

DECLARATION OF PERFORMANCE

DoP: 0128

for fischer Injection system FIS P Plus (Bonded anchor for use in concrete) - EN

1. Unique identification code of the product-type: DoP: 0128

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially Annexes B 1 to B 7

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330499-00-0601

European Technical Assessment: ETA-18/0383; 2018-09-06

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

- Characteristic resistance to tension load (static and quasi-static loading): See appendix, especially Annexes C 1 to C 3
- Characteristic resistance to shear load (static and quasi-static loading): See appendix, especially Annexes C 1 and C 2
- Displacements (static and quasi-static loading): See appendix, especially Annex C 3
- Characteristic resistance and displacements for seismic performance categories C1 and C2: NPD

Hygiene, health and the environment (BWR 3)

Content, emission and/or release of dangerous substances: NPD

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

1.V. A. Dun

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

i.V. W. Mylal

Tumlingen, 2018-09-14

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The fischer injection system FIS P Plus is a bonded anchor consisting of a cartridge with injection mortar fischer FIS P Plus and a steel element according to Annex A 3.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

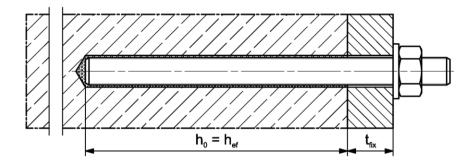
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1 to C 3
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1 and C 2
Displacements	See Annex
(static and quasi-static loading)	C 3
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

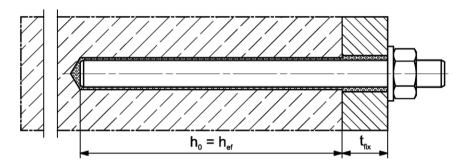
3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

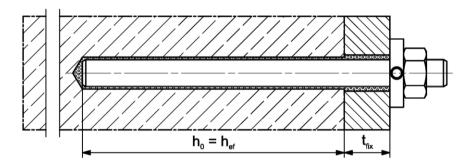
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


Installation conditions part 1

fischer anchor rod


Pre positioned installation

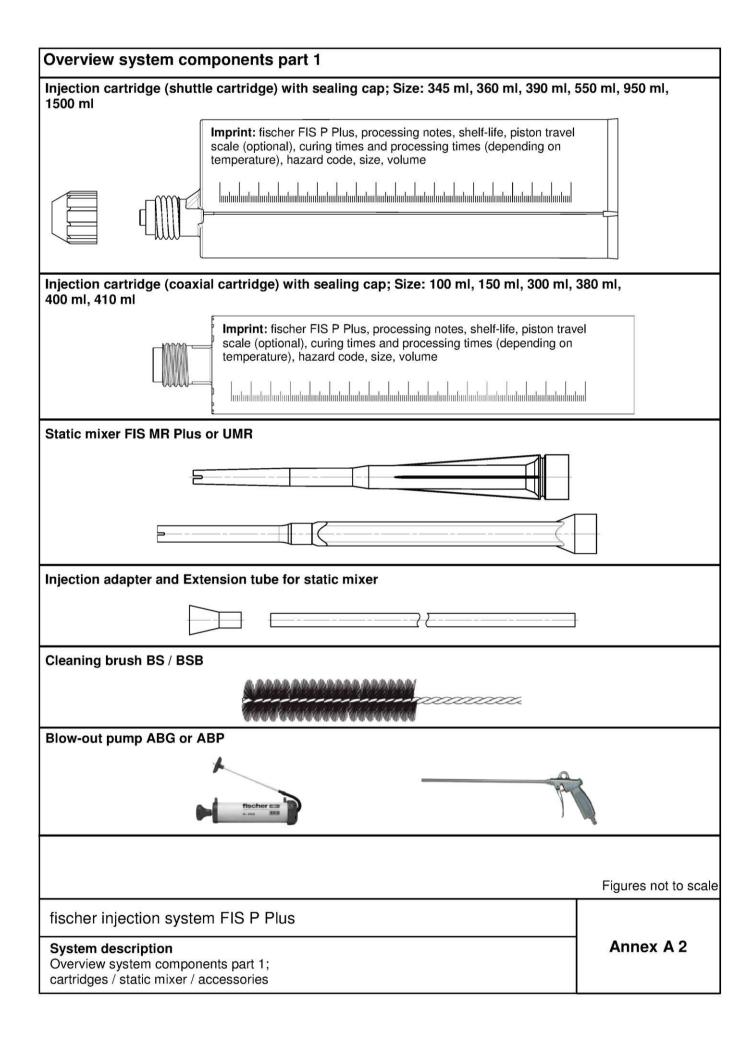
Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently pressed filling disk (annular gap filled with mortar)

