

ΕN

DECLARATION OF PERFORMANCE

DoP 0273

for fischer injection system FIS GREEN (Metal injection and	icnors for use in masonry)				
1. Unique identification code of the product-type:	DoP 0273				
2. Intended use/es:	Post-installed fastening in masonry units, see appendix, especially annexes B1- B9.				
3. <u>Manufacturer:</u>	fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany				
4. Authorised representative:	-				
5. System/s of AVCP:	1				
 <u>European Assessment Document:</u> European Technical Assessment: Technical Assessment Body: Notified body/ies: 	ETAG 029, April 2013, used as EAD ETA-14/0471; 2015-02-03 DIBt- Deutsches Institut für Bautechnik 2873 TU Darmstadt				
 <u>Declared performance/s:</u> Mechanical resistance and stability (BWR 1) Characteristic values for resistance: Reduction factor: Annex C4 Characteristic resistance of a single anchor under te 	ension loading: Annexes C1,C2,C3				
Characteristic resistance of an anchor group under	tension loading: Annex C5				
Characteristic resistance of a single anchor under s	hear loading: Annexes C1,C2,C3				
Characteristic resistance of an anchor group under	shear loading without and with edge influence: Annex C5				
Characteristic edge distance and spacing: Annex C	5				
Minimum edge distance and spacing: Annex C5					
Group factor under tension and shear loading: NPD					
Minimum member thickness: Annex C5					
Durability: Annex A4 Displacements : Annex C4					
Safety in case of fire (BWR 2) Reaction to fire: Class (A1)					
Hygiene, health and the environment (BWR 3) Content, emission and/or release of dangerous sub-	stances: NPD				

8. <u>Appropriate Technical Documentation and/or</u> <u>Specific Technical Documentation:</u>

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

diff'

Dr. Oliver Geibig, Managing Director Business Units & Engineering Tumlingen, 2021-01-20

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The fischer injectionsystem FIS GREEN for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with fischer injection mortar, a perforated sieve sleeve and an anchor rod with hexagon nut and washer or an internal threaded rod in the range of M6 to M16. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1 – C 3
Characteristic resistance for bending moments	See Annex C 4
Displacements under shear and tension loads	See Annex C 4
Reduction Factor for job site tests (β-Factor)	See Annex C 4
Edge distances and spacing	See Annex C 5

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

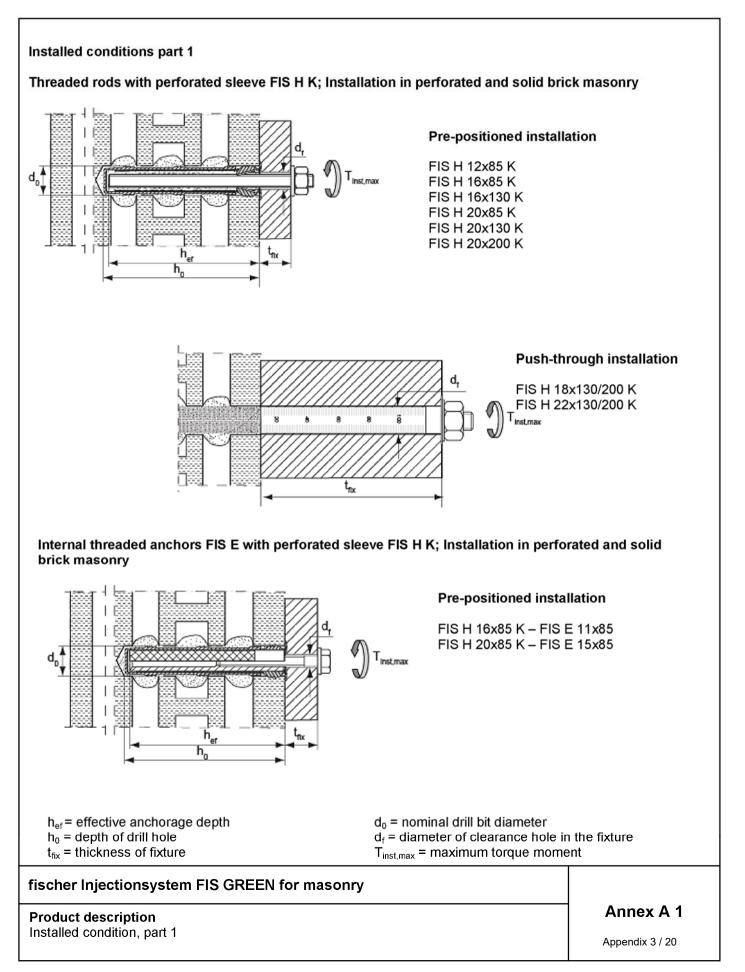
Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

