

DECLARATION OF PERFORMANCE

DoP 0319

for fischer injection system FIS P Plus (Bonded fastener for use in concrete)

ΕN

k_{cr,N}= NPD

1. Unique identification code of the product-type:

2. Intended use/es: Post-installed fastening in uncracked concrete, see appendix, especially annexes B1 - B7.

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

DoP 0319

Authorised representative:

5. System/s of AVCP:

6. European Assessment Document: EAD 330499-00-0601
European Technical Assessment: ETA-18/0383; 2018-09-06

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading):

Resistance to steel failure: Annex C1

Resistance to combined pull- out and concrete cone failure: Annex C3

Resistance to concrete cone failure: Annex C2

Edge distance to prevent splitting under load: Annex C2

Robustness: Annexes C2, C3

Maximum setting torque moment: Annex B3 Minimum edge distance and spacing: Annex B3

Characteristic resistance to shear load (static and quasi-static loading):

Resistance to steel failure: Annex C1
Resistance to pry-out failure: Annex C2
Resistance to concrete edge failure: Annex C2

Displacements under short-term and long-term loading:

Displacements under short-term and long-term loading: Annex C3

Characteristic resistance and displacements for seismic performance categories C1 and C2:

Resistance to steel failure: NPD
Resistance to pull-out failure: NPD
Fracture elongation: NPD
Factor annular gap: NPD
Displacements: NPD

Hygiene, health and the environment (BWR 3)

Content, emission and/or release of dangerous substances: NPD

8. Appropriate Technical Documentation and/or Specific Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering

Tumlingen, 2024-01-21

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V96.xlsm 1/1

Specific Part

1 Technical description of the product

The fischer injection system FIS P Plus is a bonded anchor consisting of a cartridge with injection mortar fischer FIS P Plus and a steel element according to Annex A 3.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

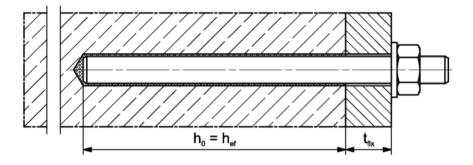
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1 to C 3
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1 and C 2
Displacements	See Annex
(static and quasi-static loading)	C 3
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

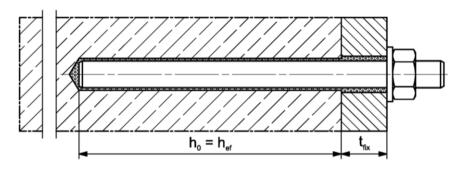
3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

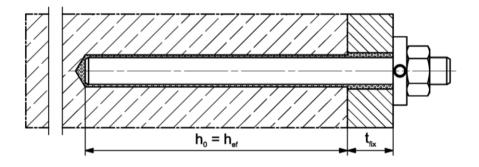
Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


Installation conditions part 1

fischer anchor rod


Pre positioned installation

Push through installation (annular gap filled with mortar)

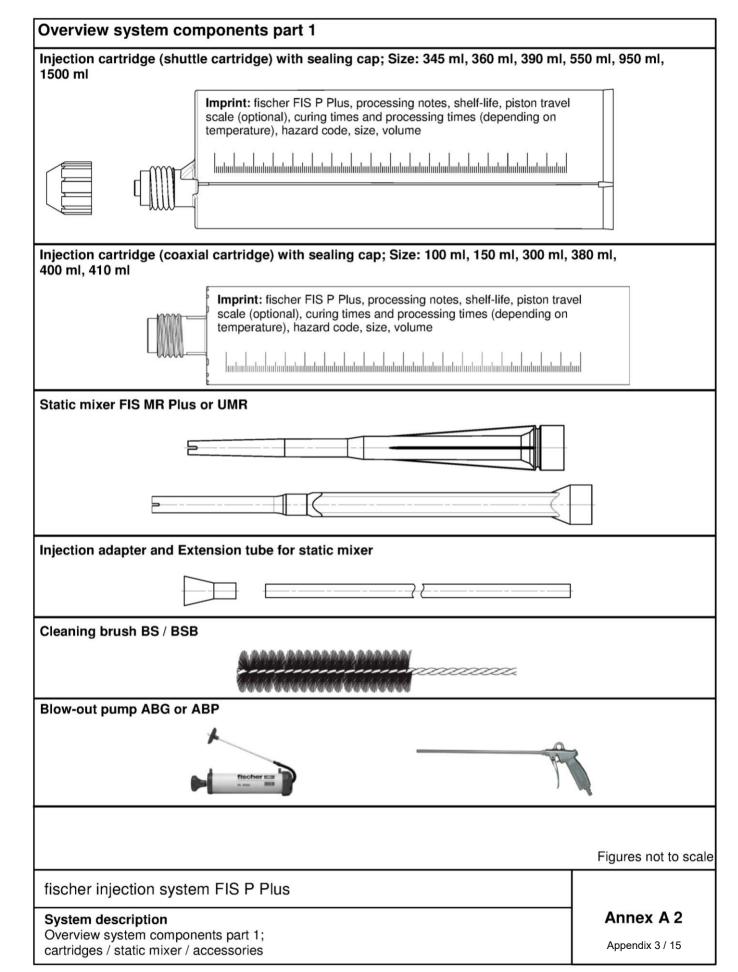
Pre-positioned or push through installation with subsequently pressed filling disk (annular gap filled with mortar)