Figures not to scale

 h_0 = drill hole depth

h_{ef} = effective embedment depth


 t_{fix} = thickness of fixture

fischer injection system FIS P Plus

Product description

Installation conditions part 1

Annex A 1

Overview system components part 2		
fischer anchor rod		
Size: M8, M10, M12, M16, M20 ,M24		
————		
•	,	
washer / hexagon nut		
fischer filling disk FFD with injection adapter		
		Figures not to cools
		Figures not to scale
fischer injection system FIS P Plus		
System description Overview system components part 2; steel components		Annex A 3

Part	Designation	Material					
1	Injection cartridge		Mortar, hardener, filler				
	Steel grade	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel C			
2 Anchor rod		Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, EN ISO 4042:1999 A2K or hot-dip galvanized \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8\%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$ fracture elongation	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation			
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014			
4 Hexagon nut		Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014			
5	fischer filling disk FFD similar to DIN 6319-G	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014			

fischer injection system FIS P Plus	
Product description Materials	Annex A 4

Specifications of intended use (part 1) Table B1.1: Overview use and performance categories FIS P Plus with ... Anchorages subject to Anchor rod Hammer drilling with standard drill all sizes bit Hammer drilling with hollow drill bit (Heller "Duster Nominal drill bit diameter (d₀) Expert"; Bosch 12 mm to 28 mm "Speed Clean"; Hilti "TE-CD, TE-YD") Tables: C1.1 Static and quasi uncracked C2.1 all sizes static load, in concrete C3.1 C3.2 dry or wet 11 all sizes concrete Use category Flooded 12 M12 to M24 hole D3 Installation direction (downward and horizontal and upwards (e.g. overhead) installation) Installation $T_{i,min} = 0$ °C to $T_{i,max} = +40$ °C temperature Temperature (max. short term temperature +40 °C; -40 °C to +40 °C range I max. long term temperature +24 °C) In-service temperature Temperature (max. short term temperature +80 °C; -40 °C to +80 °C range II max. long term temperature +50 °C) fischer injection system FIS P Plus Annex B 1 Intended use Specifications (part 1)

Specifications of intended use (part 2)

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013

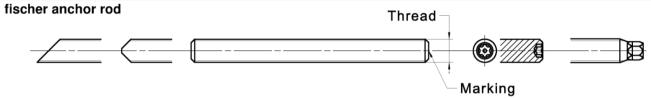
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

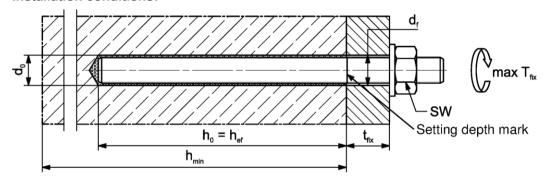
- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed in accordance with FprEN 1992-4:2017 and EOTA Technical Report TR 055


Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

fischer injection system FIS P Plus	
Intended use Specifications (part 2)	Annex B 2

Table B3.1: Installation parameters plus minimum spacing and minimum edge distance for anchor rods


