

ΕN

DECLARATION OF PERFORMANCE

1. Unique identification code of the product-type:

DoP 0387

for fischer injection system FIS RC II / FIS RC II Low Speed (Bonded fastener for use in concrete)

DoP 0387

2. <u>Intended use/es:</u> Post-installed fastening in cracked or uncracked concrete, see appendix, especially

annexes B1 - B10.

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative:

5. System/s of AVCP:

6. European Assessment Document: EAD 330499-02-0601, Edition 12/2023

European Technical Assessment: ETA-22/0501; 2025-09-23

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading):

- 1) Resistance to steel failure: Annex C1
- 2) Resistance to combined pull- out and concrete cone failure: Annexes C2 C4
- 3) Resistance to concrete cone failure: Annex C2
- 4) Edge distance to prevent splitting under load: Annex C2
- 5) Robustness: Annexes C2 C4
- 6) Maximum installation torque: Annexes B4
- 7) Minimum edge distance and spacing: Annexes B3 B5

Characteristic resistance to shear load (static and quasi-static loading):

- 8) Resistance to steel failure: Annex C1
- 9) Resistance to pry-out failure: Annex C2
- 10) Resistance to concrete edge failure: Annex C2

Displacements under short-term and long-term loading:

- 11) Displacements under short-term and long-term loading: Annex C5
- 12) Resistance in steel fibre reinforced concrete: NPD

Characteristic resistance and displacements for seismic performance categories C1 and C2:

- 13) Resistance to tension load, displacements, category C1: NPD
- 14) Resistance to tension load, displacements, category C2: NPD
- 15) Resistance to shear load, displacements, category C1: NPD
- 16) Resistance to shear load, displacements, category C2: NPD

Safety in case of fire (BWR 2)

17) Reaction to fire: Class (A1)

Resistance to fire:

- 18) Fire resistance to steel failure (tension load): NPD
- 19) Bond resistance under fire conditions: NPD
- 20) Fire resistance to steel failure under shear loading: NPD

Hygiene, health and the environment (BWR 3)

- 21) Content, emission and/or release of dangerous substances: NPD
- Appropriate Technical Documentation and/or Specific
 Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr. Ronald Mihala, Managing Director Research and Development

Dieter Pfaff, Head of International Production Federation and Quality Management

Tumlingen, 2025-10-22

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V106.xlsm 1/1

Translation guidance Essential Characteristics and Performance Parameters for Annexes

Me	chanical resistance and stability (BWR 1)	
Cha	aracteristic resistance to tension load (static and quasi-static loading):	
1	Resistance to steel failure:	N _{Rk,s} [kN]
2	Resistance to combined pull- out and concrete cone failure:	$\begin{split} &\tau_{Rk} \text{ and/or } \tau_{Rk,100} \text{ [N/mm}^2\text{]}, \\ &\psi_c, \psi^0_{\text{sus}, \Psi \text{sus},100} \text{ [-] (BF)} \end{split}$
	Resistance to pull-out failure:	$N_{Rk,p}$ and/or $N_{Rk,p,100}$ [kN], ψ_c [-] (BEF)
3	Resistance to concrete cone failure:	c _{cr,N} [mm], k _{cr,N} , k _{ucr,N} [-]
4	Edge distance to prevent splitting under load:	c _{cr,sp} [mm]
5	Robustness:	Yinst [-]
6	Maximum installation torque:	max T _{inst} [Nm] (BF)
	Installation torque:	T _{inst} [Nm] (BEF)
7	Minimum edge distance, spacing and member thickness:	c _{min} , s _{min} , h _{min} [mm]
Cha	racteristic resistance to shear load (static and quasi-static loading):	
8	Resistance to steel failure:	V ⁰ _{Rk,s} [kN], M ⁰ _{Rk,s} [Nm], k ₇ [-]
9	Resistance to pry-out failure:	k ₈ [-]
10	Resistance to concrete edge failure:	d _{nom} , I _f [mm]
Dis	placements under short-term and long-term loading:	
11	Displacements factors under short-term and long-term loading:	δ_0, δ_∞ [mm/(N/mm²)] or [mm/kN]
12	Resistance in steel fibre reinforced concrete:	Description
Cha	aracteristic resistance and displacements for seismic performance categories C1 and C2:	
13	Resistance to tension for seismic performance category C1	N _{Rk,s,C1} [kN] (all) T _{Rk,C1} [N/mm ²] (BF) N _{Rk,p,C1} [kN] (BEF)
14	Resistance to tension and displacements for seismic performance category C2	$\begin{array}{l} N_{Rk,s,C2} [kN] \ (all) \\ \\ T_{Rk,C2} [N/mm^2] \ (BF) \\ N_{Rk,p,C2} [kN] \ (BEF) \\ \\ \bar{\delta}_{N,C2(50\%)}, \bar{\delta}_{N,C2(100\%)} \ [mm] \ (all) \end{array}$
15	Resistance to shear for seismic performance category C1	V _{Rk,s,C1} [kN] (all)
16	Resistance to shear load and displacements for seismic performance category C2	$V_{Rk,s,C2}$ [kN] (all) $\delta_{V,C2(50\%)}$, $\delta_{V,C2(100\%)}$ [mm] (all)
Saf	ety in case of fire (BWR 2)	
17	Reaction to fire	Class
Res	sistance to fire	<u>.</u>
18	Fire resistance to steel failure (tension load):	$N_{Rk,s,fi}$ [kN]
19	Bond resistance under fire conditions:	$k_{fi,p}(\theta)$ [-], $t_{Rk,fi}(\theta)$ [N/mm ²] (BF)
20	Fire resistance to steel failure under shear loading:	V _{Rk,s,fi} [kN], M ⁰ _{Rk,s,fi} [Nm]
Нуς	ipiene, health and the environment (BWR 3)	
21	Content, emission and/or release of dangerous substances:	Description/Level

