

DECLARATION OF PERFORMANCE

DoP 0272

for fischer injection system FIS GREEN (Bonded fastener for use in concrete)

ΕN

1. Unique identification code of the product-type:

DoP 0272

1

2. Intended use/es:

Post-installed fastening for use in uncracked concrete see appendix, especially annexes B1- B8.

3. Manufacturer:

fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative:

5. System/s of AVCP:

6. European Assessment Document:

European Technical Assessment:

Technical Assessment Body: Notified body/ies: ETAG 001, Part 5, April 2013, used as EAD

ETA-14/0408; 2014-12-19

DIBt- Deutsches Institut für Bautechnik

2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading):

Resistance to steel failure: Annexes C2,C3 (TR 029); Annexes C6-C9 (CEN/TS 1992-4)

Resistance to combined pull- out and concrete cone failure: Annexes C1-C3 (TR 029); Annexes C6-C9 (CEN/TS 1992-4)

 $\psi^0_{sus} = NPD$

Resistance to concrete cone failure: NPD (see TR 029); Annexes C6-C9 (CEN/TS 1992-4)

Edge distance to prevent splitting under load: Annexes C1-C3 (TR 029); Annexes C6-C9 (CEN/TS 1992-4)

Robustness: Annexes C1-C3 (TR 029); Annexes C6-C11 (CEN/TS 1992-4)

Maximum installation torque: Annexes B2,B3,B5 Minimum edge distance and spacing: Annexes B2-B5

Characteristic resistance to shear load (static and quasi-static loading):

Resistance to steel failure: Annexes C4,C5 (TR 029); Annexes C10,C11 (CEN/TS 1992-4) Resistance to pry-out failure: Annexes C4,C5 (TR 029); Annexes C10,C11 (CEN/TS 1992-4)

Resistance to concrete edge failure: NPD (see TR 029); Annexes C10, C11 (CEN/TS 1992-4)

Displacements under short-term and long-term loading:

Displacements under short-term and long-term loading: Annexes C12,C13

Characteristic resistance and displacements for seismic performance categories C1 and C2:

Resistance to tension load, displacements, category C1: NPD

Resistance to tension load, displacements, category C2: NPD

Resistance to shear load, displacements, category C1: NPD

Resistance to shear load, displacements, category C2: NPD Factor for annular gap: NPD

Hygiene, health and the environment (BWR 3)

Content, emission and/or release of dangerous substances: NPD

8. Appropriate Technical Documentation and/or Specific Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering

Tumlingen, 2021-01-11

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V39.xlsm 1/1

1 Technical description of the product

The fischer injection system FIS GREEN is a bonded anchor consisting of a cartridge with injection mortar fischer FIS GREEN and a steel element. The steel element consist of

- a fischer threaded rod with washer and hexagon nut of sizes M8 to M20 or
- internal threaded anchor RG MI of sizes M8 to M16 or
- a deformed reinforcing bar of sizes φ = 8 to 20 mm or
- a fischer rebar anchor FRA of sizes M12 to M20

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029	See Annex C 1 to C 5
Characteristic resistance for design according to CEN/TS 1992-4:2009	See Annex C 6 to C 11
Displacements under tension and shear loads	See Annex C 12 / C 13

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

Installed condition h_{min} $h_0 = h_{af}$ fischer threaded rod pre-positioned anchorage Marking setting depth fischer threaded rod push-through anchorage (annular gap filled with mortar) fischer internal threaded anchor RG MI only pre-positioned anchorage ho=hot hmin h_{min} $h_o = h_{ef}$ Reinforcing bar Marking setting depth fischer rebar anchor FRA pre-positioned anchorage ho fischer rebar anchor FRA push-through anchorage (annular gap filled with mortar) fischer Injectionsystem FIS GREEN