Anchor rods			Thread	М8	M10	M12	M16	M20	M24
Width across flats		SW		13	17	19	24	30	36
Nominal drill hole di	ameter	d ₀		10	12	14	18	24	28
Drill hole depth		h ₀				h ₀ =	h _{ef}		
Effective		h _{ef, min}		60	60	70	80	90	96
embedment depth		h _{ef, max}		160	200	240	320	400	480
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	45	55	65	85	105
Diameter of the	pre positioned installation	d _f		9	12	14	18	22	26
clearance hole of the fixture	push through installation	d _f		11	14	16	20	26	30
Minimum thickness of concrete member		h _{min}		h _{ef}	+ 30 (≥ 10	00)		h _{ef} + 2d ₀	
Maximum torque moment for attachment of the fixture max		max T _{fix}	[Nm]	10	20	40	60	120	150

Marking (on random place) fischer anchor rod:

Property class 8.8, stainless steel, property class 80 and high corrosion resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion resistant steel, property class 50: • • Alternatively: Colour coding according to DIN 976-1

Installation conditions:

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled

- Materials, dimensions and mechanical properties according to Annex A 4, Table A4.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- · Setting depth is marked

Figures not to scale

	· ·
fischer injection system FIS P Plus	
Intended use Installation parameters anchor rods	Annex B 3

Table B4.1:	Para	mete	rs of the cle	aning brush	BS (steel b	rush)		
The size of the cle	aning	brush r	efers to the dr	ill hole diamet	er			
Nominal drill hole diameter	d ₀	[mm]	10	12	14	18	24	28
Ot a al la ala		[mm]						

16

20

30

26

<u></u>		
ਰੰ		
_ 🔻	<u>AN KAN KAN KAN KAN KAN KAN KAN KAN KAN K</u>	

14

11

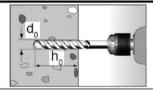
 d_b

Table B4.2 Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

	ž.	
Temperature at anchoring base [°C]	Maximum processing time t _{work}	Minimum curing time t _{cure}
>±0 to +5	13 min	3 h
>+5 to +10	9 min	90 min
>+10 to +20	5 min	60 min
>+20 to +30	4 min	45 min
>+30 to +40	2 min	35 min

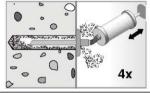
¹⁾ In wet concrete or water filled holes the curing times must be doubled

Steel brush

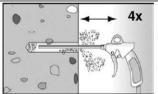

diameter

fischer injection system FIS P Plus	
Intended use Cleaning brush (steel brush) Processing time and curing time	Annex B 4

Installation instructions part 1

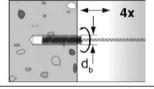

Drilling and cleaning the hole (hammer drilling with standard drill bit)

1



Drill the hole. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see tables B3.1

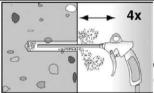
2



Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air (p ≥ 6 bar)

3



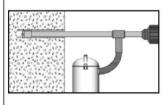
Brush the drill hole four times. For deep holes use an extension. Corresponding brushes see **table B4.1**

4

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Go to step 5


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

Use a suitable dust extraction system, e. g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see **tables B3.1**

Go to step 5

fischer injection system FIS P Plus

Intended use

Installation instructions part 1

Annex B 5

Installation instructions part 2

Preparing the cartridge

5

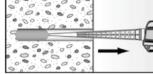
Remove the sealing cap

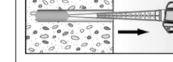
Screw on the static mixer (the spiral in the static mixer must be clearly visible)

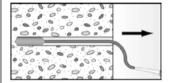
6

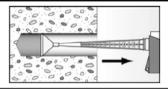
Place the cartridge into the dispenser

7


8






Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey

Injection of the mortar

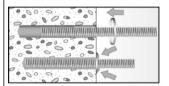
Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

For drill hole depth ≥ 150 mm use an extension tube

For overhead installation, deep holes ($h_0 > 250 \text{ mm}$) use an injection-adapter

fischer injection system FIS P Plus

Intended use

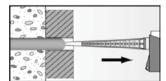

Installation instructions part 2

Annex B 6

Installation instructions part 3

Installation of anchor rods

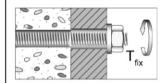
9


Only use clean and oil-free anchor elements.