Fischer DATA DOP_ECs_V106.xlsm Appendix 0

Specific Part

1 Technical description of the product

The "fischer injection system FIS RC II and FIS RC II Low Speed" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS RC II, fischer FIS RC II Low Speed, and a steel element according to Annex A3.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

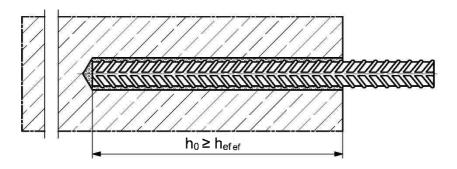
Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B3 to B6, C1 to C4
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Displacements under short-term and long-term loading	See Annex C5
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

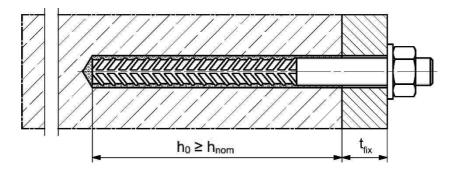
3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

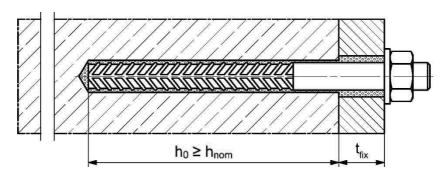

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


Installation conditions part 1

Reinforcing bar



fischer rebar anchor FRA

Pre-positioned installation

Push through installation (annular gap filled with mortar)