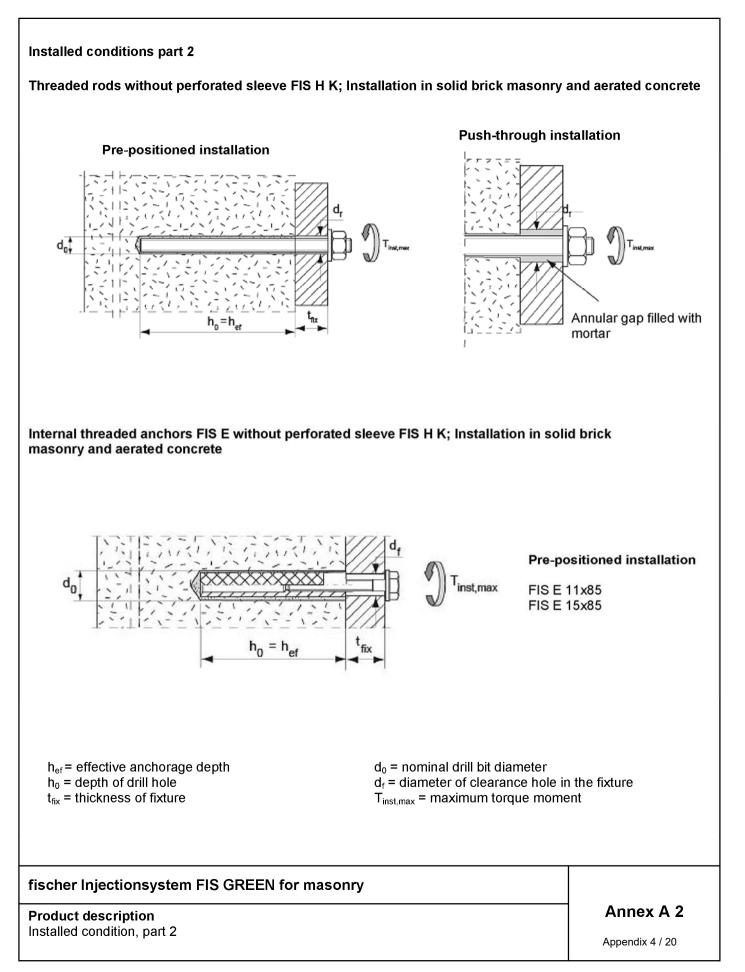
3.4 Safety in use (BWR 4)

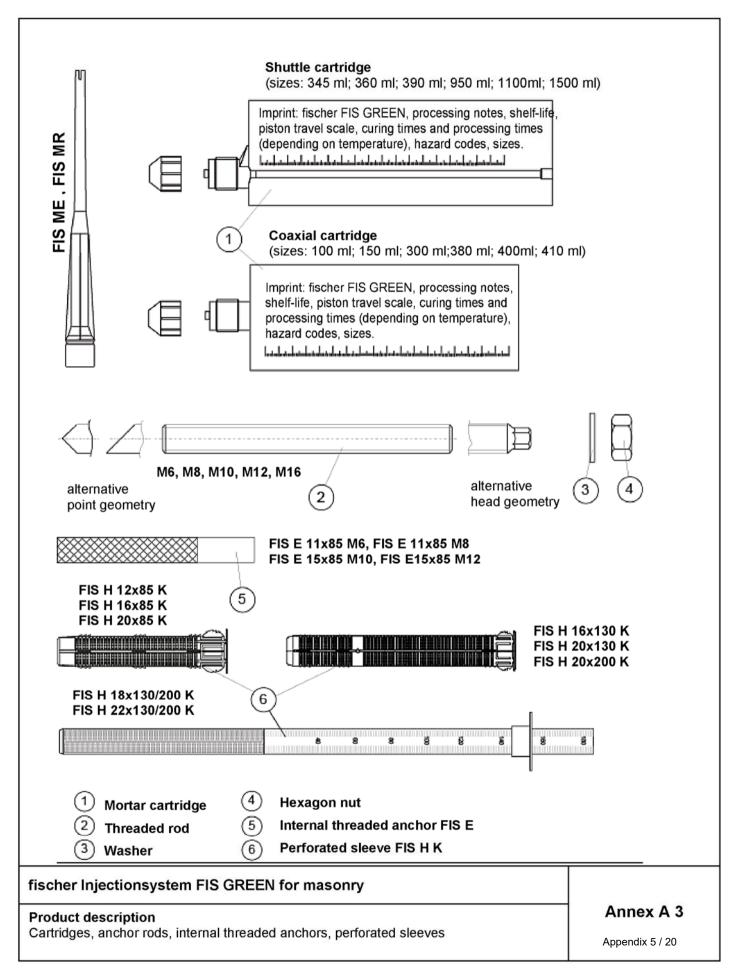
The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

- 3.5 Protection against noise (BWR 5) Not applicable.
- 3.6 Energy economy and heat retention (BWR 6) Not applicable.
- 3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.


3.8 General aspects


The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.