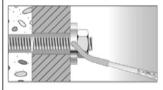
Mark the setting depth of the anchor. Push the anchor rod down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor element, excess mortar must be emerged around the anchor element.

For overhead installations support the anchor rod with wedges. (e. g. fischer centering wedges)


For push through installation fill the annular gap with mortar

10


Wait for the specified curing time t_{cure} see **table B4.2**

11

Mounting the fixture max T_{fix} see tables B3.1

Option

After the minimum curing time is reached, the gap between anchor and fixture (annular clearance) may be filled with mortar via the fischer filling disc FFD. Compressive strength ≥ 50 N/mm² (e.g. fischer injection mortars FIS HB, FIS SB, FIS V, FIS EM Plus, FIS P Plus)

ATTENTION: Using fischer filling disk FFD reduces $t_{\mbox{\scriptsize fix}}$ (usable length of the anchor)

fischer injection system FIS P Plus

Intended use

Installation instructions part 3

Annex B 7

Anch	or rod / standard th	readed rod			М8	M10	M12	M16	M20	M24
3eari	ng capacity under t	ensile load,	, stee	el failu	ıre ³⁾					
Characterstic resistance N _{Rks}			5.8		19 (17)	29 (27)	43	79	123	177
	Steel zinc plated		8.8		29 (27)	47 (43)	68	126	196	282
	resistant steel C	Property class	50	[kN]	19	29	43	79	123	177
		Siago	70		26	41	59	110	172	247
			80	1	30	47	68	126	196	282
arti	al factors ¹⁾									
_	Steel zinc plated		5.8				1,	50		
acto	·		8.8				1,	50		
ial fa	Stainless steel A4	Property class	50	[-]				86		
Partial factor	and high corrosion		70				1,50 ²⁾	/ 1,87		
	resistant steel C		80				1,	60		
	ng capacity under s	hear load,	steel	failu	re					
vitho	out lever arm ³⁾									
SKS	Steel zinc plated Stainless steel A4 and high corrosion		5.8		9 (8)	15 (13)	21	39	61	89
ersti e V°		Property	8.8		15 (13)	23 (21)	34	63	98	141
ract	Stainless steel A4	class	50	[kN]	9	15	21	39	61	89
Characterstic esistance V ₀	and high corrosion resistant steel C		70		13	20	30	55	86	124
<u> </u>			80		15	23	34	63	98	141
	ity factor		k ₇	[-]			1	,0		
	lever arm ³⁾	T						I		
Charact. istance M ^o _{Rk.s}	Steel zinc plated		5.8		19 (16)	37 (33)	65	166	324	560
act. e M		Property	8.8		30 (26)	60 (53)	105	266	519	896
Chara esistance	Stainless steel A4	class		[Nm]	19	37	65	166	324	560
ر Ssist	and high corrosion resistant steel C		70		26	52	92	232	454	784
			80		30	60	105	266	519	896
'artı	al factors ¹⁾	<u> </u>	5 0					05		
ctor	Steel zinc plated		5.8 8.8		1,25 1,25					
al fa Ms.<	Stainless steel A4	Property	50	[-]				38		
Partial factor	and high corrosion resistant steel C	class	70		1,25 ²⁾ / 1,56					
<u> </u>			80		1,33					
1) Ir 2) C 3) V	n absence of other na Only admissible for stealues in brackets are tandard threaded rod	eel C, with f _y valid for und	ations _k / f _{uk} dersiz	≥ 0,8 zed th	readed rod	ls with smal	scher anch ler stress a	or rods)	hotdip galva	anised

Essential characteristics for the steel bearing capacity of fischer anchor rods and