Figures not to scale

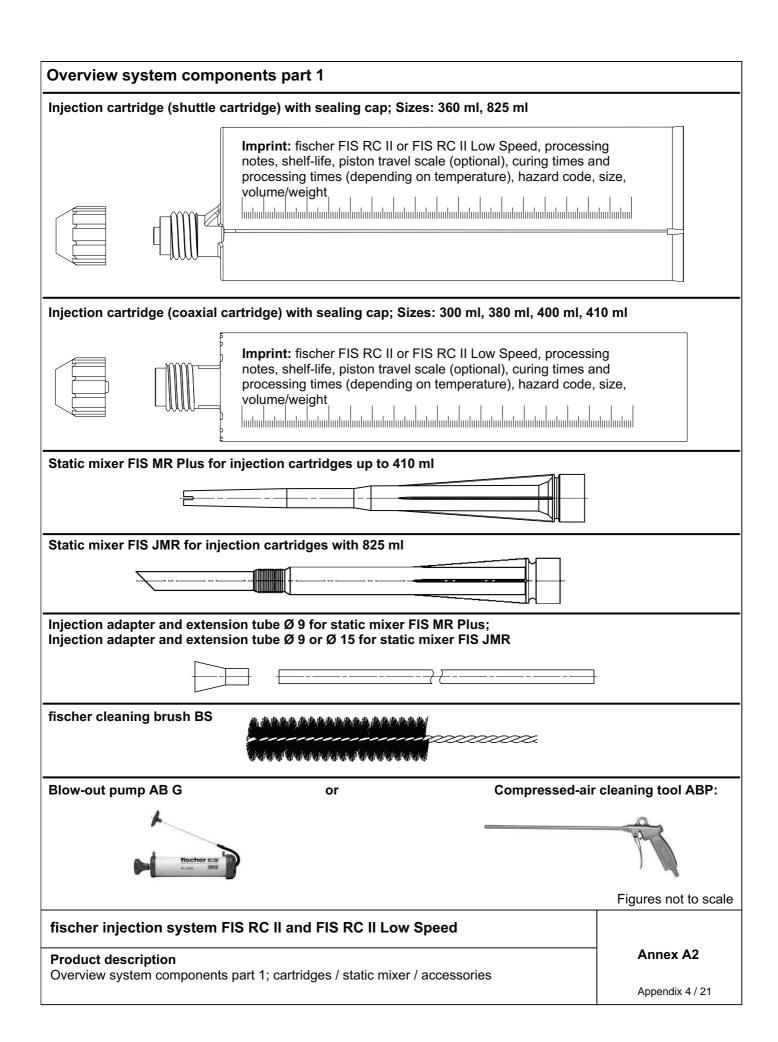
 h_0 = drill hole depth

effective embedment depth $h_{ef} =$

 t_{fix} = thickness of fixture

overall fastener embedment depth in the

concrete


fischer injection system FIS RC II and FIS RC II Low Speed

Product description

Installation conditions part 1

Annex A1

Appendix 3 / 21

Overview system components part 2 Reinforcing bar Nominal diameter: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$, \$\phi 28\$ fischer rebar anchor FRA (fischer FRA) Size: M12, M16, M20, M24 washer / hexagon nut Figures not to scale fischer injection system FIS RC II and FIS RC II Low Speed Annex A3 **Product description** Overview system components part 2; steel components Appendix 5 / 21

Part	Designation	Material							
1	Injection cartridge	Mortar, hardener, filler							
		Stainless steel R	High corrosion resistant steel HCR						
	Steel grade	acc. to EN 10088-1:2023 Corrosion resistance class CRC III acc. to EN 1993-1-4: 2006+A1:2015	acc. to EN 10088-1:2023 Corrosion resistance class CRC V acc. to EN 1993-1-4: 2006+A1:2015						
2	Washer ISO 7089:2000 for fischer rebar anchor FRA	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2023	1.4565; 1.4529; EN 10088-1:2023						
3	Property class 80 acc. to fischer specification for fischer FRA or EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023		Property class 80 acc. to fischer specification for fischer FRA EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2023						
4	Reinforcing bar	EN 1992-1-1:2004 and AC:2010, Annex C Bars and de-coiled rods, class B or C with f_{yk} according to EN 1992-1-1/NA; $f_{uk} = f_{tk} = k \cdot f_{yk}$							
5	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCI of EN 1992-1-1:2004+AC:2010 $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 8 \%)$ Threaded part: Property class 80 EN ISO 3506-1:2020	$\begin{array}{l} 1.4401, 1.4404, 1.4571, 1.4578, 1.4439,\\ 1.4362, 1.4062 acc. to EN 10088\text{-}1:2023\\ Corrosion resistance class CRC III\\ acc. to EN 1993\text{-}1\text{-}4:2006\text{+}A1:2015\\ 1.4565; 1.4529 acc. to EN 10088\text{-}1:2023\\ Corrosion resistance class CRC V\\ acc. to EN 1993\text{-}1\text{-}4:2006\text{+}A1:2015\\ f_{uk} \leq 1000 N/mm^2;\\ fracture elongation A_5 > 8\% \end{array}$						

fischer injection system FIS RC II and FIS RC II Low Speed	
Product description Materials	Annex A4
	Appendix 6 / 21

Specifications of intended use part 1

 Table B1.1:
 Overview use and performance categories

Anchorages s	ubject	to	FIS RC II with							
			Reinfor	cing bar	fischer FRA					
Hammer drillir with standard bit		p-4440000000000000000000000000000000000	all sizes							
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilt "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max" Static and quasi		Ī		Nominal drill bit diameter (d ₀) 12 mm to 35 mm						
		uncracked concrete	all	Tables: C1.1 C2.1	all	Tables: C1.2 C2.1				
static loading,	in	cracked concrete	sizes	C3.1 C3.1 C5.1	sizes	C4.1 C5.2				
Use	I1	dry or wet concrete								
category	12	water filled hole	-	1)	-	1)				
Seismic performance category		C1 ¹⁾	-	.1)	_1)					
Installation dir	ection		D3 (downward and horizontal and upwards installation)							
Installation temperature			$T_{i,min}$ = -5 °C to $T_{i,max}$ = +40 °C For the standard variation of temperature after installation							
In-service		Temperature range I	-40 °C to +80		hort term temperature +80 °C ; ong term temperature +50 °C)					
temperature		Temperature range II	-40 °C to +12		hort term temperature +120 °C ; ong term temperature +72 °C)					

¹⁾ No performance assessed

fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use	Annex B1
Specifications part 1	Appendix 7 / 21

Specifications of intended use part 2

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021.