4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 17 February 1997 (97/177/EC) (OJ L 073 of 14.03.97 p. 24-25), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal injection anchors for use in masonry	For fixing and/or supporting to masonry, structural elements (which contributes to the stability of the works) or heavy units	_	1

Part	Material	Designation					
1	Bio based mortar, hardener; fillers						
	Stainless steel A4		High corrosion- resistant steel c				
2	$\begin{array}{c} \mbox{Property class 50, 70} \\ \mbox{or 80} \\ \mbox{EN ISO 3506:2009} \\ \mbox{1.4401; 1.4404;} \\ \mbox{1.4578; 1.4571;} \\ \mbox{1.4578; 1.4571;} \\ \mbox{1.4439; 1.4362;} \\ \mbox{1.4062} \\ \mbox{EN 10088-1:2014} \\ \mbox{f}_{uk} \leq 1000 \ \mbox{N/mm}^2 \\ \mbox{A}_5 > 8\% \end{array}$	Threaded rod P	Property class 50 or 80 EN ISO 3506:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$				
3	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	Washer ISO 7089:2000 E	1.4565;1.4529 EN 10088-1:2014				
4	Property class 50, 70 or 80 ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Hexagon nut	Property class 50, 70 of 80 ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014				
5	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Internal threaded anchor FIS E	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
5		FIS E	EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362				

Table A1: Materials

fischer Injectionsystem FIS GREEN for masonry

Product description Materials Annex A 4

Appendix 6 / 20

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Solid brick masonry (Use category b) and autoclaved aerated masonry (Use category d), acc. to Annex B 7. Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength of the masonry unit.
- Hollow brick masonry (use category c), according to Annex B 7.
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchor may be determined by job site tests according to ETAG 029, Annex B under consideration of the β-factor according to Annex C 4, Table C4.

Temperature Range:

• From - 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions):

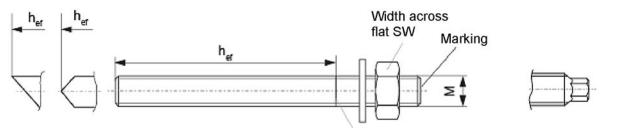
- Dry and wet structure (regarding injection mortar).
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment (stainless steel or high corrosion resistant steel).
- Structures subject to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel) Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages have to be designed in accordance with the ETAG 029, Annex C, Design method A under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings have to be prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.

Installation:

- Dry or wet structures (use category d/d and use category w/w).
- Hole drilling by hammer drill mode.
- · In case of aborted hole: The hole shall be filled with mortar
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (including nut and washer) must comply with the appropriate material and property class of the fischer internal threaded anchor FIS E
- min. curing time see table B3
- Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:


material dimensions and mechanical properties of the metal parts according to the specifications are given in Annex A4, Table A1

conformation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents shall be stored.

marking of the threaded rod with the envisage embedment depth. This may be done by the manufacturer of the rod or by a person on job site.

fischer Injectionsystem FIS GREEN for masonry

Intended Use Specifications Annex B 1

Marking:

possible marking setting depth

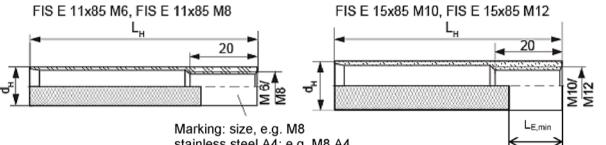

Property class 8.8 or high corrosion-resistant steel C, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel C, property class 50: ••

Table B1.1: Installation parameters (threaded rod without perforated sleeve)

Size	M6	M8	M10	M12	M16			
Nominal drill hole diar	neter	d _{nom} =d ₀	[mm]	8	10	12	14	18
Width across flat		SW	[mm]	10	13	17	19	24
Effective anchorage c	h _{ef.min}	[mm]		50 10				
Depth of drill hole ho =	h _{ef.max}	[mm]	200					
Maximum torque mon	nent	T _{inst.max}	[Nm]	4		10)	
Max. torque moment for aerated concrete		T _{inst,max}	[Nm]	1	2		4	
Diameter of clearance	Pre-position anchorage	d _f ≤	[mm]	7	9	12	14	18
hole in the fixture	Push through anchorage	d _f ≤	[mm]	9	11	14	16	20

¹⁾ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible.

fischer internal threaded anchor FIS E

stainless steel A4: e.g. M8 A4 high corrosion-resistant steel C: e.g. M8 C

Table B1.2: Installation parameters (internal threaded anchor FIS E without perforated sleeve)

Size FIS E			11x85 M6	11x85 M8	15x85 M10	15x85 M12
Nominal drill hole diameter	d _{nom} =d ₀	[mm]		14	1	8
Depth of drill hole	h ₀	[mm]			90	
Effective anchorage depth	L _H =h _{ef}	[mm]			85	
Maximum torque moment	T _{inst, max}	[mm]	4 10			
Max. torque moment for aerated concrete	T _{inst, max}	[mm]			4	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14
Screw-in depth	$L_{E,min}$	[mm]	6	8	10	12

fischer Injectionsystem FIS GREEN for masonry

Intended Use Installation parameters, part 1 Annex B 2

Appendix 8 / 20

Perforated sleeves FIS H 12x85; 16x85; 16x130; 20x85; 20x130; 20x200 K

Marking:size D_{Sleeve} x L_{Sleeve} e.g. 16x85

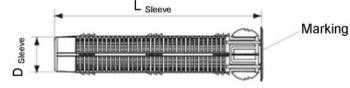
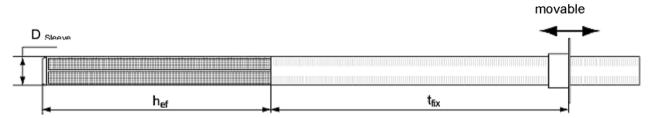



 Table B1.3: Installation parameters (threaded rod and internal threaded anchor with perforated sleeve; only pre-positioned anchorage)