Figures not to scale

 h_0 = drill hole depth

 t_{fix} = thickness of fixture

 $h_{\text{ef}} = \text{effective embedment depth}$


fischer injection system FIS P Plus

Product description

Installation conditions part 1

Annex A 1

Appendix 2 / 15

Overview system components part 2 fischer anchor rod Size: M8, M10, M12, M16, M20 ,M24 washer / hexagon nut fischer filling disk FFD with injection adapter Figures not to scale fischer injection system FIS P Plus Annex A 3 System description Overview system components part 2; Appendix 4 / 15 steel components

Part	Designation	Material					
1	Injection cartridge						
	Steel grade	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel C			
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, EN ISO 4042:1999 A2K or hot-dip galvanized \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8\%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$ fracture elongation	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation			
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014			
4	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004		Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014			
5	fischer filling disk FFD similar to DIN 6319-G	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014			

fischer injection system FIS P Plus	
Product description	Annex A 4
Materials	Appendix 5 / 15

Specifications of intended use (part 1)

Table B1.1: Overview use and performance categories

Anchorages s	ubject	to	FIS P Plus with				
			Anchor rod				
Hammer drilliı with standard bit		D-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8		all s	izes		
Hammer drillin with hollow dr (Heller "Duste Expert"; Bosc "Speed Clean "TE-CD, TE-Y	ill bit er h "; Hilti		Nominal drill bit diameter (d ₀) 12 mm to 28 mm				
Static and qua static load, in	asi	uncracked concrete	all sizes		Tables: C1.1 C2.1 C3.1 C3.2		
Use category I2 Floode		dry or wet concrete	all sizes				
		Flooded hole	M12 to M24				
Installation dir	ection		D3 (downward and horizontal and upwards (e.g. overhead) installation)				
Installation temperature			$T_{i,min} = 0$ °C to $T_{i,max} = +40$ °C				
In-service		Temperature range I	-40 °C to +40 °C		ort term temperature +40 °C ; g term temperature +24 °C)		
temperature		Temperature range II	-40 °C to +80 °C		ort term temperature +80 °C; g term temperature +50 °C)		

fischer injection sys	tem FIS P Plus
-----------------------	----------------

Specifications (part 1)

Specifications of intended use (part 2)

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
 (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

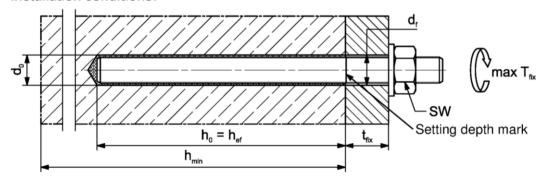
- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed in accordance with FprEN 1992-4:2017 and EOTA Technical Report TR 055

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

fischer injection system FIS P	Plus
--------------------------------	------

Table B3.1: Installation parameters plus minimum spacing and minimum edge distance for anchor rods


