standard EN 771-1:2015										

Dimensions see also Annex B 12

Table C14.1: Installation parameters

Anchor rod	-	M8	M10	М8	M10	M10	M12		-	M12	M16	M12	M16
Internal threaded	М8	_		-		-		M10	M12			_	
anchor FIS E	11x85							15x85				_	
Perforated sleeve FIS H K	16x85		16x130 18x130/200		20>		k 85		20x	130			

Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K

Max. installation max T_{inst} [Nm] 2

General installation parameters

Edge distance	Cmin	100
	Smin II	100
Spacing	scr II [m	n] 500
	Smin ⊥	100
	s _{cr} ⊥	200

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C14.2: Group factors

Anchor ro	od		-	M8	M10	M8	M10	M10	M12		-	M12	M16	M12	M16
Internal threaded anchor FIS E		al threaded		/18		_				M10 M12				_	
			11x85		_	_				15x85					
Perforated sleeve FIS H K			16x85			16x	130	18x13	30/200	20x85			20x130		
	α _{g,N} (S _{min} II)							2,	00						
Group	α _{g,V} (S _{min} II)	r 1						1,28							
factors	$lpha_{ extsf{g,N}}$ (Smin $oldsymbol{\perp}$)	[-]		1,40											
	2,00														

fischer injection system FIS V Zero for masonry

Performances

Lightweight aggregate concrete hollow block Hbl, dimensions, installation parameters

Annex C 14

Appendix 35 / 38

Lightweight aggregate concrete hollow block Hbl, EN 771-3:2015 **Table C15.1:** Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading M12 M16 Anchor rod **M8** M10 **M8** M10 M10 M12 M12 | M16 M10 | M12 **M8** Internal threaded anchor FIS E 11x85 15x85 Perforated sleeve 16x130 18x130/200 20x130 16x85 20x85 FIS H K Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength fb: Installation and use condition d/d; (temperature range 24/40°C) Mean compressive strength fb 2 N/mm² 0.4 0.6 4 N/mm² 0.75 0.5 Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b; Installation and use condition d/d; (temperature range 50/80°C and 72/120°C) Mean compressive strength fb 2 N/mm² 0.3 0.5 4 N/mm² 0.4 0.6 Table C15.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading M10 M10 M12 M12 M16 M12 M16 Anchor rod **M8 M8** M10 **M8** M10 | M12 Internal threaded anchor FIS E 11x85 15x85 Perforated sleeve 16x85 18x130/200 20x130 16x130 20x85 FIS H K Shear resistance $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] depending on the mean compressive strength f_b : Installation and use condition d/d; (temperature range 24/40°C, 50/80°C and 72/120°C) Mean compressive strength fb 2 N/mm² 1,5 4 N/mm² 2.0 Factor for job site tests see annex C16 and displacements see annex C17 fischer injection system FIS V Zero for masonry Annex C 15 **Performances**

Lightweight aggregate concrete hollow block Hbl Characteristic resistance under tension and shear loading

Appendix 36 / 38

β-factors for job site tests

Table C16.1: β-factors for job site tests

Installation and use conditions	d/d							
temperature range [°C]	24/40	50/80	72/120					
M8	0,81	0,47	0,45					
M10	0,62	0,49	0,45					
M12 / FIS E 11x85	0,62	0,49	0,52					
M16 / FIS E 15x85	0.56	0.45	0.59					

 $\label{eq:fischer} \textit{fischer injection system FIS V Zero for masonry}$

Performances

β-factors for job site tests

Annex C 16

Appendix 37 / 38

Table C17.1: Displacements									
Material	Size	Effective embedment depth [mm]	N [kN]	δN₀ [mm]	δN∞ [mm]		V [kN]	δV ₀ [mm]	δV∞ [mm]
	M8 ·	50	0,57	0,00	0,00		0,71	0,08	0,12
	IVIO	80	1,00	0,00	0,00		1,71	0,32	0,48
	M10	50	0,57	0,00	0,00		0,71	0,18	0,27
Solid brick	IVITO	80	1,00	0,01	0,02		1,71	0,50	0,75
acc. to C4-C5	MAO	50	1,29	0,03	0,06		0,71	0,05	0,08
	M12	80	1,00	0,01	0,02		1,71	0,75	1,13
	MAC	50	1,29	0,03	0,06		0,71	0,35	0,53
	M16	80	1,71	0,04	0,08		1,71	0,20	0,30
	1.40	50	0,86	0,03	0,06		1,43	0.00	0.40
Solid calcium silicate (sand-lime) brick acc. to C6-C7	M8 -	80	0,86	0,00	0,00		1,43	0,32	0,48
	M10 -	50	0,86	0,00	0,00		1,43	0.04	0.51
		80	1,71	0,02	0,04		1,43	0,34	0,51
	M12 -	50	0,86	0,03	0,06		1,43	0,12	0,18
		80	1,71	0,04	0,08		1,43	0,32	0,48
	M16	50	0,86	0,03	0,06		1,43	0,57	0,86
		80	1,14	0,02	0,04		1,43	0,20	0,03
Perforated calcium	M8 ·	12x50 12x85	0,71	0,01	0,02		1,00	0,16	0,24
silicate	M8	16x85	0,57	0,02	0,04		1,14	0,57	0,86
(sand-lime) brick	M10	16x130	1,29	0,06	0,12		1,14	1,03	1,55
acc. to	M12	20x85	0,57	0,03	0,06		1,86	1,15	1,73
C8-C11	M16	20x130	1,29	0,04	0,08		1,86	1,24	1,86
		12x50	0,43	0,00	0,00		0,71	0,25	0,38
Dantanakad	M8	12x85	0,71	0,00	0,00		1,43	0,61	0,92
Perforated brick Hlz	M8	16x85	0,71	0,03	0,06		1,00	0,36	0,54
acc. to	M10	16x130	1,00	0,02	0,04		1,43	0,30	0,45
C12-C13	M12	20x85	0,71	0,00	0,00		1,00	0,22	0,33
	M16	20x130	1,00	0,04	0,08		1,43	0,17	0,26
Lightweight	M8	16x85	0,14	0,03	0,06		0,57	1,54	2,31
aggregate	M10	16x130	0,14	0,02	0,04		0,57	1,01	1,52
concrete hollow block	MAO	20x85	0,14	0,06	0,12		0,57	1,31	1,97
Hbl acc. to C14-C15	M12 - M16	20x130	0,21	0,04	0,08		0,57	0,82	1,23

fischer injection system	FIS V Zero for masonry
--------------------------	------------------------

Performances displacements

Annex C 17

Appendix 38 / 38