Size FIS HK			12x85	16x85	16x130	20x85	20x130	20x200
Nominal drill hole diameter (d ₀ = D _{Sleeve})	Irill hole diameter ($d_0 = d_{nom} = d_0$ [mm]		12		16		20	
Depth of drill hole	h ₀	[mm]	90	90	135	90	135	205
Effective anchorage depth ¹⁾	h _{ef,min}	[mm]	85	85	110	85	110	180
Ellective anchorage depth	h _{ef,max}	[mm]	85	85	130	85	130	200
Size of threaded rod		[-]	M6, M8	M8, M10		M12, M12, M12, M16		M16
Size of internal threaded anchor		[-]		11x85		15x85		
Maximum torque moment threaded rod and internal threaded anchor	T _{inst,max}	[mm]	2			4		

¹⁾ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible.

Perforated sleeves FIS H 18x130/200 K and FIS H 22x130/200 K

Table B1.4: Installation parameters (threaded rod with perforated sleeve; pushthrough anchorage)

Size FIS H…K			18x130/200	22x130/200	
Nominal drill hole diameter (d ₀ = D _{Sleeve})	d _{nom} =d ₀	[mm]	18	22	
Depth of drill hole	h ₀	[mm]	n] 135 + t _{fix}		
Effective anchorage depth	h _{ef,min}	[mm]	13	30	
Size of threaded rod		[-]	M10 or M12	M16	
Maximum torque moment threaded rod	T _{inst,max}	[Nm]	Ĺ	1	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	18	22	
Thickness of fixture	t _{fix.max}	[mm]	20	00	

fischer Injectionsystem FIS GREEN for masonry

Intended Use

Installation parameters, part 2.

Annex B 3

Appendix 9 / 20

Steel brush BS

Only for solid bricks and aerated concrete

Table B2: Parameters of steel brush

Drill hole diameter	d ₀	[mm]	8	10	12	14	16	18	20	22
Brush diameter	d _{b,} nom	[mm]	9	11	14	16	20	20	25	25

Table B3: Maximum processing time of the mortar and minimum curing time

(During the curing time of the mortar the masonry temperature may not fall below the listed minimum temperature).

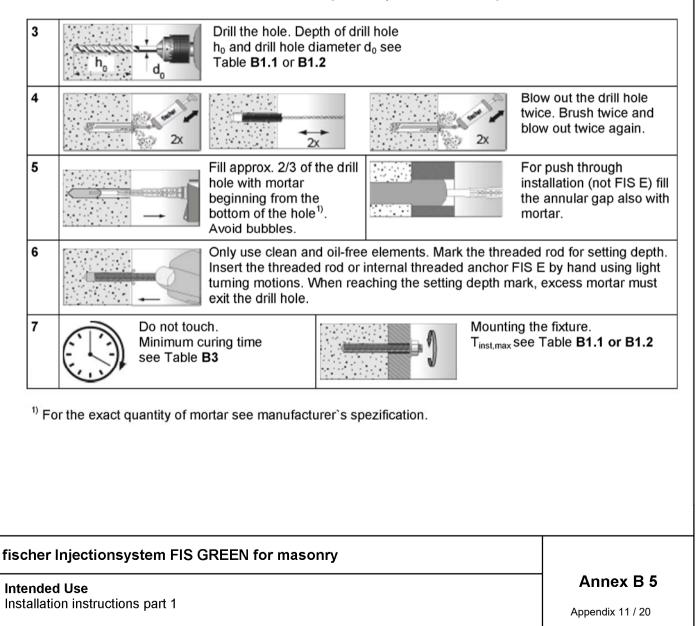
	peratu		Minimum curing time 1)
anch	oring t	base	t _{cure}
	[°C]		[minutes]
>±0	to	+5	6 hours
>+5	to	+10	4 hours
>+10	to	+20	90
>+20	to	+30	60
>+30	to	+40	30

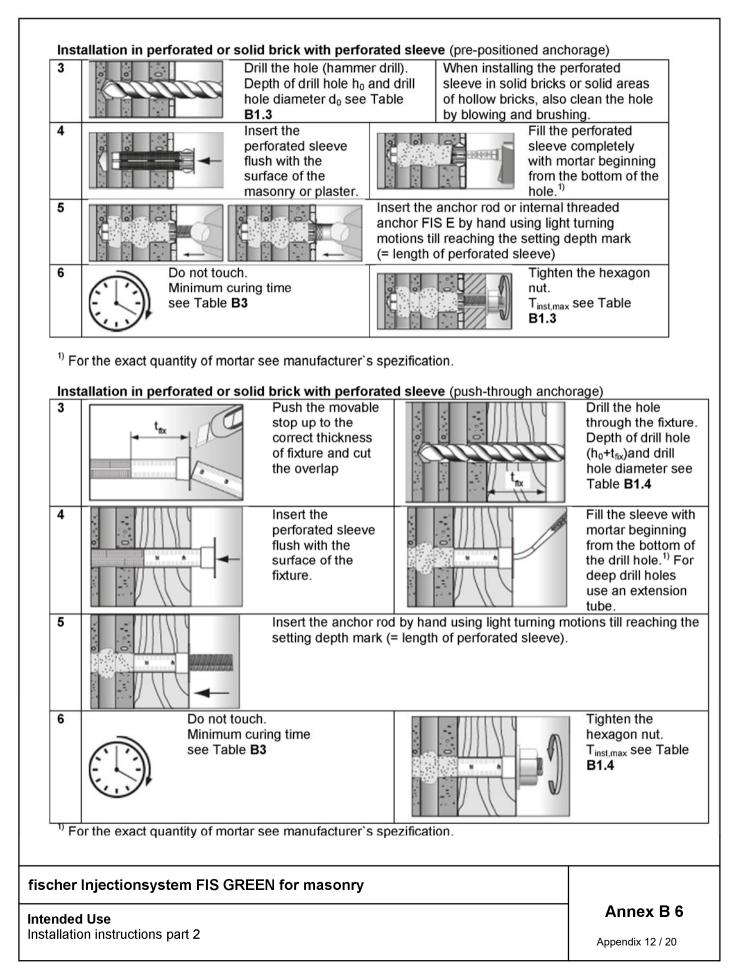
System-	Maximum processing
temperature	time t _{work}
(mortar) [°C]	[minutes]
+5	13
+10	9
+20	5
+30	4
+40	2