Product description Installed condition

Appendix 3 / 26

Annex A 1

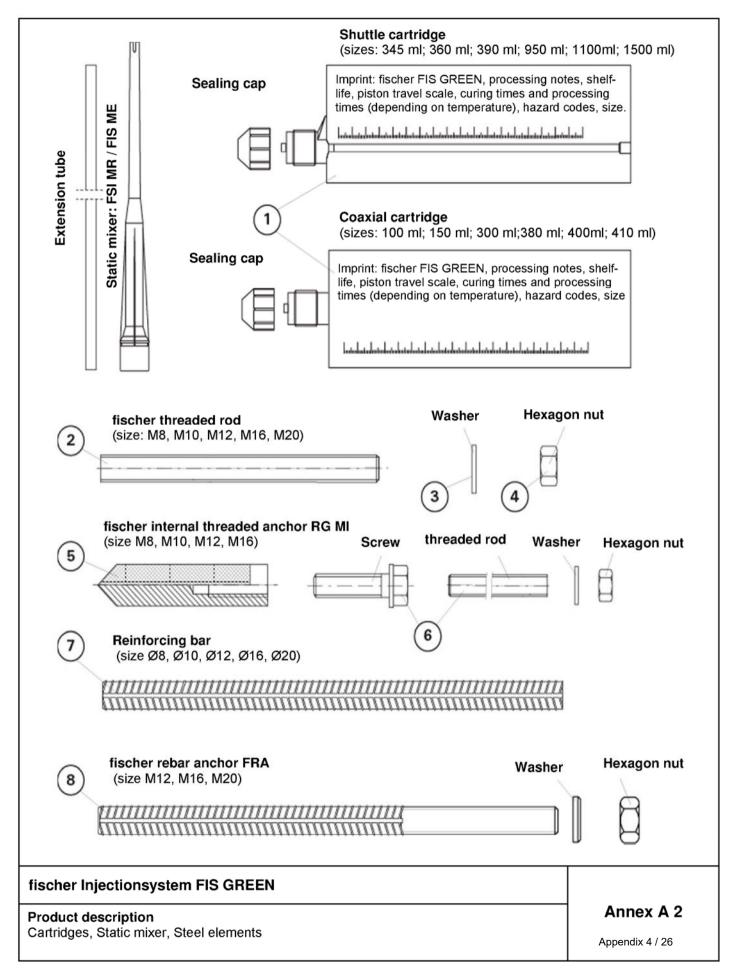


Table A1: Materials

Part	Designation	Material				
1	Mortar cartridge	Bio based mortar, hardener; fillers				
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C		
2	Threaded rod Property class 5.8 or 8.8; ISO 898-1: 2013 zinc plated ≥ 5μm, ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004 f _{uk} ≤ 1000 N/mm² A ₅ > 8%	Property class 50, 70 or 80 ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$	Property class 50 or 80 ISO 3506:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$			
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014		
4	Hexagon nut	Property class 5 or 8; ISO 898-2:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004	Property class 50, 70 or 80 ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014		
5	Internal threaded anchor RG MI	Property class 5.8 or 8.8; EN 10277-1:2008-06 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014		
6	Screw or threaded rod for internal threaded anchor	Property class 5.8 or 8.8; ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014		
7	Rebar EN 1992-1-1:2004 + AC:2010, Annex C	Bars and decoiled rods class B or C with f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$				
8	Rebar anchor FRA	Bars and decoiled rods class B or C Property class 70 with f_{yk} and k according to NDP or NCL ISO 3506:2009 of EN 1992-1-1/NA:2013 f_{uk} = f_{tk} = $k \cdot f_{yk}$ 1.4565; 1.4529 EN 10088-1:2014				

8	Rebar anchor FRA	with f_{yk} and k according to NDP or NCL ISO 1 of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$ 1.450		erty class 70 3506:2009 65; 1.4529 0088-1:2014
ficobe	or Injectionsystem El	2 CDEEN		
	er Injectionsystem Flanct description ials	SGREEN		Annex A 3 Appendix 5 / 26

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete.

Temperature ranges:

	Max. long term temperature	Max. short term temperature
Temperature range I -40°C to +40°C	+24°C	+40°C
Temperature range II -40°C to +80°C	+50°C	+80°C

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings have to be prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement
 or to supports, etc.).
- Anchorages under static or quasi-static actions have to be designed in accordance with TR 029 "Design of bonded anchors", Edition September 2010 or CEN/TS 1992-4:2009

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Dry or wet concrete.
- Hole drilling by hammer mode.
- · In case of aborted hole: The hole shall be filled with mortar
- Marking and keeping the effective anchorage depth
- Cleaning the drill hole and installation in accordance with Annexes B 7 to B 8
- During curing of the mortar the temperature of the concrete must not fall below 0°C
- The curing time until the anchor may be loaded as given in Annex B 6 Table B6

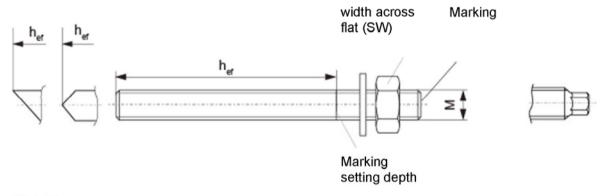

fischer Injectionsystem FIS GREEN	
Intended use	Annex B 1
Specifications	Appendix 6 / 26

Table B1: Installation parameters threaded rods

Anchor size				M8	M10	M12	M16	M20
Nominal drill hole diame	eter	d _o	[mm]	10	12	14	18	24
Width across flat		SW	[mm]	13	17	19	24	30
Drill hole depth		h _o	[mm]			$h_0 = h_{ef}$		
Effective anchorage de	nth	h _{ef,min}	[mm]	60	60	70	80	90
Ellective allchorage de	ptii	h _{ef,max}	[mm]	160	200	240	320	400
Maximum torque mome	ent	T _{inst,max}	[Nm]	10	20	40	60	120
Minimum spacing		S _{min}	[mm]	40	45	55	65	85
Minimum edge distance	Э	C _{min}	[mm]	40	45	55	65	85
Diameter of clearance	Pre-positioned anchorage	d _f	[mm]	9	12	14	18	22
hole in the fixture ¹⁾	Push-through anchorage	d _f	[mm]	11	14	16	20	26
Minimum thickness of o	concrete member	h _{min}	[mm]	h _{ef} ·	+ 30 (≥ 1	00)	h _{ef} +	· 2d ₀

¹⁾ For bigger clearance holes in fixture see TR 029, chapter 1.1 or CEN/TS 1992-4-1, chapter 1.2.3

fischer threaded rod FIS A and RGM

Marking:

Property class 8.8 or high corrosion-resistant steel C, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel C, property class 50: ••

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents should be stored
- Marking of embedment depth

fischer Injectionsystem FIS GREEN
Intended use

Intended use

Installation parameters threaded rods

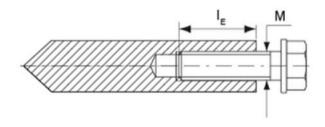
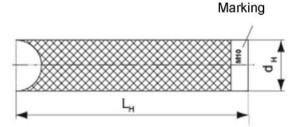