Performances

standard threaded rods

Annex C 1

Table C2.1:	Essential cha	aracio	1131103	dilder te	110110 / 311					
Size					All s	izes				
Tensile load										
Uncracked con	crete	$k_{\text{ucr},N}$	[-]			11	,0			
Factors for the	compressive strer	ngth of	concr	ete > C20/	25					
	C25/30			1,05						
	C30/37			1,10						
Increasing	C35/45	Ψ_{c}	[-]			1,	15			
factor for $ au_{Rk}$	C40/50	Tc	[-]			1,	19			
	C45/55					1,:	22			
	C50/60					1,3	26			
Splitting failure	е									
	h / h _{ef} ≥ 2,0					1,0	h _{ef}			
Edge distance	$2.0 > h / h_{ef} > 1.3$	$\mathbf{c}_{cr,sp}$	[mm]			4,6 h _{ef}	- 1,8 h			
	h / h _{ef} ≤ 1,3] ["""]			2,26	3 h _{ef}			
Spacing		$S_{cr,sp}$				2 c	cr,sp			
Concrete cone	failure									
Edge distance		$c_{\text{cr,N}}$	[mm]			1,5	h _{ef}			
Spacing		$s_{\text{cr},N}$	[,,,,,,]			2 c	cr,N			
Installation facto	or tensile load	γ_{inst}	[-]			1,	,2			
Shear load										
Installation factor shear load γ_{inst}			[-]	1,0						
Concrete pry-c	out failure									
Factor for pry-o			2	,0						
Calculation dia	ameters									
July Grand Control of Control				M8	M10	M12	M16	M20	M24	
Size				8	10	12	16	20	24	

fischer injection system FIS P Plus	
Performances Essential characteristics under tensile / shear load	Annex C 2