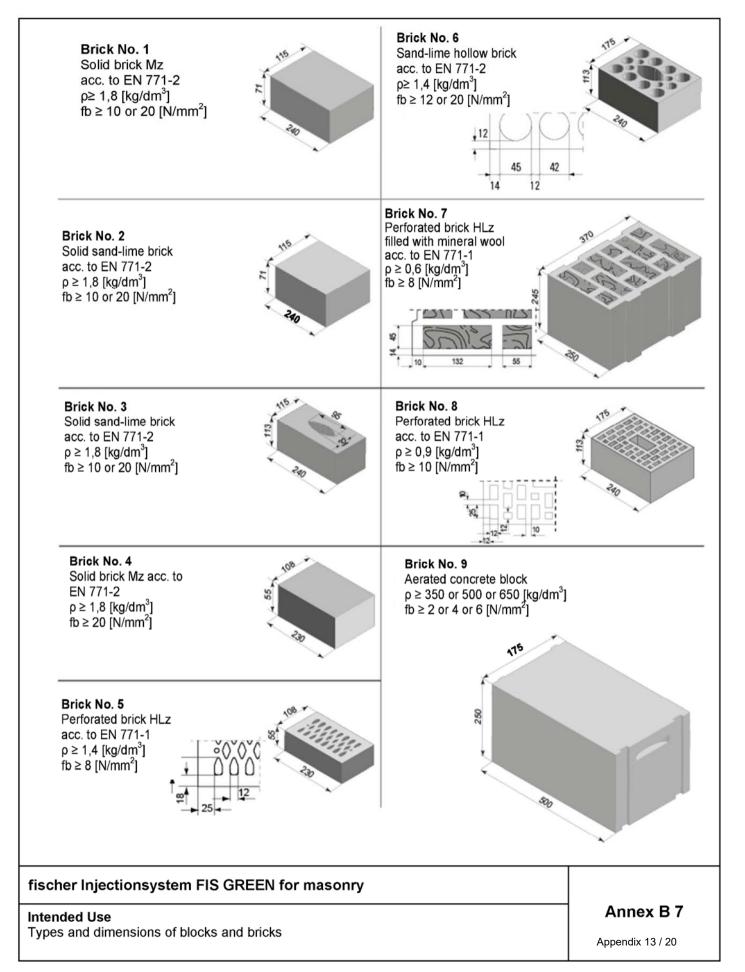
¹⁾ For wet masonry the curing time must be doubled.

fischer Injectionsystem FIS GREEN for masonry

Intended Use Steel brush Processing times and curing times Annex B 4


Appendix 10 / 20


Installation instructions


Preparing the cartridge

1		Remove the sealing cap.		Screw on the static mixer (the spiral in the static mixer must be clearly visible).
2	Hadarez	Place the cartridge into the dispenser.	<×	Press approx. 10 cm of material out until the resin is well mixed. Mortar which is not grey in colour will not cure and must be disposed off.

Installation in solid brick and aerated concrete (without perforated sleeve)