Anchor rods			Thread	М8	M10	M12	M16	M20	M24
Width across flats	Width across flats SW				17	19	24	30	36
Nominal drill hole di	ameter	d ₀		10	12	14	18	24	28
Drill hole depth		h ₀				h ₀ =	h _{ef}		
Effective		h _{ef, min}		60	60	70	80	90	96
embedment depth		h _{ef, max}		160	200	240	320	400	480
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	45	55	65	85	105
Diameter of the clearance hole of	pre positioned installation	d _f		9	12	14	18	22	26
the fixture	push through installation	d _f		11	14	16	20	26	30
$\begin{array}{ll} \mbox{Minimum thickness of concrete} & \mbox{h_{min}} \end{array}$				h _{ef}	+ 30 (≥ 10	00)		h _{ef} + 2d ₀	
Maximum torque mo attachment of the fix		max T _{fix}	[Nm]	10	20	40	60	120	150

Marking (on random place) fischer anchor rod:

Property class 8.8, stainless steel, property class 80 and high corrosion resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion resistant steel, property class 50: • • Alternatively: Colour coding according to DIN 976-1

Installation conditions:

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled

- Materials, dimensions and mechanical properties according to Annex A 4, Table A4.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- · Setting depth is marked

Figures not to scale

fischer injection system FIS P Plus	
Intended use	Annex B 3
Installation parameters anchor rods	Appendix 8 / 15

Table B4.1: Parameters of the cleaning brush BS (stee	l brush)
---	----------

The size of the cleaning brush refers to the drill hole diameter

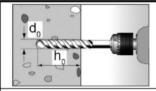
Nominal drill hole diameter	d ₀	[mm]	10	12	14	18	24	28
Steel brush diameter	d _b	[mm]	11	14	16	20	26	30

Table B4.2 Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Temperature at anchoring base [°C]	Maximum processing time t _{work}	Minimum curing time t _{cure}
>±0 to +5	13 min	3 h
>+5 to +10	9 min	90 min
>+10 to +20	5 min	60 min
>+20 to +30	4 min	45 min
>+30 to +40	2 min	35 min

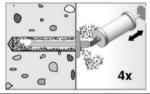
¹⁾ In wet concrete or water filled holes the curing times must be doubled

fischer injection system FIS P Plus

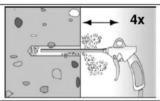

Cleaning brush (steel brush) Processing time and curing time Annex B 4

Appendix 9 / 15

Installation instructions part 1


Drilling and cleaning the hole (hammer drilling with standard drill bit)

1

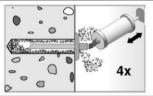


Drill the hole. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see tables B3.1

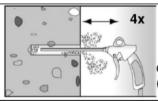
2



Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

3



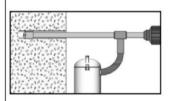
Brush the drill hole four times. For deep holes use an extension. Corresponding brushes see **table B4.1**

4

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Go to step 5


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

Use a suitable dust extraction system, e. g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data

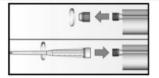
Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see **tables B3.1**

Go to step 5

fischer injection system FIS P Plus

Intended use

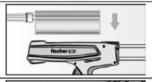
Installation instructions part 1


Annex B 5

Appendix 10 / 15

Installation instructions part 2

Preparing the cartridge


5

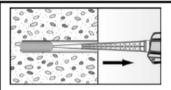
Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible)

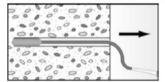
6

Place the cartridge into the dispenser

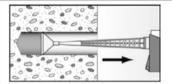
7



Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey


Injection of the mortar

avoid bubbles


8

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and

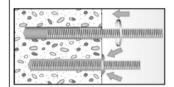
For drill hole depth ≥ 150 mm use an extension tube

For overhead installation, deep holes ($h_0 > 250 \text{ mm}$) use an injection-adapter

fischer injection system FIS P Plus

Intended use

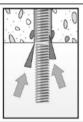
Installation instructions part 2

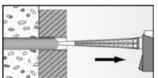

Annex B 6

Appendix 11 / 15

Installation instructions part 3

Installation of anchor rods

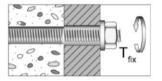

9


Only use clean and oil-free anchor elements.

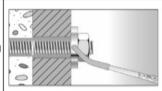
Mark the setting depth of the anchor. Push the anchor rod down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor element, excess mortar must be emerged around the anchor element.