Use conditions (Environmental conditions):

- Fastener intended for use in structures subject to dry, internal conditions (all materials).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A4 Table A4.1.

Design:

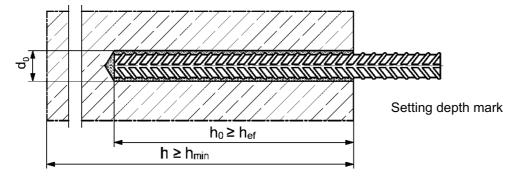
- Fastenings are designed in accordance with EN 1992-4:2018.
- The structural design is conducted under responsibility of a designer experienced in the field of anchorages and concrete works.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to
 reinforcement or to supports, etc.).

Installation:

- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · Fastening depth should be marked and adhered to installation.

fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use	Annex B2
Specifications part 2	
	Appendix 8 / 21

Table B3.1: Installation parameters for reinforcing bars													
Nominal diameter of the bar		ф	8 ¹⁾		10	1)	12	2 ¹⁾	14	16	20	25	28
Nominal drill hole diameter	d ₀		10 1	12	12	14	14	16	18	20	25	30	35
Drill hole depth	h ₀							$h_0 = h_{ef}$					
Effective	h _{ef,min}		60		6	0	7	0	75	80	90	100	112
embedment depth	h _{ef,max}]	160		20	00	24	40	280	320	400	500	560
Simplified spacing and edge distance ²⁾	s = c	[mm]	40		4	5	5	5	60	65	85	110	130
Minimum thickness of concrete member	h _{min}			_	+ 3 100					h	+ 2d ₀		

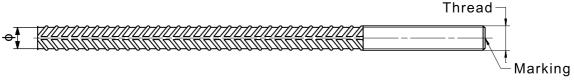

¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2011
- The rib height must be within the range: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

Figures not to scale

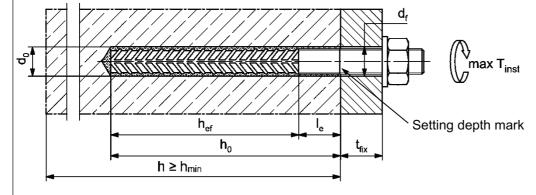

fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use Installation parameters reinforcing bars	Annex B3
g and a second s	Appendix 9 / 21

 $^{^{2)}}$ Detailed calculation according to **Annex B5** and **B6**

Rebar anchor FRA	•	Thread	M1:	2 ¹⁾	M16	M20	M24	
Nominal diameter of the bar	ф		12		16	20	25	
Nominal drill hole diameter	d ₀		14	16	20	25	30	
Drill hole depth	h ₀		h _{ef} + I _e					
Effective embedment denth	h _{ef,min}		70		80	90	96	
Effective embedment depth	h _{ef,max}		140		220	300	380	
Distance concrete surface to welded joint	l _e				100			
Simplified spacing and edge distance ²⁾	s = c	[mm]	55		65	85	105	
Maximum pre-positioned Diameter of anchorage	(1)		14		18	22	26	
clearance hole push through in the fixture anchorage			18		22	26	32	
Minimum thickness of concrete member	h _{min}		h ₀ + 30			h ₀ + 2d ₀		
Maximum torque moment for attachment of the fixture	max T _{inst}	[Nm]	40)	60	120	150	

¹⁾ Both drill hole diameters can be used

fischer rebar anchor FRA



Marking frontal e.g.:

FRA (for stainless steel);

✓ FRA HCR (for high corrosion resistant steel HCR)

Installation conditions:

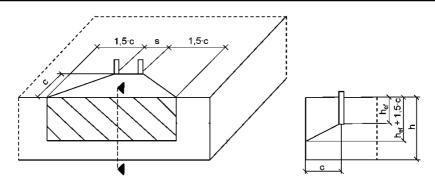
Figures not to scale

Intended use Installation parameters rebar anchor FRA Annex B4 Appendix 10 / 21

²⁾ Detailed calculation according to **Annex B5** and **B6**

	Minimum spacing and minimum edge distance for reinforcing bars and fischer rebar anchor FRA									
Reinforcing bars / FRA (Nominal diameter)		ф	8	10	12	14	16	20	25	28
Minimum edge distance										
Uncracked / cracked concrete	C _{min}	[mm]	40	45	45	45	50	55	75	80
Minimum spacing	s	[mm]			acc	cording to	Annex	B6		
Minimum spacing										
Uncracked / cracked concrete	S _{min}	[mm]	40	45	55	60	65	85	120	140
Minimum edge distance	с	[mm]			acc	cording to	Annex	B6		
Required projecting area										
Uncracked concrete	۸	[1000	8,0	13,0	22,0	23,0	24,0	38,5	47,5	64,0
Cracked concrete	— A _{sp,req}	mm²]	6,5	10,0	16,5	17,5	18,5	29,5	36,5	49,0

Splitting failure for minimum edge distance and spacing in dependence of the effective embedment depth hef.