Annex B 2

Table B2: Installation parameters internal threaded anchors RG MI


Nominal size			M8	M10	M12	M16
Anchor size	d _H	[mm]	12	16	18	22
Nominal drill hole diameter	d ₀	[mm]	14	18	20	24
Drill hole depth	h ₀	[mm]		h ₀ =	= h _{ef}	
Effective anchorage depth	h _{ef}	[mm]	90	90	125	160
Maximum torque moment	T _{inst,max}	[Nm]	10	20	40	80
Minimum spacing	S _{min}	[mm]	55	65	75	95
Minimum edge distance	C _{min}	[mm]	55	65	75	95
Diameter of clearance hole in the fixture ¹⁾	d _f	[mm]	9	12	14	18
Minimum thickness of concrete member	h _{min}	[mm]	120	126	165	208
Maximum screw-in depth	I _{E,max}	[mm]	18	23	26	35
Minimum screw-in depth	I _{E,min}	[mm]	8	10	12	16

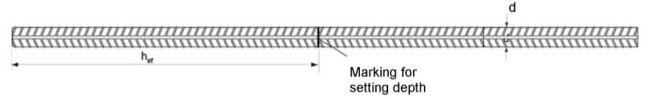
¹⁾ For bigger clearance holes in fixture see TR 029, chapter 1.1 or CEN/TS 1992-4-1, chapter 1.2.3

fischer internal threaded anchor RG MI

Marking: anchor size e.g.: M10
Stainless steel in addition A4 e.g.: M10
A4High corrosion-resistant steel in addition C
e.g.: M10 C

Fastening screw or threaded rods including washer and nuts must comply with the appropriate material and strength class of table A1

Intended use


Installation parameters internal threaded anchors RG MI

Annex B 3

Rebar diameter			8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	
Nominal drill hole diameter	d ₀	[mm]	(10)12	(12)14	(14)	16 18	3 20	25	
Drill hole depth	h ₀	[mm]			$h_0 = 1$	h _{ef}			
Effective anchorage donth	h _{ef,min}	[mm]	60	60	70	7:	80	90	
Effective anchorage depth	h _{ef,max}	[mm]	160	200	240	28	0 320	400	
Minimum spacing	S _{min}	[mm]	40	45	55	60	65	85	
Minimum edge distance	C _{min}	[mm]	40	45	55	60	65	85	
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 30 ≥ 100		0	ţ	h _{ef} + 2d ₀		

1) Both drill bit diameters can be used.

Reinforcing bar

Properties of reinforcement: refer to EN 1992-1-1 Annex C, Table C.1 and C.2N

Product form	Non-zink-plated bars and decoiled rod				
Class			В	С	
Characteristic yield strength fvk or	f _{0.2k} [MPa]		400 t	o 600	
Minimum value of $k = (f_1/f_y)_k$		≥ 1,08	≥ 1,15 < 1,35		
Characteristic strain at maximum f		≥ 5,0	≥ 7,5		
Bentability property			Bend / Rebendtest		
Maximum deviation from nominal mass	Nominal bar	≤ 8	± 6,0		
(individual bar) [%]	size [mm] >		± 4,5		
Bond: Minimum relative rib area, f _{R,min}	Nominal bar	8 to 12	0,040		
(determination acc. to EN 15630)	size [mm]	> 12	0,056		

Rib height h:

The rib hight h must be:

 $0.05*d \leq h \leq 0.07*d$

d = nominal bar size

Intended use

Installation parameters reinforcing bars

Annex B 4

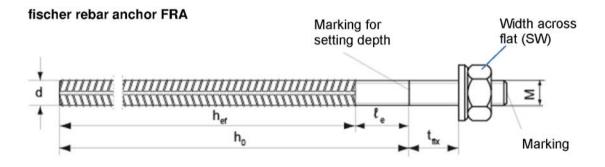
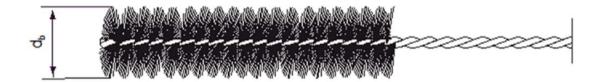

Appendix 9 / 26

Table B4: Installation parameters rebar anchor FRA

Threaded diameter		M12	1)	M16	M20		
Nominal bar size		d	[mm]	12		16	20
Width across flat		SW	[mm]	19		24	30
Nominal drill hole diame	ter	d₀	[mm]	(14)	16	20	25
Drill hole depth		h₀	[mm]			h_{ef} + ℓ_{e}	
Distance concrete surface	ce to welded join	l e	[mm]			100	
Effective anchorage den	th.	$h_{\text{ef,min}}$	[mm]	70		80	90
Effective anchorage dep	'UI	h _{ef,max}		140		220	300
Maximum torque momer	nt	T _{inst,max}	FR Loss T	40		60	120
Minimum spacing		S _{min}	[mm]	55		65	85
Minimum edge distance		C _{min}	[mm]	55		65	85
Diameter of clearance	Pre-positioned anchorage	d _f	[mm]	14		18	22
hole in the fixture ²⁾	Push-through anchorage	d _f	[mm]	18		22	26
Minimum thickness of co	ncrete member	h _{min}	[mm]	h ₀ + 30	h ₀ + 30		

¹⁾ Both drill bit diameters can be used


²⁾ For bigger clearance holes in fixture see TR 029, chapter 1.1 or CEN/TS 1992-4-1, chapter 1.2.3

Marking: FRA (for stainless steel)
FRA C (for high corrosion-resistant steel)

Table B5: Parameters of steel brush FIS BS

Drill bit diameter	[mm]	10	12	14	16	18	20	24	25
Steel brush diameter d _b	[mm]	11	14	16	20	20	25	26	27

Cleaning nozzle

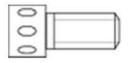


Table B6: Maximum processing time of the mortar and minimum curing time

(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature).

	nperati		Minimum curing time ¹⁾
anchoring base			t _{cure}
[°C]			[minutes]
±0 to +5			6 hours
>+5	>+5 to +10		4 hours
>+10	to	+20	90
>+20	>+20 to +30		60
>+30 to +40			30