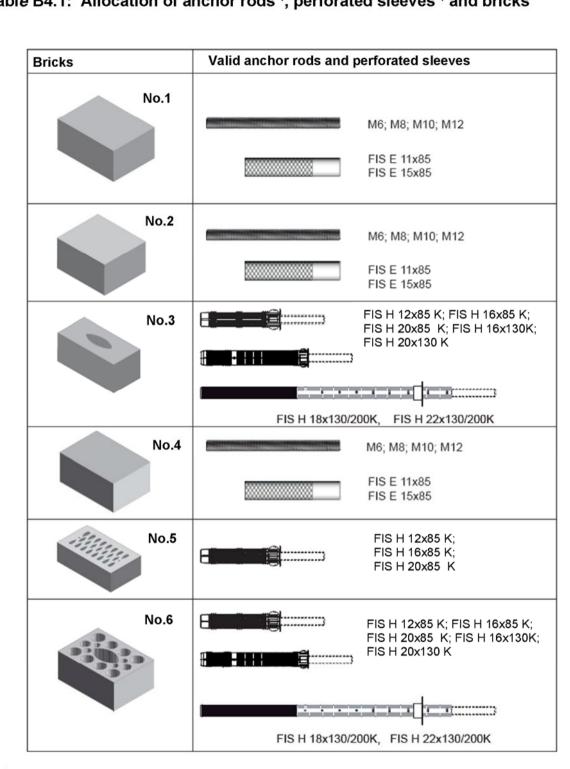
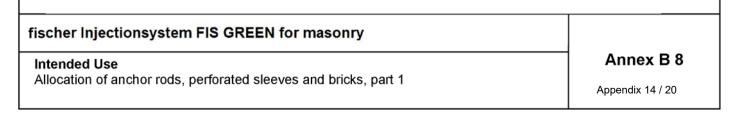
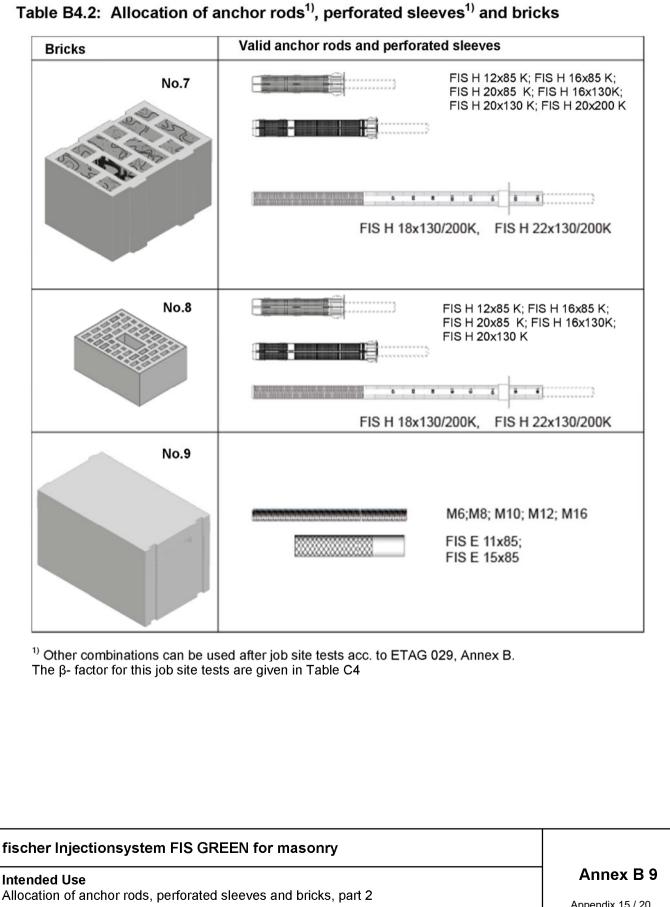




Table B4.1: Allocation of anchor rods¹⁾, perforated sleeves¹⁾ and bricks

 $^{1)}$ Other combinations can be used after job site tests acc. to ETAG 029, Annex B. The β - factor for this job site tests are given in Table C4

Appendix 15 / 20

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
No. [N/mm²] FIS HK anchor [mm] [mm] d/d w/w d/d w/w categories M6 50 85 1,5 0,9 1,5 0,9 4,0 M8 50 200 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5
MB 50 65 (1,5) (0,9) (1,5) (0,9) 4,0 M8 50 200 2,5 2,5 2,5 2,5 (2,5)
M10 50 79 4,5 (3,0) 4,5 (3,0) 6,0
$\rho \ge 1,8$ M10 80 199 6,0 (4,5) 6,0 (4,5) (4,0)
$f_b \ge 20$ without M10 200 200 120(110) 120(110) 120(8
$(f_b \ge 10) \qquad \qquad M12 \qquad 50 \qquad 79 \qquad 4,0 (3,0) \qquad 4,0 (3,0) \qquad 55 (44,0) \qquad 60 \qquad 50 \qquad 50 \qquad 50 \qquad 50 \qquad 50 \qquad 50 \qquad 50$
1 M12 80 199 7,0(5,0) 7,0 (5,0) 5,5 (4,0
M12 200 200 10,0 (7,0) 10,0 (7,0) 12,0 (11
FIS E M6/8, FIS E M10/M12 85 85 6,0 (4,5) 6,0 (4,5) 4,0 (2,5)
M6 50 85 1,5 0,9 1,5 0,9 4,0 (3,0)
M8 50 200 2,5 (2,5) 2,5 (2,5)
M10 50 79 3,0 (2,0) 3,0 (2,5)
$\rho \ge 1,8$ M10 80 199 4,0 (3,0) 4,0 (3,0) 5,5 (4,0) 5,5
$f_b \ge 20$ withoutM1020020012,0 (9,0)12,0 (9,0)
$(f_b \ge 10) \qquad \qquad M12 \qquad 50 \qquad 79 \qquad 3,0 (2,0) \qquad 3,0 (2,0) \qquad M12 \qquad 70 (5)$
2 M12 200 200 12,0 (9,0) 12,0 (9,0)
FIS E M6/8, FIS E M10/M12 85 85 4,0 (2,5) 4,0 (2,5) 4,0 (3,0)
12x85 M6/8 85 85 8,0 (5,5) 4,5 (3,0) 4,5 (3,0)
$\rho \ge 1,8$ $\rho \ge $
$\rho \ge 1.8$ 20x85 M12/M16 85 85 12,0 (9,5) 8,0 (5,5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 20x130 M12/M16 22x130/200 M16 110 130 8,5 (6,0) 5,0 (3,5)
M6 50 200 1,5 0,9 1,5 0,9 2,5
$\rho \ge 1.8$ without M8 50 200 2.0 2.0 4.0
M10 50 200 2,0 2,0 55
4 M12 50 200 3,0 3,5 ") For design according to ETAG 029, Annex C: $N_{Rk} = N_{Rk,p} = N_{Rk,s}$