For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

$$A_{sp,req} < A_{sp,t}$$

A_{sp,req} = required projecting area A_{sp,t} = effective projecting area (according to **Annex B6**)

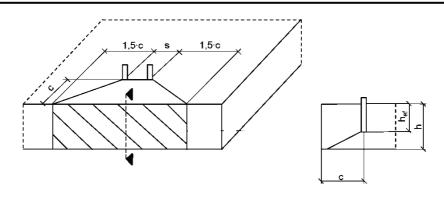

fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use Minimum spacing and edge distance for reinforcing bars and fischer rebar anchor FRA	Annex B5
	Appendix 11 / 21

Table B6.1: Projecting area $A_{sp,t}$ with concrete member thickness $h > h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

Single anchor		$A_{sp,t} = (3 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	with a > a
Group of anchors with	s > 3 · c	$A_{sp,t} = (6 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	with c ≥ c _{min}
Group of anchors with	$s \le 3 \cdot c$	$A_{sp,t} = (3 \cdot c + s) \cdot (h_{ef} + 1.5 \cdot c)$	[mm²]	with c ≥ c _{min} and s ≥ s _{min}

Table B6.2: Projecting area $A_{sp,t}$ with concrete member thickness $h \le h_{ef} + 1.5 \cdot c$ and $h \ge h_{min}$

Single anchor		$A_{sp,t} = 3 \cdot c \cdot existing h$	[mm²]	with c ≥ c _{min}
Group of anchors with	s > 3 · c	$A_{sp,t} = 6 \cdot c \cdot existing h$	[mm²]	WILLI C Z C _{min}
Group of anchors with	$s \le 3 \cdot c$	$A_{sp,t} = (3 \cdot c + s) \cdot existing h$	[mm²]	with $c \ge c_{min}$ and $s \ge s_{min}$

Edge distance and axial spacing shall be rounded up to at least 5 mm-steps

Figures not to scale

fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use Minimum thickness of concrete member for anchor rods,	Annex B6
minimum spacing and edge distance	Appendix 12 / 21

Table B7.1:			s of the c he cleaning				rush with meter	steel bri	stles)	
Nominal drill hole diameter	d_0	[mm]	10	12	14	16	18	20	25	35
Steel brush diameter BS	d _b	[mm]	11	14	16	20 25 27		27	40	

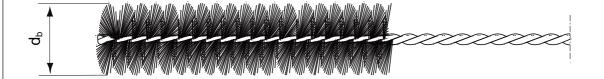


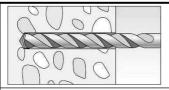
 Table B7.2:
 Conditions for use static mixer without an extension tube

Nominal drill hole diameter	d ₀		10	12	14	16	18	20	25	30	35
Drill hole depth h ₀ by using	FIS MR Plus	[mm]	≤9	90	≤120	≤140	≤150	≤160		≤210	
	FIS JMR		-	-	≤90	≤160	≤180	≤190	≤220	≤2	50

Table B7.3 Maximum processing time of the mortar and minimum curing time
(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

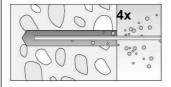
Temperature at	· .	ocessing time	Minimum curing time ¹⁾ t _{cure}			
anchoring base [°C]	FIS RC II	FIS RC II Low Speed	FIS RC II	FIS RC II Low Speed		
> -5 to 0 ²⁾	20 min	40 min	24 h	5 d		
> 0 to 5 ²⁾	13 min	30 min	3 h	48 h		
> 5 to 10	9 min	20 min	90 min	24 h		
> 10 to 20	5 min	13 min	60 min	120 min		
> 20 to 30	4 min	9 min	45 min	60 min		
> 30 to 40	2 min	7 min	35 min	45 min		

¹⁾ In wet concrete or water filled holes the curing times must be doubled

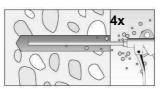

fischer injection system FIS RC II and FIS RC II Low Speed	
Intended use Cleaning brush (steel brush)	Annex B7
Processing time and curing time	Appendix 13 / 21

²⁾ Minimal cartridge temperature +5°C

Installation instructions part 1

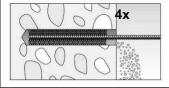

Drilling and cleaning the hole (hammer drilling with standard drill bit)

1

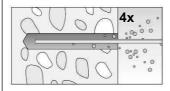


Drill the hole. Nominal drill hole diameter d_0 and drill hole depth h_0 see **Tables B3.1, B4.1.**

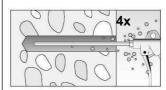
2



Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand.