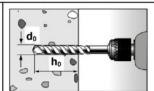
System	Maximum processing
temperature (mortar)	time t _{work}
[°C]	[minutes]
+5	13
+10	9
+20	5
+30	4
+40	2

¹⁾ For wet concrete the curing time must be doubled.

fischer li	njectionsystem	FIS GREEN
------------	----------------	-----------

Intended Use

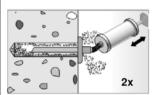
Cleaning tools

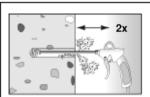

Processing times and curing times

Annex B 6

Appendix 11 / 26

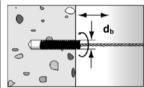
Installation instructions part 1 Drilling and cleaning the hole


1

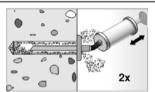

Drill the hole.

Drill hole diameter d_0 and drill hole depth h_0 see Tables **B1**, **B2**, **B3**, **B4**.

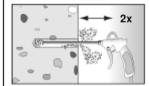
2



 $h_{ef} \le 10d$ and $d_0 < 18$ mm: Blow out the drill hole two times by hand.


h_{ef} > 10d and/or d₀ ≥ 18 mm: Blow out the drill hole two times, using oil-free pressure air (p > 6 bar) with a cleaning nozzle.

3

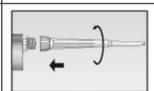


Brush the drill hole two times using an adequate steel brush (see Table **B5**).

4

 $h_{ef} \le 10d$ and $d_0 < 18$ mm: Blow out the drill hole two times by hand.

 $h_{ef} > 10d$ and/or $d_0 \ge$ 18 mm: Blow out the drill hole two times, using oil-free pressure air (p > 6 bar) with a cleaning nozzle.


Preparing the cartridge

5

Twist off the sealing cap.

6

Twist on the static mixer.

The spiral in the static mixer must be clearly visible.

7

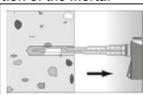
Place the cartridge into the dispenser.

8

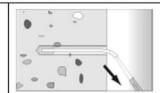
Press out approx. 10cm of mortar until the resin is permanent grey in colour. Mortar which is not grey in colour will not cure and must be disposed of.

fischer Injectionsystem FIS GREEN

Intended Use

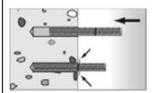

Installation instructions part 1

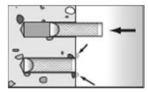
Annex B 7


Appendix 12 / 26

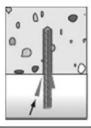
Installation instructions part 2 Injection of the mortar

9

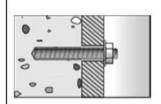

Fill approx. 2/3 of the drill hole with mortar. Always begin from the bottom of the hole to eliminate voids.



For drill hole depth ≥ 150 mm use an extension tube.

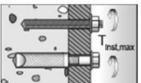

Installation fischer anchor rods or internal threaded anchors RG MI

10



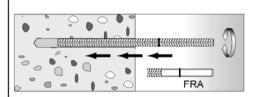
Only use clean and oil-free anchor elements. Press the anchor rod or internal threaded anchor RG MI down to the bottom of the hole, turning it slightly while doing so. After inserting the anchor element, excess mortar must emerge around the anchor element.

For overhead installation support the anchor element with wedges.


For push-through installation fill the annular gap also with mortar.

11

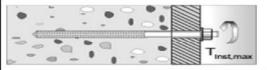
Wait for the specified curing time t_{cure} see Table **B6**.


12

Mounting the fixture T_{inst,max} see Tables **B1** or **B6**

Installing reinforcing bars and fischer rebar anchors FRA

10


Only use clean and oil-free rebars. Mark the reinforcing bar for setting depth. Using a turning movement, push the reinforcing bar or FRA vigorously into the filled hole up to the insertion depth marking. When reaching the setting depth marking surplus mortar must emerge around the anchor.

11

Wait for the specified curing time t_{cure} see Table **B6**.

12

Mounting the fixture T_{inst.max} see Table **B4**

fischer Injectionsystem FIS GREEN

Intended Use

Installation instructions part 2

Annex B 8

Appendix 13 / 26

Table C1: Characteristic values of resistance for threaded rods under tension loads in noncracked concrete (Design according to TR 029)

Anchor size			M8	M10	M12	M16	M20	
Installation safety factor	γ ₂	[-]			1,2			
Combined pullout and concrete con	e failure							
Diameter for calculation	d	[mm]	8	10	12	16	20	
Characteristic bond resistance in non-	Characteristic bond resistance in non-cracked concrete C20/25							
Temperature range I ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	10,5	10,0	9,5	8,5	7,5	
Temperature range II ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,0	8,5	7,5	6,5	
	C25/30	[-]	1,02					
	C30/37	[-]	1,04					
Increasing factor Ψ _c	C35/45	[-]		1,07				
	C40/50	[-]		1,08				
	C45/55	[-]		1,09				
	C50/60	[-]	1,10					
Splitting failure								
	h/h _{ef} ≥2,0	[mm]			1,0 h _{ef}			
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]		4,	6 h _{ef} – 1,8	3 h		
	h/h _{ef} ≤1,3	[mm]		2,26 h _{ef}				
Spacing	S _{cr,sp}	[mm]	·		2 c _{cr,sp}			

¹⁾ See Annex B1

fischer	Injections	ystem FIS	GREEN
---------	------------	-----------	--------------

Characteristic values of resistance for threaded rods under tension load in non-cracked concrete. Design according to TR 029