For overhead installations support the anchor rod with wedges. (e. g. fischer centering wedges)


For push through installation fill the annular gap with mortar

10


Wait for the specified curing time t_{cure} see **table B4.2**

11

Mounting the fixture max T_{fix} see tables B3.1

Option

After the minimum curing time is reached, the gap between anchor and fixture (annular clearance) may be filled with mortar via the fischer filling disc FFD. Compressive strength ≥ 50 N/mm² (e.g. fischer injection mortars FIS HB, FIS SB, FIS V, FIS EM Plus, FIS P Plus)

ATTENTION: Using fischer filling disk FFD reduces t_{fix} (usable length of the anchor)

fischer injection system FIS P Plus

Intended use Installation instructions part 3 Annex B 7

Appendix 12 / 15

Essential characteristic for the steel bearing capacity under tensile / shear Table C1.1: load of fischer anchor rods and standard threaded rods Anchor rod / standard threaded rod **M8** M₁₀ M12 M24 M₁₆ M₂₀ Bearing capacity under tensile load, steel failure³⁾ 5.8 29 (27) 79 123 177 19 (17) 43 Steel zinc plated Characterstic 8.8 29 (27) 47 (43) 68 126 196 282 Property 50 [kN] 19 29 43 79 123 177 Stainless steel A4 class and high corrosion 70 26 41 59 110 172 247 resistant steel C 80 30 47 68 126 196 282 Partial factors1) 1,50 5.8 Steel zinc plated Partial factor 8.8 1,50 Stainless steel A4 Property 50 [-] 2.86 class 1,50²⁾ / 1,87 and high corrosion 70 resistant steel C 80 1,60 Bearing capacity under shear load, steel failure without lever arm³⁾ 5.8 9 (8) 15 (13) 21 39 61 89 Stainless steel And high corrosic resistant steel C 8.8 15 (13) 23 (21) 34 98 141 63 **Property** 50 [kN] 15 21 39 61 89 Stainless steel A4 class and high corrosion 70 124 13 20 30 55 86 80 15 23 34 63 141 98 **Ductility factor** k_7 [-] 1.0 with lever arm3) 5.8 19 (16) 37 (33) 65 560 166 324 .≝ Steel zinc plated 8.8 30 (26) 105 60 (53) 266 519 896 Property 50 [Nm] 560 19 37 65 166 324 Stainless steel A4 class and high corrosion 70 26 52 92 232 454 784 resistant steel C 80 30 105 896 60 266 519 Partial factors¹⁾ 5.8 1,25 Partial factor Steel zinc plated 8.8 1.25 Stainless steel A4 **Property** 50 2,38 [-] class 1,25²⁾ / 1,56 70 and high corrosion resistant steel C 80 1,33 1) In absence of other national regulations ²⁾ Only admissible for steel C, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. fischer anchor rods) 3) Values in brackets are valid for undersized threaded rods with smaller stress area As for hotdip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009.

fischer injection system FIS P Plus

Performances

Essential characteristics for the steel bearing capacity of fischer anchor rods and standard threaded rods

Annex C 1

Appendix 13 / 15

Size						All s	izes		
Tensile load									
Uncracked cond	crete	$k_{\text{ucr},N}$	[-]			11	,0		
Factors for the	compressive strer	igth of	concr	ete > C20/	25				
	C25/30			1,05					
	C30/37					1,	10		
Increasing	C35/45)T(1,	15		
factor for $ au_{Rk}$	C40/50	Ψ_{c}	[-]			1,	19		
	C45/55			1,22					
	C50/60					1,	26		
Splitting failure	9								
	h / h _{ef} ≥ 2,0			1,0 h _{ef}					
Edge distance	$2.0 > h / h_{ef} > 1.3$	$\mathbf{c}_{cr,sp}$	[mm]	4,6 h _{ef} - 1,8 h					
	h / h _{ef} ≤ 1,3			2,26 h _{ef}					
Spacing		S _{cr,sp}		2 C _{cr,sp}					
Concrete cone	failure								
Edge distance		$\mathbf{c}_{\text{cr,N}}$	[mm]	1,5 h _{ef}					
Spacing		$s_{cr,N}$	[,,,,,,	2 c _{cr,N}					
Installation facto	or tensile load	γ_{inst}	[-]	1,2					
Shear load									
Installation facto	or shear load	γ_{inst}	[-]			1	,0		
Concrete pry-c	ut failure								
Factor for pry-o	ut failure	k ₈	[-]			2	,0		
Calculation dia	meters								
Size				M8	M10	M12	M16	M20	M24
fischer anchor r standard thread		d _{nom}	[mm]	8	10	12	16	20	24

fischer injection	system	FIS	Р	Plus
-------------------	--------	-----	---	------