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$. Use suitable compressedair nozzle.

3



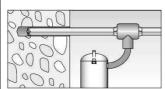
Brush the drill hole four times. For drill hole diameter \geq 30 mm use a power drill. For deep holes use an extension. Use suitable brushes (see **Table B7.1**)

4

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand.

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air (p ≥ 6 bar). Use suitable compressedair nozzle.

Go to step 5


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **Table B1.1**) for correct operation of the dust extraction.

2

Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

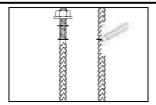
Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter d_0 and drill hole depth h_0 see **Tables B3.1, B4.1.**

Go to step 5

fischer injection s	ystem FIS RC∃	II and FIS RC II	Low Speed
---------------------	---------------	------------------	-----------

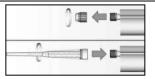
Intended use

Installation instructions part 1


Annex B8

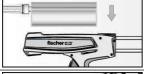
Appendix 14 / 21

Installation instructions part 2


Preparing the cartridge

5

Mark the setting depth of the steel element.


6

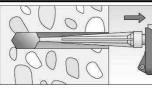
Remove the sealing cap.

Screw on the static mixer (the spiral in the static mixer must be clearly visible).

7

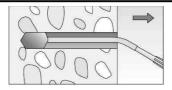
Place the cartridge into the dispenser.

8

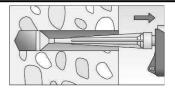


Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.

Go to step 9


Injection of the mortar

9


For $h_0 = h_{ef}$ fill approximately 2/3 of the drill hole with mortar. For $h_0 > h_{ef}$ more mortar is needed. Always begin from the bottom of

the hole and avoid bubbles.

The conditions for mortar injection without extension tube can be found in **Table B7.2**.

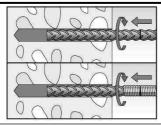
For deeper drill holes, than those mentioned in **Table B7.2**, use a suitable extension tube.

For deep holes ($h_0 > 250$ mm) use an injection adapter.

Go to step 10

fischer injection system FIS RC II and FIS RC II Low Speed

Intended use

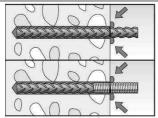

Installation instructions part 2

Annex B9

Appendix 15 / 21

Installation instructions part 3

Installation reinforcing bars and fischer rebar anchor FRA



Only use clean and oil-free reinforcing bars or fischer FRA. Insert the rebar / fischer FRA slowly twisted into the borehole until the embedment mark is reached.

Recommendation:

Rotation back and forth of the reinforcement bar or the fischer FRA makes pushing easy.

10

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

11

Wait for the specified curing time t_{cure} see **Table B7.3**

12

Mounting the fixture max T_{inst} for fischer FRA see **Table B4.1**

fischer injection system FIS RC II and FIS RC II Low Speed

Intended use

Installation instructions part 3

Annex B10

Appendix 16 / 21

Table C1.1:	Characteris reinforcing		ance 1	to stee	l failur	e unde	r tensio	on / she	ear Ioa	ding of	
Nominal diamet	er of the bar		ф	8	10	12	14	16	20	25	28
Characteristic r	esistance to ste	el failure	under	tensio	n loading	9					
Characteristic res	sistance	$N_{Rk,s}$	[kN]				A _s ·	f _{uk} 1)			
Characteristic r	esistance to ste	eel failure	under	shear	oading						
Without lever a	rm										
Characteristic re	sistance	$V^0_{Rk,s}$	$k_{6}^{2} \cdot A_{s} \cdot f_{uk}^{1}$								
Ductility factor		k ₇	[-]	1,0							
With lever arm											

 $1,2\cdot W_{el}\cdot f_{uk}{}^{1)}$

Characteristic resistance

 $M_{Rk,s}$ [Nm]

Table C1.2: Characteristic resistance to steel failure under tension / shear loading of fischer rebar anchors FRA

fischer rebar anchor FRA			M12	M16	M20	M24						
Characteristic resistance to	Characteristic resistance to steel failure under tension loading											
Characteristic resistance	$N_{Rk,s}$	[kN]	62,0	111,0	173,0	236,5						
Partial factor ¹⁾		·										
Partial factor	γ̃Ms,N	[-]		1	,4							
Characteristic resistance to	steel failure ι	under s	hear loading									
Without lever arm												
Characteristic resistance	$V^0_{Rk,s}$	[kN]	34,5	64,3	100,4	144,7						
Ductility factor	k ₇	[-]		1	,0							
With lever arm												
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	107,4	273,0	532,2	920,4						
Partial factor ¹⁾		•										
Partial factor	γMs,V	[-]		1	,5							

¹⁾ In absence of other national regulations

fischer injection system FIS RC II and FIS RC II Low Speed	
Performance Characteristic resistance to steel failure under tension / shear loading of reinforcing bars	Annex C1
and fischer rebar anchors FRA	Appendix 17 / 21

¹⁾ f_{uk} respectively shall be taken from the specifications of the reinforcing bar.