Table C2: Characteristic values of resistance for internal threaded anchors RG MI under tension loads in non-cracked concrete (Design according to TR 029)

Anchor size			M8	M10	M12	M16		
Installation safety factor		γ ₂	[-]		1	,2		
Steel failure								
	Property	5.8	[kN]	19	29	43	79	
Characteristic resistance _	class	8.8	[kN]	29	47	68	108	
with screw N _{Rk,s}	Property	A4	[kN]	26	41	59	110	
	class 70	С	[kN]	26	41	59	110	
	Property	5.8	[-]		1,	50		
Partial safety factor	class	8.8	[-]		1,	50		
	Property	A4	[-]		1,	1,87		
	class 70	С	[-]		1,	87		
Combined pullout and co	ncrete con	e failure						
Characteristic bond resista	nce in non-d		C20/25					
Temperature range I ²⁾		$N_{Rk,p}^0$	[kN]	32	38	56	76	
Temperature range II ²⁾		$N_{Rk,p}^0$	[kN]	30	35	51	70	
		C25/30	[-]		1,	02		
		C30/37	[-]		1,	04		
Increasing factor III		C35/45	[-]		1,	07		
Increasing factor Ψ _c		C40/50	[-]		1,	08		
		C45/55	[-]		1,	09		
		C50/60	[-]		1,	10		
Splitting failure								
		h/h _{ef} ≥2,0	[mm]		1,0) h _{ef}		
Edge distance c _{cr,sp}		2,0>h/h _{ef} >1,3	[mm]		4,6 h _{ef} – 1,8 h			
·		h/h _{ef} ≤1,3	[mm]		2,26 h _{ef}			
Spacing		S _{cr,sp}	[mm]		2 (cr,sp		

¹⁾ In absence of other national regulations 2) See Annex B1

fischer Injectionsystem FIS GREEN

Characteristic values of resistance for internal threaded rods under tension load in non-cracked concrete. (Design according to TR 029)

Table C3: Characteristic values of resistance for reinforcing bars under tension loads in noncracked concrete (Design according to TR 029)

Size	Ø	[mm]	8	10	12	14	16	20		
Installation safety factor	γ2	[-]	1,2							
Combined pullout and co	ncrete cone fa	ailure								
Diameter of calculation	d	[mm]	8	10	12	14	16	20		
Characteristic bond resistar			rete C20/	25						
Temperature range I ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,5	7,5	7,5		
Temperature range II ²⁾	$ au_{Rk,ucr}$	rs 1/21	6,5	6,5	6,5	6,5	6,5	6,5		
	C25/30	[-]	1,02							
	C30/37	[-]	1,04							
Increasing factor III	C35/45	[-]	1,07							
Increasing factor Ψ _c	C40/50	[-]	1,08							
	C45/55	[-]	1,09							
	C50/60	[-]		1,10						
Splitting failure										
	h/h _{ef} ≥2,	0 [mm]			1,0	h _{ef}				
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	3 [mm]			4,6 h _{ef}	– 1,8 h		·		
, ·	h/h _{ef} ≤1,	3 [mm]	·	·		3 h _{ef}	·			
Spacing	S _{cr,s}	_{sp} [mm]			2 c	'cr,sp				

¹⁾ In absence of other national regulations
2) See Annex B1

Table C4: Characteristic values of resistance for rebar anchors FRA under tension loads in non-cracked concrete (Design according to TR 029)

Size			M12	M16	M20	
Installation safety factor	γ ₂	[-]		1,2		
Steel failure						
Characteristic resistance	$N_{Rk,s}$	[kN]	63	111	173	
Partial safety factor	γ _{Ms,N}	[-]		1,40		
Combined pullout and co	ncrete cone fa	ailure				
Diameter of calculation	d	[mm]	12	16	20	
Characteristic bond resistar			rete C20/25			
Temperature range I ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	7,5 7,5 7,5			
Temperature range II ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5	
	C25/30	[-]	1,02			
	C30/37	[-]		1,04		
Increasing factor III	C35/45	[-]		1,07		
Increasing factor Ψ _c	C40/50	[-]		1,08		
	C45/55	[-]		1,09		
	C50/60	[-]	1,10			
Splitting failure						
	h/h _{ef} ≥2,0	0 [mm]		1,0 h _{ef}		
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3			4,6 h _{ef} – 1,8 h		
· ·	h/h _{ef} ≤1,		2,26 h _{ef}			
Spacing	S _{cr,s}	p [mm]		2 c _{cr,sp}		

In absence of other national regulations

fischer Injectionsystem FIS GREEN

Performances

Characteristic values of resistance for reinforcing bars and rebar anchors FRA under tension load in non-cracked concrete. (Design according to TR 029)

Annex C 3

Appendix 16 / 26

²⁾ See Annex B1

Table C5: Characteristic values of resistance for threaded rods under shear loads in noncracked concrete (Design according to TR 029)

Size			M8	M10	M12	M16	M20
Concrete pryout failure							
Factor k in equation (5.7) of Technical Report TR 029, Section 5.2.3.3	k	[-]			2,0		

Table C6: Characteristic values of resistance for internal threaded rods RG MI under shear loads in non-cracked concrete (Design according to TR 029)