Essential characteristics under tensile / shear load

Table (ential charad								
Anchor r	Stai rod / standard		dea roa	M8	M10	M12	M16	M20	M24	
	ed pullout and		e failure	100	IVITO	WIIZ	11110	10120	1012-1	
	on diameter	d	[mm]	8	10	12	16	20	24	
	ed concrete		[]							
Characte	eristic bond re	sistance in ur	cracked	concrete (C20/25					
Hammer-	-drilling with sta	ndard drill bit o	or hollow o	Irill bit (dry	or wet cond	crete)				
Tem-	I: 24 °C / 40	O ∘C		7,5	7,5	7,5	7,5	7	7	
perature	II: 50 °C / 80	τ _{Rk,ucr}	[N/mm ²]	6,5	6,5	6,5	6,5	6	6	
range Hammer	-drilling with sta		r hollow c			0,0	0,0			
Tem-	l: 24 °C / 40					7,5	7,5	7	7	
perature		τ _{Pk μοτ}	[N/mm ²]			-	-			
range	II: 50 °C / 80	0 °C				6,5	6,5	6	6	
Installati	ion factors									
Dry or we	et concrete		[-]		1,0					
Flooded I	Flooded hole						1,	2 ¹⁾		
¹⁾ Only Table (with coaxial ca	rtridges: 380m			1					
Table (with coaxial ca			hor rods	M12	M16	M	20	M24	
Table (Anchor I	with coaxial ca C3.2: Dis rod ement-Factors	placements M8 for tensile loa	for anc	hor rods		M16	M:	20	M24	
Table (Anchor I	with coaxial ca	placements M8 for tensile loa emperature ra	for anc M10 nd ¹⁾ ange I, II	hor rods	M12					
Table (Anchor i Displace Uncrack	codement-Factors	placements M8 for tensile loa emperature ra 0,09	for anc M10 ad ¹⁾ ange I, II	hor rods	M12 0,10	0,10	0,	10	0,10	
Table (Anchor I Displace Uncrack δ _{NO-Factor} δ _{N∞-Factor}	cwith coaxial ca	M8 for tensile loa emperature ra 0,09 0,10	mod 10 0,10 0,10	hor rods	M12			10		
Table (Anchor I Displace Uncrack δ _{N0-Factor} δ _{N∞-Factor} Displace	with coaxial ca	M8 for tensile load emperature ra 0,09 0,10 for shear load	for anc M10 ad ¹⁾ ange I, II 0,09 0,10	hor rods	M12 0,10	0,10	0,	10	0,10	
Table (Anchor I Displace Uncrack δ _{NO-Factor} δ _{N∞-Factor} Displace Uncrack	cwith coaxial ca	M8 for tensile loa emperature ra 0,09 0,10 for shear load	for anc M10 ange I, II 0,00 0,10 122) ange I, II	hor rods	0,10 0,12	0,10 0,12	0,	10	0,10 0,13	
Table (Anchor I Displace Uncrack δ _{NO-Factor} δ _{N∞-Factor} Displace Uncrack δ _{VO-Factor}	with coaxial ca	M8 for tensile load emperature ra 0,09 0,10 for shear load emperature ra 0,11	of for ancient of for	hor rods	0,10 0,12 0,10	0,10 0,12 0,10	0,0	10 12 09	0,10 0,13 0,09	
Table C Anchor I Displace Uncrack δNo-Factor Displace Uncrack δνω-Factor δνω-Factor	cwith coaxial ca	M8 for tensile loademperature re 0,09 0,10 for shear loademperature re 0,11 0,12	of for anc M10 ange I, II 0,09 0,10 122) ange I, II 0,11 0,12	hor rods	0,10 0,12 0,10 0,10 0,11	0,10 0,12 0,10 0,11	0,0	10 12 09	0,10 0,13	