²⁾ In accordance with EN 1992-4:2018 section 7.2.2.3.1:

 $k_6 = 0.6$ for fasteners made of carbon steel with $f_{uk} \le 500 \text{ N/mm}^2$,

^{= 0,5} for fasteners made of carbon steel with $500 \text{ N/mm}^2 < f_{uk} \le 1000 \text{ N/mm}^2$,

^{= 0,5} for fasteners made of stainless steel.

Size			All sizes								
Characteristic resistance to co	ncrete fai	lure ui	nder ten	sion loa	ding						
Installation factor	γinst	[-]			S	ee anne	x C3 to C	24			
Factors for the compressive st	trength of	concr	ete > C2	20/25							
	C25/30					1,	05				
Increasing factor ψ_c for	C30/37					1,	10				
cracked or uncracked	C35/45	r 1				1,	15				
concrete	C40/50	[-]				1,	19				
$\tau_{Rk\;(X,Y)} = \psi_{c} \cdot \tau_{Rk\;(C20/25)}$	C45/55					1,:	22				
_	C50/60					1,:	26				
Splitting failure											
h / h _{ef} ≥ 2	2,0					1,0	h _{ef}				
Edge distance 2,0 > h / h _{ef} >	tance ${}$ 2,0 > h / h _{e f} > 1,3 c _{cr,sp}			4,6 h _{ef} - 1,8 h							
h / h _{ef} ≤	1,3	[mm]	2,26 h _{ef}								
Spacing	S _{cr,sp}		2 c _{cr,sp}								
Concrete cone failure											
Uncracked concrete	$k_{\text{ucr},N}$	r 1	11,0								
Cracked concrete	$k_{cr,N}$	[-]				7	,7				
Edge distance	C _{cr,N}	1,5 h _{ef}									
Spacing	S _{cr,N}	[mm]	2 C _{cr,N}								
Factors for sustained tension	loading										
Temperature range		[°C]		50 /	/ 80			72 /	120		
Factor	$\Psi^0_{ m sus}$	[-]		0,	74			0,8	87		
Characteristic resistance to co	ncrete fai	lure u	nder she	ear loadi	ng						
Installation factor	γinst	[-]				1	,0				
Concrete pry-out failure		1									
Factor for pry-out failure	k ₈	[-]				2	,0				
Concrete edge failure		'									
Effective length of fastener in shear loading	I _f	[mm]		າ ≤ 24 mm າ > 24 mn				00 mm))			
Calculation diameters											
Size			N	112	M	16	М	20	М	24	
fischer rebar anchor FRA	d_{nom}	[mm]	1	2	1	6	2	0	2	5	
Size (nominal diameter of the ba			8	10	12	14	16	20	25	28	
Reinforcing bar	d _{nom}	[mm]	8	10	12	14	16	20	25	28	

fischer injection system FIS RC II and FIS RC II Low Speed	
Performance	Annex C2
Characteristic resistance to concrete failure under tension / shear loading	Appendix 18 / 21

Table C3.1: Characteristic resistance to combined pull-out and concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete failure for the fa											te
Nominal diamet	er of the bar		ф	8	10	12	14	16	20	25	28
Combined pull-	out and concret	e cor	e failure								
Calculation diame	d	[mm]	8	10	12	14	16	20	25	28	

Uncracked concrete

Characteristic bond resistance in uncracked concrete C20/25

Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)

Tem-	l:	50 °C / 80 °C	$ au_{Rk,ucr}$	[N/mm²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
perature range	II:	72 °C / 120 °C	$ au_{Rk,ucr}$		9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Installati	on f	actor										

1,0

Dry or wet concrete Cracked concrete

Characteristic bond resistance in cracked concrete C20/25

Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)

 γ_{inst}

Tem-	I: 50 °C / 80 °C		[N/mm ²]	_1)	3,0	5,0	5,0	5,0	4,5	4,0	4,0
range	II. 70 °C / 400 °C	$ au_{Rk,cr}$	[[N/]]]]	_1)	3,0	4,5	4,5	4,5	4,0	3,5	3,5