Size	M8	M10	M12	M16			
Steel failure without lever an	n						
Characteristic	Property	5.8	[kN]	9,2	14,5	21,1	39,2
resistance	class	8.8	[kN]	14,6	23,2	33,7	62,7
	Property	A4	[kN]	12,8	20,3	29,5	54,8
$V_{Rk,s}$	class 70	С	[kN]	12,8	20,3	29,5	54,8
Steel failure with lever arm							
Characteristic	Property	5.8	[Nm]	20	39	68	173
Characteristic resistance	class	8.8	[Nm]	30	60	105	266
M ⁰ _{Rk,s}	Property	A4	[Nm]	26	52	92	232
IVI Rk,s	class 70	С	[Nm]	26	52	92	232
Concrete pryout failure							
Factor k in equation (5.7) of Technical Report TR 029, Section 5.2.3.3			[-]		2	,0	

fischer Injectionsystem FIS

Characteristic values of resistance for threaded rods and internal threaded anchors RG MI under shear loads in non-cracked concrete (Design according to TR 029)

Annex C 4

Appendix 17 / 26

Table C7: Characteristic values of resistance for reinforcing bars under shear loads in noncracked concrete (Design according to TR 029)

Size	Ø	[mm]	8	10	12	14	16	20
Concrete pryout failure								
Factor k in equation (5.7) of Technical Report TR 029, Section 5.2.3.3	k	[-]			2,0	0		

Table C8: Characteristic values of resistance rebar anchors FRA under shear loads in noncracked concrete (Design according to TR 029)

Size			M12	M16	M20
Steel failure without lever arm					
Characteristic resistance	$V_{Rk,s}$	[kN]	30	55	86
Steel failure with lever arm	•				
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	92	233	454
Partial safety factor	γ _{Ms,V} 1)	[-]		1,56	
Concrete pryout failure					
Factor k in equation (5.7) of Technical Report TR 029, Section 5.2.3.3	k	[-]		2,0	

¹⁾ In absence of other national regulations

fischer	Injections	ystem FIS	GREEN
---------	------------	-----------	--------------

Characteristic values of resistance for reinforcing bars and rebar anchors FRA under shear loads in non-cracked concrete (Design according to TR 029)

Annex C 5

Appendix 18 / 26

Table C9: Characteristic values of resistance for threaded rods under tension loads in noncracked concrete (Design according to CEN/TS 1992-4)

Anchor size			M8	M10	M12	M16	M20
Installation safety factor	γinst	[-]			1,2		•
Steel failure							
Characteristic resistance	$N_{Rk,s}$	[kN]			$A_s \times f_{uk}$		
Combined pullout and concrete cone	failure						
Diameter for calculation	d	[mm]	8	10	12	16	20
Characteristic bond resistance in non-cr	acked concrete	C20/25			•		
Temperature range I ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	10,5	10,0	9,5	8,5	7,5
Temperature range II ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,0	8,5	7,5	6,5
	C25/30	[-]	1,02				
	C30/37	[-]	1,04				
Increasing factor III	C35/45	[-]	1,07				
Increasing factor Ψ _c	C40/50	[-]			1,08		
	C45/55	[-]			1,09		
	C50/60	[-]			1,10		
Factor acc. CEN/TS-1992-4 Section 6.2.2.3	k ₈	[-]	10,1				
Splitting failure							
Factor acc. CEN/TS-1992-4 Section 6.2.3.1	k _{ucr}	[-]			10,1		
	h/h _{ef} ≥2,0	[mm]			1,0 h _{ef}		
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]		4,	6 h _{ef} – 1,8	3 h	
. '	h/h _{ef} ≤1,3	[mm]	2,26 h _{ef}				
Spacing	S _{cr,sp}	[mm]			2 c _{cr,sp}		

¹⁾ See Annex B1

fischer	Injections	ystem FIS	GREEN
---------	------------	-----------	--------------

Characteristic values of resistance for threaded rods under tension load in non-cracked concrete. Design according to CEN/TS-1992-4

Table C10: Characteristic values of resistance for internal threaded anchors RG MI under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Anchor size				M8	M10	M12	M16	
Installation safety factor		γinst	[-]		1	,2		
Steel failure								
	Property	5.8	[kN]	19	29	43	79	
Characteristic resistance	class	8.8	[kN]	29	47	68	108	
with screw N _{Rk,s}	Property	A4	[kN]	26	41	59	110	
	class 70	C	[kN]	26	41	59	110	
Portial safety	Property	5.8	[-]		1,	50		
Partial safety factor	class	8.8	[-]		1,	50		
1)	Property	A4	[-]		1,	87		
γMs,N '	class 70	С	[-]		1,	87		
Combined pullout and cor	ncrete cone	failure						
Characteristic bond resistan	ce in non-cra		C20/25					
Temperature range I ²⁾		$N^0_{Rk,p}$	[kN]	32	38	56	76	
Temperature range II ²⁾		$N^0_{Rk,p}$	[kN]	30	35	51	70	
		C25/30	[-]	1,02				
		C30/37	[-]	1,04				
Increasing factor Ψ _c		C35/45	[-]		1,	07		
		C40/50	[-]		1,	80,		
		C45/55	[-]		1,	09		
		C50/60	[-]		1,	10		
Factor acc. CEN/TS-1992-4	-5:2009	k	r 1		1/	0,1		
Section 6.2.2.3		k ₈	[-]		11	J, I		
Splitting failure					·		·	
Factor acc. CEN/TS-1992-4-5:2009		l.	r 1		4.1	<u> </u>		
Section 6.2.3.1		k _{ucr}	[-]			0,1		
		h/h _{ef} ≥2,0	[mm]		1,0) h _{ef}		
Edge distance c _{cr,sp}		2,0>h/h _{ef} >1,3	[mm]			– 1,8 h		
		h/h _{ef} ≤1,3	[mm]		2,26 h _{ef}			
Spacing		S _{cr,sp}	[mm]		2 (cr,sp		