Table (Anchor II Displace Uncrack $\delta_{NO\text{-Factor}}$ Displace Uncrack $\delta_{VO\text{-Factor}}$ $\delta_{VO\text{-Factor}}$ $\delta_{VO\text{-Factor}}$ $\delta_{VO\text{-Factor}}$ 1) Calcu	cwith coaxial carrod coment-Factors ced concrete; T [mm/(N/mm²)] cement-Factors ced concrete; T [mm/kN]	M8 for tensile loademperature re 0,09 0,10 for shear loademperature re 0,11 0,12	of for anc M10 ange I, II 0,09 0,10 122) ange I, II 0,11 0,12	hor rods	0,10 0,12 0,10 0,11 0,11	0,10 0,12 0,10 0,11 on of effectiv	0,0	10 12 09	0,10 0,13 0,09	
Table (Anchor II Displace Uncrack δ_{N0} -Factor Displace Uncrack δ_{V0} -Factor $\delta_{V\infty}$ -Factor 1) Calcu δ_{N0} =	with coaxial carbon with coaxial carbon carb	M8 for tensile loademperature re 0,09 0,10 for shear loademperature re 0,11 0,12	of for anc M10 ange I, II 0,09 0,10 122) ange I, II 0,11 0,12	hor rods	M12 0,10 0,12 0,10 0,11 Calculation $\delta_{V0} = \delta_{V0-F}$	0,10 0,12 0,10 0,11 on of effective	0,0	10 12 09	0,10 0,13 0,09	
Table (Anchor I Displace Uncrack δ_{N0} -Factor Displace Uncracko δ_{V0} -Factor δ_{V0} -Factor 1) Calcu $\delta_{N0} = \delta_{N0} = \delta_{N0}$	with coaxial car C3.2: Discrete rod ement-Factors ed concrete; T [mm/(N/mm²)] ement-Factors ed concrete; T [mm/kN] ulation of effective δ _{N0-Factor} · τ _{Ed} εδ _{N∞-Factor} · τ _{Ed}	M8 for tensile load emperature ra 0,09 0,10 for shear load emperature ra 0,11 0,12 ve displaceme	of for ancient of for	hor rods	M12 0,10 0,12 0,10 0,11 $\delta_{V0} = \delta_{V0-F}$ $\delta_{V\infty} = \delta_{V\infty}$	0,10 0,12 0,10 0,11 on of effective factor · VEd Factor · VEd	0,0 0,0 0,0 0,0	10 12 09 10 ment:	0,10 0,13 0,09 0,10	
Table (Anchor I Displace Uncrack δ_{N0} -Factor Displace Uncracko δ_{V0} -Factor δ_{V0} -Factor 1) Calcu $\delta_{N0} = \delta_{N0} = \delta_{N0}$	with coaxial carbon with coaxial carbon carb	M8 for tensile load emperature ra 0,09 0,10 for shear load emperature ra 0,11 0,12 ve displaceme	of for ancient of for	hor rods	M12 0,10 0,12 0,10 0,11 $\delta_{V0} = \delta_{V0-F}$ $\delta_{V\infty} = \delta_{V\infty}$	0,10 0,12 0,10 0,11 on of effective	0,0 0,0 0,0 0,0	10 12 09 10 ment:	0,10 0,13 0,09 0,10	
Table (Anchor I Displace Uncrack δ_{N0} -Factor Displace Uncracko δ_{V0} -Factor δ_{V0} -Factor 1) Calcu $\delta_{N0} = \delta_{N0} = \delta_{N0}$	with coaxial car C3.2: Discrete rod ement-Factors ed concrete; T [mm/(N/mm²)] ement-Factors ed concrete; T [mm/kN] ulation of effective δ _{N0-Factor} · τ _{Ed} εδ _{N∞-Factor} · τ _{Ed}	M8 for tensile load emperature ra 0,09 0,10 for shear load emperature ra 0,11 0,12 ve displaceme	of for ancient of for	hor rods	M12 0,10 0,12 0,10 0,11 $\delta_{V0} = \delta_{V0-F}$ $\delta_{V\infty} = \delta_{V\infty}$	0,10 0,12 0,10 0,11 on of effective factor · VEd Factor · VEd	0,0 0,0 0,0 0,0	10 12 09 10 ment:	0,10 0,13 0,09 0,10	

fischer injection system FIS P Plus

Performances

Essential characteristics of tensile resistance for fischer anchor rod, standard threaded rods (uncracked concrete), Displacement for anchor rods

Annex C 3

Appendix 15 / 15