Installation factor

Dry or wet concrete γ_{inst} [-]	1,0
--	-----

[-]

fischer injection system	FIS RC II and FIS RC II Low Speed
--------------------------	-----------------------------------

Performance

Characteristic resistance to combined pull-out and concrete failure for reinforcing bars

Annex C3

Appendix 19 / 21

¹⁾ No performance assessed

Table C4.1: Characteristic resistance to combined pull-out and concrete failure for fischer rebar anchors FRA in hammer drilled holes; uncracked or cracked concrete

fischer re	bar anchor FRA			M12	M16	M20	M24
Combine	d pull-out and concr	ete con	e failure				
Calculatio	n diameter	d	[mm]	12	16	20	25
Uncracke	ed concrete						
Characte	ristic bond resistand	ce in un	cracked c	oncrete C20/25			
Hammer-	drilling with standard	drill bit o	r hollow dr	ill bit (dry or wet	concrete)		
Tem- perature range	I: 50 °C / 80 °C		[N]/mama ²]	11,0	10,0	9,5	9,5
	II: 72 °C / 120 °C	$ au_{Rk,ucr}$	_{k,ucr} [N/mm ²] -	9,0	8,5	8,0	7,5
Installatio	on factors						
Dry or we	t concrete	γinst	[-]		1	,0	
Cracked	concrete						
Characte	ristic bond resistand	ce in cra	cked con	crete C20/25			
Hammer-	drilling with standard	drill bit o	r hollow dr	ill bit (dry or wet	concrete)		
Tem-	I: 50 °C / 80 °C	·	[N]/ma ma 2]	5,0	5,0	4,5	4,0
perature range	II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²] -	4,5	4,5	4,0	3,5
Installation	on factors						
Dry or we	t concrete	γinst	[-]		1	,0	

fischer injection system FIS RC II and FIS RC II Low Speed	
Performance Characteristic resistance to combined pull-out and concrete failure for fischer rebar	Annex C4
anchor FRA	Appendix 20 / 21

Table 0	Table C5.1: Displacements for reinforcing bars											
Nomina of the ba	I diameter ar ф	8	10	12	14	16	20	25	28			
Displacement-Factors for tension loading ¹⁾												
Uncracked concrete; Temperature range I, II												
δ _{N0-Factor}	7 mm/(m/mm²)	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11			
δ _{N∞-Factor}		0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13			
Cracked	l concrete; Tem	perature ra	ange I, II									
$\delta_{\text{N0-Factor}}$	[mm/(N/mm ²)]	_3)	0,12	0,13	0,13	0,13	0,13	0,13	0,14			
$\delta_{N\infty ext{-Factor}}$	[mm/(N/mm²)]	_3)	0,27	0,30	0,30	0,30	0,30	0,35	0,37			
Displace	ement-Factors 1	or shear lo	oading ²⁾									
Uncrack	ed or cracked	concrete; T	emperatur	e range I, II								
$\delta_{\text{V0-Factor}}$	Free year /LeN II	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08			
δ _{V∞-Factor}	[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09			

¹⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement: $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot \text{V}$

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-Factor}} \cdot \tau$

V: acting shear loading

Table C5.2: Displacements for fischer rebar anchors FRA

fischer r FRA	ebar anchor	M12	M16	M20	M24					
Displacement-Factors for tension loading ¹⁾										
Uncracked concrete; Temperature range I, II										
$\delta_{\text{N0-Factor}}$	[mana//N1/mana2)]	0,10	0,10	0,10	0,10					
δ _{N∞-Factor}	[mm/(N/mm ²)]	0,12	0,12	0,12	0,13					
Cracked concrete; Temperature range I, II										
$\delta_{\text{N0-Factor}}$	[mama //N1/mama 2)]	0,12	0,13	0,13	0,13					
$\delta_{\text{N}\infty\text{-Factor}}$	[mm/(N/mm ²)]	0,30	0,30	0,30	0,35					
Displace	ement-Factors fo	r shear loading ²⁾								
Uncrack	ed or cracked co	oncrete; Temperature	range I, II							
$\delta_{\text{V0-Factor}}$	[mama/IsNI]	0,10	0,10	0,09	0,09					
$\delta_{\text{V}\infty\text{-Factor}}$	[mm/kN]	0,11	0,11	0,10	0,10					

¹⁾ Calculation of effective displacement:

2) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot \text{V}$

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-Factor}} \cdot \tau$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V$

 τ : acting bond strength under tension loading

V: acting shear loading

fischer injection system FIS RC II and FIS RC II Low Speed	
Performance Displacements for reinforcing bars and fischer rebar anchors FRA	Annex C5
	Appendix 21 / 21

 $[\]tau\text{:}$ acting bond strength under tension loading

³⁾ No performance assessed