¹⁾ In absence of other national regulations ²⁾ See Annex B1

fischer Injectionsystem FIS GREEN

Performances

Characteristic values of resistance for internal threaded rods RG MI under tension load in non-cracked concrete. Design according to CEN/TS-1992-4

Table C11: Characteristic values of resistance for reinforcing bars under tension loads in noncracked concrete (Design according to CEN/TS 1992-4)

Size	Ø	[mm]	8	10	12	14	16	20	
Installation safety factor	γinst	[-]	1,2						
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]			A_s	x f _{uk}			
Combined pullout and concrete cone failure									
Diameter of calculation	d	[mm]	8	10	12	14	16	20	
Characteristic bond resistance	in non-crac								
Temperature range I 1)	$ au_{Rk,ucr}$	$[N/mm^2]$	7,5	7,5	7,5	7,5	7,5	7,5	
Temperature range II 1)	$ au_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5	6,5	6,5	6,5	
	C25/30	[-]			1,	02			
	C30/37	[-]			1,	04			
Increasing factor Ψ_c	C35/45	[-]	1,07						
	C40/50	[-]	1,08						
	C45/55	[-]	1,09						
	C50/60	[-]			1,	10			
Factor acc. CEN/TS-1992-4-									
5:2009	k ₈	[-]			10),1			
Section 6.2.2.3									
Splitting failure									
Factor acc. CEN/TS-1992-4-									
5:2009	k_{ucr}	[-]			10),1			
Section 6.2.3.1									
	h/h _{ef} ≥	2,0 [mm]			1,0	h _{ef}			
Edge distance c _{cr,sp}	2,0>h/h _{ef} >	1,3 [mm]				– 1,8 h			
	h/h _{ef} ≤	1,3 [mm]				3 h _{ef}			
Spacing	S	_{cr,sp} [mm]			2 0	cr,sp			

¹⁾ See Annex B1

fischer	Injections	ystem FIS	GREEN
---------	------------	-----------	--------------

Characteristic values of resistance for reinforcing bars under tension load in non-cracked concrete. Design according to CEN/TS-1992-4

Table C12: Characteristic values of resistance for rebar anchors FRA under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Size			M12	M16	M20			
Installation safety factor	γinst	[-]						
Steel failure								
Characteristic resistance	$N_{Rk,s}$	[kN]	63	111	173			
Partial safety factor	γ _{Ms,N}	[-]		1,40				
Combined pullout and co	ncrete cone fa	ailure						
Diameter of calculation	d	[mm]	12	16	20			
Characteristic bond resistar	nce in non-crad	cked cond	crete C20/25					
Temperature range I ²⁾	$ au_{Rk,ucr}$	$[N/mm^2]$	7,5	7,5	7,5			
Temperature range II ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5			
	C25/30	[-]		1,02				
	C30/37	[-]	1,04					
Increasing factor Ψ _c	C35/45	[-]	1,07					
increasing factor Ψ_c	C40/50	[-]	1,08					
	C45/55	[-]		1,09				
	C50/60	[-]		1,10				
Factor acc. CEN/TS-1992-4 5:2009 Section 6.2.2.3	l- k ₈	[-]	10,1					
Splitting failure								
Factor acc. CEN/TS- 1992-4-5:2009 Section 6.2.3.1	k _{ucr}	[-]	10,1					
	h/h _{ef} ≥2,0	0 [mm]		1,0 h _{ef}				
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	3 [mm]		4,6 h _{ef} – 1,8 h				
	h/h _{ef} ≤1,	3 [mm]		2,26 h _{ef}				
Spacing	S _{cr,s}	p [mm]		2 c _{cr,sp}				

¹⁾ In absence of other national regulations 2) See Annex B1

Characteristic values of resistance for rebar anchors FRA under tension load in noncracked concrete. Design according to CEN/TS-1992-4

Table C13: Characteristic values of resistance for threaded rods under shear loads in noncracked concrete (Design according to CEN/TS 1992-4)

Size			M8 M10 M12 M16				
Installation safety factor	γinst	[-]	1,0				
Steel failure without lever arm							
Characteristic resistance	$V_{Rk,s}$	[kN]			$0.5 A_s x f_u$	k	
Ductility factor acc. to CEN/TS 1992-4-5, Section 6.3.2.1	k ₂	[-]	0,8				
Steel failure with lever arm							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	1,2 x W _{el} x f _{uk}				
Concrete pryout failure	•						
Factor in equation of CEN/TS 1992-4-5, Section 6.3.3	k ₃	[-]	2,0				
Concrete edge failure							
Effective length of anchor	l _f	[mm]	$I_f = min (h_{ef}; 8 d_{nom})$				
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20

Table C14: Characteristic values of resistance for internal threaded rods RG MI under shear loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Size				M8	M10	M12	M16
Installation safety factor γ _{inst} [-]				1	,0	•	
Steel failure without lever ar	m						
Characteristic	Property	5.8	[kN]	9,2	14,5	21,1	39,2
Characteristic resistance	class	8.8	[kN]	14,6	23,2	33,7	62,7
	Property	A4	[kN]	12,8	20,3	29,5	54,8
$V_{Rk,s}$	class 70	С	[kN]	12,8	20,3	29,5	54,8
Ductility factor acc. to CEN/TS Section 6.3.2.1	1992-4-5,	k ₂	[-]		0	,8	
Steel failure with lever arm							
	Property	5.8	[Nm]	20	39	68	173
Characteristic resistance	class	8.8	[Nm]	30	60	105	266
M ⁰ _{Rk,s}	Property	A4	[Nm]	26	52	92	232
IVI Rk,s	class 70	С	[Nm]	26	52	92	232
Concrete pryout failure							
Factor in equation of CEN/TS 1992-4-5, Section 6.3.3			[-]	2,0			
Concrete edge failure							
Effective length of anchor		l _f	[mm]	90	90	125	160
Outside diameter of anchor		d _{nom}	[mm]	12	16	18	22

fischer I	njectionsystem	FIS GREEN
-----------	----------------	-----------

Characteristic values of resistance for threaded rods and internal threaded anchors RG MI under shear loads in non-cracked concrete (Design according to CEN/TS