²⁾ For design according to ETAG 029, Annex C: $V_{Rk} = V_{Rk,b} = V_{Rk,c} = V_{Rk,s}$

fischer Injectionsystem FIS GREEN for masonry

Performances

Characteristic values of resistance to tension load and shear load, part 1

Annex C 1

Appendix 16 / 20

					ctive ge depth					
	[kg/dm ³]		A k			N _R	1) k	V _{Rk} ²⁾		
Brick No.	Compressive strength f _b [N/mm ²]	Sleeve FIS HK	Anchor size or screw size in internal threaded anchor	h _{ef,min} [mm]	h _{ef,max} [mm]	Temp. 24/40°C d/d w/w	Temp. 50/80°C d/d w/w	All catego ries		
5	$\rho \ge 1,4$ $f_b \ge 8$	12x85 16x85 20x85	M6/M8 M8/M10 M12/M16	85	85	3,5	2,0	2,5		
		12x85	M6/M8	85	85	3,5 (2,0)	2,0 (1,2)	4,5 (2,5)		
77. 175 .	ρ ≥ 1,4	16x85	M8/M10	85	85			8,0 (5,5)		
	f _b ≥ 20 (f _b ≥ 12)	20x85	M10, M12/M16,	85	85	5,5 (3,5)	3,5 (2,0)	7,5 (4,5)		
		16x130 18x130/200	M8/M10 M10/M12	110	130			8,0 (5,5)		
		20x130 22x130/200	M12/M16 M16	110	130	4,5 (2,5)	2,5 (1,5)	7,5 (4,5)		
	ρ ≥ 0,6 f _b ≥ 8	12x85	M6/M8	85	85	2	1,2	2,5		
50 000		16x85	M8/M10	85	85	1,5	0,9	3,0		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		20x85	M12,M16	85	85	2,0	1,2	1,5		
500		16x130 18x130/200	M8/M10 M10/M12	130	130	2,5	1,5	3,0		
		20x130 22x130/200	M12/M16 M16	110	130	2,0	1,2	1,5		
		20x200	M12/M16	180	200	2,5	1,5	1,5		
		12x85	M6, M8	85	85	3,5	2,0	4,0		
6.1		16x85	M8,M10	85	85	3,5	2,0	5,5		
54 TTS -	ρ ≥ 0,9	20x85	M12, M16	85	85	4,0	2,5	6,0		
the second se	f _b ≥ 10	16x130 18x130/200	M8/M10 M10/M12	110	130	4,5	2,5	5,5		
		20x130 22x130/200 Annex C: N _{Rk} =	M12/M16 M16	110	130	3,5	2,0	6,0		

fischer Injectionsystem FIS GREEN for masonry

Performances

Characteristic values of resistance to tension load and shear load, part 2

Annex C 2

Appendix 17 / 20

Table C1.3: Cha aera	aracteristic ated concre		f resistance to	tension	loads a	nd s	shea	r loa	ads f	or					
	Effective anchorage depth					Characteristic resistance [kN]									
	Density ρ [kg/dm³]					N _{Rk} ¹⁾				V _{Rk} ²⁾					
Driek	- Compressive	Clasura	Anchor size or screw size in	h		Te 24/4	np. I0°C	Temp. 50/80°C		All catego-					
Brick No.	strength f _b [N/mm ²]	Sleeve FIS HK	internal threaded anchor	h _{ef,min} [mm]	h _{ef,max} [mm]	d/d	w/w	d/d	w/w	ries					
			M6	100	200	1,5	1,2	1,5	1,2						
	ρ ≥ 350 f _b ≥ 2	without	M8	100	200	2,0	1,5	2,0	1,5	0,9					
			M10	100	200	2,0	1,5	2,0	1,5	0,0					
			M12	100	200	2,5	2,0	2,5	2,0						
			M16	100	200	2,5	2,0	2,5	2,0	1,2					
175	ρ ≥ 500 f _b ≥ 4	without	M6	100	200	2,0	1,5	2,0	1,5						
250			M8	100	200	2,5	2,0	2,5	2,0						
			M10	100	200	3,0	2,0	3,0	2,0	1,5					
-								M12	100	200	3,0	2,5	3,0	2,5	
9			M16	100	200	3,0	2,5	3,0	2,5						
			M6	100	200	2,5	2,0	2,5	2,0						
			M8	100	200	3,5	2,5	3,5	2,5	2,5					
	ρ ≥650 f _b ≥6	without	M10	100	200	4,0	3,0	4,0	3,0	2,5					
	~		M12	100	200	4,0	3,0	4,0	3,0						
			M16	100	200	4,0	3,0	4,0	3,0	2,0					