310	ndard threa			le resista mer drilled						
Anchor rod / standard		М8	M10	M12	M16	M20	M24			
Combined pullout and	concrete con	e failure								
Calculation diameter	d	[mm]	8	10	12	16	20	24		
Uncracked concrete										
Characteristic bond re	esistance in ur	ncracked	concrete C	220/25						
Hammer-drilling with st	andard drill bit o	or hollow d	rill bit (dry	or wet cond	rete)					
Tem- I: 24 °C / 4		[NI/mm ²]	7,5	7,5	7,5	7,5	7	7		
perature — II: 50 °C / 8	σ _{Rk,ucr}	[N/mm ²]	6,5	6,5	6,5	6,5	6	6		
Hammer-drilling with st	andard drill bit o	or hollow d	rill bit (floo	ded hole)						
Гет- I: 24°С/	l0 °C	2			7,5	7,5	7	7		
perature	7 _{Rk,ucr}	[N/mm ²]			6,5	6,5	6	6		
nstallation factors										
					1.	.0				
Dry or wet concrete	Yinst			1,0						
Dry or wet concrete	γinst	[-]	4.01)							
Flooded hole 1) Only with coaxial c	artridges: 380m	l, 400 ml,	410 ml			1,;	2 ¹⁾			
Flooded hole 1) Only with coaxial coa	artridges: 380m	I, 400 ml,	410 ml		M16			M24		
Flooded hole 1) Only with coaxial c Table C3.2: Dis	artridges: 380m splacements M8	I, 400 ml, 6 for ancl	410 ml		M16	1,:		M24		
Flooded hole 1) Only with coaxial comparison of the C3.2: Displacement-Factors	artridges: 380m splacements M8 s for tensile loa	I, 400 ml, as for ancl M10 M10	410 ml		M16			M24		
Table C3.2: Dis Anchor rod Displacement-Factors Uncracked concrete;	splacements M8 for tensile loa Temperature re	for ancl M10 ange I, II	410 ml	M12		M2	20			
Table C3.2: Dis Anchor rod Displacement-Factors Uncracked concrete; No-Factor [mm/(N/mm²)	splacements M8 for tensile loa Temperature re	I, 400 ml, 400	410 ml	M12 0,10	M16 0,10 0,12		0	M24 0,10 0,13		
Table C3.2: Dis Anchor rod Displacement-Factors Uncracked concrete; SNo-Factor [mm/(N/mm²)	martridges: 380m splacements M8 for tensile loa Temperature ra 0,09 0,10	I, 400 ml, 400	410 ml	M12	0,10	M2	0	0,10		
Table C3.2: Dis Anchor rod Displacement-Factors Uncracked concrete; No-Factor [mm/(N/mm²)	martridges: 380m splacements M8 for tensile load Temperature re 0,09 0,10 for shear load	I, 400 ml, 400	410 ml	M12 0,10	0,10	M2	0	0,10		
Table C3.2: Dis Anchor rod Displacement-Factors Uncracked concrete; No-Factor Displacement-Factors Uncracked concrete; No-Factor Displacement-Factors Uncracked concrete;	martridges: 380m splacements M8 for tensile load Temperature re 0,09 0,10 for shear load	I, 400 ml, 400	410 ml	M12 0,10	0,10	M2	0 2	0,10		
Table C3.2: Dis Anchor rod Displacement-Factors Uncracked concrete; Noo-Factor Displacement-Factors Uncracked concrete; Noo-Factor Displacement-Factors Uncracked concrete; Noo-Factor Displacement-Factors Uncracked concrete; Noo-Factor Uncracked concrete;	martridges: 380m splacements M8 for tensile loa Temperature ra 0,09 0,10 for shear load Temperature ra	I, 400 ml, 400	anor rods	0,10 0,12	0,10 0,12	0,1 0,1	0 2	0,10 0,13		
Table C3.2: Dis Anchor rod Displacement-Factors Uncracked concrete; No-Factor Displacement-Factors Uncracked concrete; No-Factor Displacement-Factors Uncracked concrete;	M8 For tensile load Temperature rations 0,09 0,10 For shear load Temperature rations 0,11 0,12	I, 400 ml, 4 for ancies for ancies M10 md ¹⁾ ange I, II 0,09 0,10 d ²⁾ ange I, II 0,11 0,12	410 ml	0,10 0,12	0,10 0,12 0,10 0,11	0,1 0,1 0,0 0,0	0 0 0 0 0 0 0 0 0 0	0,10 0,13 0,09		
Table C3.2: Dis Anchor rod Displacement-Factors Uncracked concrete; SNO-Factor Displacement-Factors Uncracked concrete; SNO-Factor Displacement-Factors Uncracked concrete; SVO-Factor To Calculation of effective	M8 For tensile load Temperature rations 0,09 0,10 For shear load Temperature rations 0,11 0,12	I, 400 ml, 4 for ancl ange I, II 0,09 0,10 122) ange I, II 0,11 0,12	410 ml	0,10 0,12 0,10 0,10 0,11	0,10 0,12 0,10 0,11 n of effectiv	0,1 0,1 0,0 0,0	0 0 0 0 0 0 0 0 0 0	0,10 0,13 0,09		
Table C3.2: Dis Anchor rod Displacement-Factors Uncracked concrete; Now-Factor Displacement-Factors Uncracked concrete; Now-Factor Displacement-Factors Uncracked concrete; Now-Factor Now-Factor Uncracked concrete;	M8 For tensile load Temperature rations 0,09 0,10 For shear load Temperature rations 0,11 0,12	I, 400 ml, 4 for ancl ange I, II 0,09 0,10 122) ange I, II 0,11 0,12	410 ml	0,10 0,12 0,10 0,11 0,11	0,10 0,12 0,10 0,11 n of effectiv	0,1 0,1 0,0 0,0	0 0 0 0 0 0 0 0 0 0	0,10 0,13 0,09		

fischer injection system FIS P Plus	
Performances Essential characteristics of tensile resistance for fischer anchor rod, standard threaded rods (uncracked concrete), Displacement for anchor rods	Annex C 3