Table C15: Characteristic values of resistance for reinforcing bars under shear loads in noncracked concrete (Design according to CEN/TS 1992-4)

Size	Ød	[mm]	8	10	12	14	16	20
Installation safety factor	γinst	[-]			1	,0		
Steel failure without lever arm								
Characteristic resistance	$V_{Rk,s}$	[kN]			0,5 A	$_{s} x f_{uk}$		
Ductility factor acc. to CEN/TS 1992-4-5, Section 6.3.2.1	k ₂	[-]	0,8					
Steel failure with lever arm								
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	1,2 x W _{el} x f _{uk}					
Concrete pryout failure								
Factor in equation of CEN/TS 1992-4-5, Section 6.3.3	k ₃	[-]	2,0					
Concrete edge failure								
Effective length of anchor	I _f	[mm]	$I_f = min (h_{ef}; 8d_{nom})$					
Outside diameter of anchor	d _{nom}	[mm]	 				20	

Table C16: Characteristic values of resistance rebar anchors FRA under shear loads in noncracked concrete (Design according to CEN/TS 1992-4)

Size	M12	M16	M20				
Installation safety factor	γinst	[-]	1,0				
Steel failure without lever arm							
Characteristic resistance	$V_{Rk,s}$	[kN]	30	55	86		
Ductility factor acc. to CEN/TS 1992-4-5, Section 6.3.2.1	k ₂	[-]		0,8			
Steel failure with lever arm							
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	92	233	454		
Partial safety factor	γ _{Ms,V} 1)	[-]		1,56			
Concrete pryout failure							
Factor in equation of CEN/TS 1992-4-5, Section 6.3.3	k ₃	[-]	2,0				
Concrete edge failure							
Effective length of anchor	I _f	[mm]					
Outside diameter of anchor	d _{nom}	[mm]	12	16	20		

¹⁾ In absence of other national regulations

Characteristic values of resistance for reinforcing bars and rebar anchors FRA under shear loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Table C17: Displacements under tension load¹⁾ for threaded rods

Size		M8	M10	M12	M16	M20
Temperature range	I and II					
δ_{N0} -Factor	[mm/(N/mm²)]	0,09	0,09	0,10	0,11	0,11
$\delta_{N\infty}$ -Factor	[mm/(N/mm²)]	0,14	0,14	0,15	0,17	0,17

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Factor $\cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\cdot \tau$

Table C18: Displacements under shear load 1) for threaded rods

Size		M8	M10	M12	M16	M20
Temperature range I and II						
δ_{V0} -Factor	[mm/kN]	0,18	0,15	0,12	0,09	0,07
δ _{V∞} -Factor	[mm]	0,27	0,22	0,18	0,14	0,11

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Factor · V

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor · V

Table C19: Displacements under tension load¹⁾ for internal threaded anchors RG MI

Size		M8	M10	M12	M16
Temperature range I and II					
$\delta_{N0} ext{-}Factor$	[mm/(N/mm²)]	0,10	0,11	0,12	0,12
$\delta_{N\infty}$ -Factor	[mm/(N/mm²)]	0,15	0,17	0,18	0,18

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Factor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\cdot \tau$

Table C20: Displacements under shear load 1) for internal threaded anchors RG MI

Size		M8	M10	M12	M16
Temperature range I and II					
$\delta_{Vo} ext{-}Factor$	[mm/kN]	0,18	0,15	0,12	0,09
δ _{V∞} -Factor	[mm/kN]	0,27	0,22	0,18	0,14

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Factor · V

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor · V

fischer Injectionsystem FIS GREEN

Performances

Displacements threaded rods and internal threaded anchor

Table C21: Displacements under tension load 1) for reinforcing bars

Size	Ø	[mm]	8	10	12	14	16	20	
Temperature range I and II									
δ_{N0} -Factor		[mm/(N/mm²)]	0,09	0,09	0,10	0,11	0,12	0,13	
δ _{N∞} -Factor		[mm/(N/mm²)]	0,13	0,14	0,16	0,16	0,18	0,20	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Factor $\cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\cdot \tau$

Table C22: Displacements under shear load 1) for reinforcing bars

Size	Ø	[mm]	8	10	12	14	16	20
Temperature range I (-40°C / +40°C) and temperature range II (-40°C / +80°C)								
δ_{V0} -Factor		[mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07
δ _{V∞} -Factor		[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Factor · V

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor · V

Table C23: Displacements under tension load¹⁾ for rebar anchor FRA

Size	Ø	[mm]	M10	M12	M16		
Temperature range I and II							
δ_{N0} -Factor		[mm/(N/mm²)]	0,09	0,10	0,12		
δ _{N∞} -Factor		[mm/(N/mm²)]	0,14	0,16	0,18		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Factor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\cdot \tau$

Table C24: Displacements under shear load¹⁾ for rebar anchor FRA

Size	Ø	[mm]	M10	M12	M16		
Temperature range I and II							
δ_{V0} -Factor		[mm/kN]	0,15	0,12	0,09		
δ _{V∞} -Factor		[mm/kN]	0,22	0,18	0,14		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Factor · V

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor · V

fischer Injectionsystem FIS GREEN

Performances

Displacements reinforcing bars and rebar anchor FRA