¹⁾ For design according to ETAG 029, Annex C: $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}$ ²⁾ For design according to ETAG 029, Annex C: $V_{Rk} = V_{Rk,b} = V_{Rk,c} = V_{Rk,s}$

fischer Injectionsystem FIS GREEN for masonry

Performances

Characteristic values of resistance to tension loads and shear loads for aerated concrete, part 3

Annex C 3

Appendix 18 / 20

Table C2: Characteristic bending moments

Size					M6	M8	M10	M12	M16
Charac- teristic bending moment M _{Rk,s}	Zinc-plated	Property	5.8	[Nm]	8	19	37	65	166
	steel	class	8.8	[Nm]	12	30	60	105	266
	Stainless	Property class	50	[Nm]	8	19	37	65	166
	steel A4		70	[Nm]	11	26	52	92	232
	High	High	50	[Nm]	8	19	37	65	166
	corrosion- resistant	Property class	70 ¹⁾	[Nm]	11	26	52	92	232
	steel C	01833	80	[Nm]	12	30	60	105	266

¹⁾ f_{uk} = 700 N/mm²; f_{yk} = 560 N/mm²

Table C3: Displacements under tension load and shear load

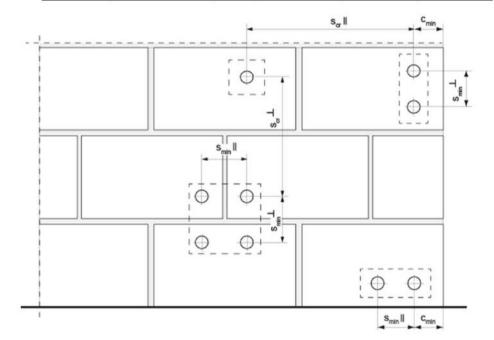
	N	δ _{N0}	δ _{N∞}	V	δ _{vo}	$\delta_{V^{\infty}}$
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
Solid bricks ¹⁾	N _{Rk}	1,32	2,64	V_{Rk}	1,2	1,8
Perforated bricks ²⁾		1,0	2,0		1,9	2,85
Aerated concrete	1,4 * γ _M	1,0	2,0	1,4 * γ _M	2,93	4,4

¹⁾ Brick No.: 1; 2; 3; 4 ²⁾ Brick No.: 5; 6; 7; 8

Table C4: β- factor for job site tests according to ETAG 029, Annex B

Brick	Size		β- F	actor	
No.		Temp 2	4°C/40°C	Temp 50	°C/80°C
		d/d	w/w	d/d	w/w
	M6;M8	0,8	0,48	0,80	0,48
1	M12x200	0,78	0,78	0,78	0,78
	Other sizes	0,84	0,84	0,84	0,84
	Other sizes	0,84	0,84	0,81	0,81
2	M8x200	0,55	0,55	0,55	0,54
	M6x50	0,84	0,51	0,84	0,51
3	All sizes	0,84	0,84	0,51	0,5
4	Other sizes	0,84	0,84	0,84	0,84
4	M6x50	0,84	0,51	0,84	0,51
5	All sizes	0,71	0,71	0,43	0,43
6	All sizes	0,84	0,84	0,51	0,50
7	Other sizes	0,84	0,84	0,51	0,51
	20x130,20x200	0,67	0,67	0,41	0,4
8	All sizes	0,84	0,84	0,51	0,50
9	All sizes	1,0	0,79	1,0	0,79

fischer Injectionsystem FIS GREEN for masonry


Characteristic bending moments; displacements; β - factors for job site tests

Annex C 4

Appendix 19 / 20

Table C5: Edge distance and spacing (installation with and without sleeves)

Direction to	bed joint		-	L			Min.	
Brick No.	h _{ef} [mm]	C _{min}	S _{min}	S _{cr}	S _{min}	S _{cr}	thickness of the masonry members	
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
	50	100	150		150			
1, 2	80	100	240		240			
	200	150	300		300			
3	85	100	255		255		80)	
J	130	100	390		390		~!	
4	50	100	1:	150		50 150		30 -
5	all sizes	100	55		23	30	h _{ef} +	
6	all sizes	100	115		24	40	h _{ef}	
7	all sizes	120	240		240 250			
8	all sizes	120	1	15	24	40		
9	all sizes	80	1	15	24	40		

 $s_{min} \parallel$ = Minimum spacing anchor group parallel to bed joint s_{min}^{\perp} = Minimum spacing anchor group vertical to bed joint $s_{cr} \parallel$ = Characteristic spacing anchor group parallel to bed joint s_{cr}^{\perp} = Characteristic spacing anchor group vertical to bed joint $c_{cr} = c_{min}$ = Edge distance group of 2 anchors: N_{Rk}^{g} =2x N_{Rk} ; V_{Rk}^{g} =2x V_{Rk} group of 4 anchors: N_{Rk}^{g} =4x N_{Rk} ; V_{Rk}^{g} =4x V_{Rk}

fischer Injectionsystem FIS GREEN for masonry

Performances Edge distance and spacing

Annex C 5

Appendix 20 / 20